MRF9030M Rev. 9, 5/2006

Technical Data

Replaced by MRF9030NR1/NBR1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations.

RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz. The high gain and broadband performance of these devices make them ideal for large-signal, common-source amplifier applications in 26 volt base station equipment.

• Typical Performance at 945 MHz, 26 Volts

Output Power — 30 Watts PEP Power Gain — 20 dB Efficiency — 41% (Two Tones) IMD - -31 dBc

- Integrated ESD Protection
- Capable of Handling 5:1 VSWR, @ 26 Vdc, 945 MHz, 30 Watts CW **Output Power**
- **Excellent Thermal Stability**
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Dual-Lead Boltdown Plastic Package Can Also Be Used As Surface Mount.
- 200°C Capable Plastic Package
- TO-272-2 in Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
- TO-270-2 in Tape and Reel. R1 Suffix = 500 Units per 24 mm, 13 inch Reel.

MRF9030MR1 MRF9030MBR1

945 MHz, 30 W, 26 V LATERAL N-CHANNEL **BROADBAND RF POWER MOSFETs**

TO-272-2 **PLASTIC** MRF9030MBR1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	- 0.5, +65	Vdc
Gate-Source Voltage	V_{GS}	- 0.5, +15	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	139 0.93	W W/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	T _J	200	°C

Table 2. Thermal Characteristics

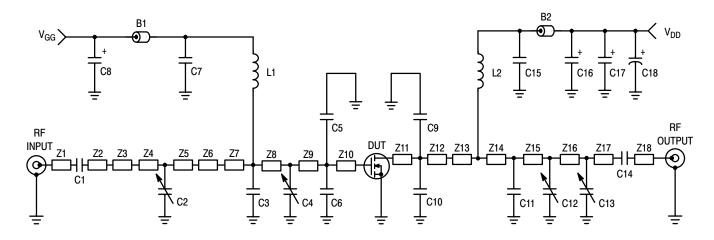
Characteristic		Value	Unit
Thermal Resistance, Junction to Case		1.08	°C/W

Table 3. ESD Protection Characteristics

Т	est Conditions	Class
Human Body Model		1 (Minimum)
Machine Model		M2 (Minimum)
Charge Device Model MRF9030MR1 MRF9030MBR1		C7 (Minimum) C6 (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology		Rating	Package Peak Temperature	Unit
	Per JESD 22-A113, IPC/JEDEC J-STD-020		260	°C


NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Table 5. Electrical Characteristics (T_c = 25°c Unless Otherwise Noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics		•	•	1	1
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 26 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics			•	-	•
Gate Threshold Voltage ($V_{DS} = 10 \text{ Vdc}, I_D = 100 \mu \text{Adc}$)	V _{GS(th)}	2	2.9	4	Vdc
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _D = 250 mAdc)	V _{GS(Q)}	3	3.8	5	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 0.7 Adc)	V _{DS(on)}	_	0.23	0.4	Vdc
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 2 Adc)	9fs	_	2.7	_	S
ynamic Characteristics					
Input Capacitance (V_{DS} = 26 Vdc \pm 30 mV(rms)ac @ 1 MHz, V_{GS} = 0 Vdc)	C _{iss}	_	49	_	pF
Output Capacitance (V_{DS} = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, V_{GS} = 0 Vdc)	C _{oss}	_	27	_	pF
Reverse Transfer Capacitance $(V_{DS} = 26 \text{ Vdc} \pm 30 \text{ mV(rms)ac} @ 1 \text{ MHz}, V_{GS} = 0 \text{ Vdc})$	C _{rss}	_	1.2	_	pF
unctional Tests (In Freescale Test Fixture)	•			•	
Two-Tone Common-Source Amplifier Power Gain (V_{DD} = 26 Vdc, P_{out} = 30 W PEP, I_{DQ} = 250 mA, f1 = 945.0 MHz, f2 = 945.1 MHz)	G _{ps}	18	20	_	dB
Two-Tone Drain Efficiency $(V_{DD} = 26 \text{ Vdc}, P_{out} = 30 \text{ W PEP}, I_{DQ} = 250 \text{ mA},$ f1 = 945.0 MHz, f2 = 945.1 MHz)	η	37	41	_	%
3rd Order Intermodulation Distortion $(V_{DD}=26\ Vdc,\ P_{out}=30\ W\ PEP,\ I_{DQ}=250\ mA, f1=945.0\ MHz,\ f2=945.1\ MHz)$	IMD	_	-31	-28	dBc
Input Return Loss $(V_{DD} = 26 \text{ Vdc}, P_{out} = 30 \text{ W PEP}, I_{DQ} = 250 \text{ mA}, f1 = 945.0 \text{ MHz}, f2 = 945.1 \text{ MHz})$	IRL	_	-13	-9	dB
Two-Tone Common-Source Amplifier Power Gain $(V_{DD}=26\ Vdc,\ P_{out}=30\ W\ PEP,\ I_{DQ}=250\ mA, f1=930.0\ MHz, f2=930.1\ MHz\ and f1=960.0\ MHz, f2=960.1\ MHz)$	G _{ps}	_	20	_	dB
Two-Tone Drain Efficiency $(V_{DD}=26\ Vdc,\ P_{out}=30\ W\ PEP,\ I_{DQ}=250\ mA, f1=930.0\ MHz, f2=930.1\ MHz\ and f1=960.0\ MHz, f2=960.1\ MHz)$	η	_	40.5	_	%
3rd Order Intermodulation Distortion (V _{DD} = 26 Vdc, P _{out} = 30 W PEP, I _{DQ} = 250 mA, f1 = 930.0 MHz, f2 = 930.1 MHz and f1 = 960.0 MHz, f2 = 960.1 MHz)	IMD	_	-31	_	dBc
Input Return Loss $(V_{DD} = 26 \text{ Vdc}, P_{out} = 30 \text{ W PEP}, I_{DQ} = 250 \text{ mA}, f1 = 930.0 \text{ MHz}, f2 = 930.1 \text{ MHz} \text{ and } f1 = 960.0 \text{ MHz}, f2 = 960.1 \text{ MHz})$	IRL	_	-12	_	dB

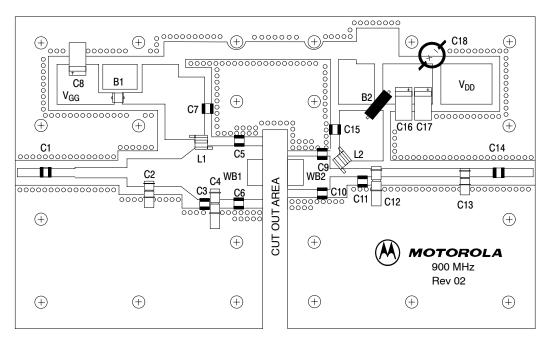
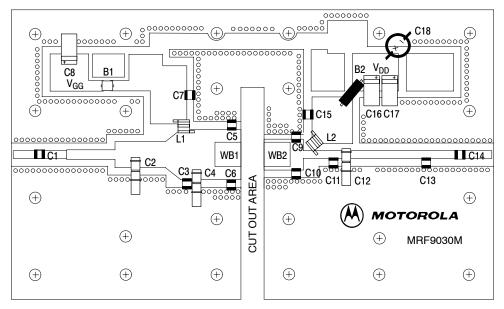

Z1	0.260" x 0.060" Microstrip	Z11	0.360" x 0.270" Microstrip
Z2	0.240" x 0.060" Microstrip	Z12	0.050" x 0.270" Microstrip
Z3	0.500" x 0.100" Microstrip	Z13	0.110" x 0.060" Microstrip
Z 4	0.200" x 0.270" Microstrip	Z14	0.220" x 0.060" Microstrip
Z5	0.330" x 0.270" Microstrip	Z15	0.100" x 0.060" Microstrip
Z6	0.140" x 0.270" x 0.520", Taper	Z16	0.870" x 0.060" Microstrip
Z 7	0.040" x 0.520" Microstrip	Z17	0.240" x 0.060" Microstrip
Z8	0.090" x 0.520" Microstrip	Z18	0.340" x 0.060" Microstrip
Z9	0.370" x 0.520" Microstrip (MRF9030MR1)	Board	Taconic RF-35-0300, $\varepsilon_{r} = 3.5$
	0.290" x 0.520" Microstrip (MRF9030MBR1)		
<i>7</i> 10	0.130" x 0.520" Microstrip (MRF9030MR1)		

Figure 1. 930-960 MHz Broadband Test Circuit Schematic

Table 6. 930 - 960 MHz Broadband Test Circuit Component Designations and Values


0.210" x 0.520" Microstrip (MRF9030MBR1)

Part	Description	Part Number	Manufacturer
B1	Short Ferrite Bead, Surface Mount	95F786	Newark
B2	Long Ferrite Bead, Surface Mount	95F787	Newark
C1, C7, C14, C15	47 pF Chip Capacitors	100B470JP 500X	ATC
C2	0.6-4.5 Variable Capacitor, Gigatrim	44F3360	Newark
C3, C11	3.9 pF Chip Capacitors	100B3R6BP 500X	ATC
C4, C12	0.8-8.0 Variable Capacitors, Gigatrim	44F3360	Newark
C5, C6	6.8 pF Chip Capacitors	100B7R5JP 500X	ATC
C8, C16, C17	10 μF, 35 V Tantulum Chip Capacitors	93F2975	Newark
C9, C10	10 pF Chip Capacitors	100B100JP 500X	ATC
C13	1.8 pF Chip Capacitor (MRF9030MR1) 0.6-4.5 Variable Capacitor, Gigatrim (MRF9030MBR1)	100B1R8BP 44F3360	ATC Newark
C18	220 μF Electrolytic Chip Capacitor	14F185	Newark
L1, L2	12.5 nH Coilcraft Inductors	A04T-5	Coilcraft
WB1, WB2	20 mil Brass Shim (0.250 x 0.250)	RF-Design Lab	RF-Design Lab
PCB	Etched Circuit Board	900 MHz μ250/Viper Rev 02	DSelectronics

Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 2. 930-960 MHz Broadband Test Circuit Component Layout (MRF9030MR1)

Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

Figure 3. 930-960 MHz Broadband Test Circuit Component Layout (MRF9030MBR1)

TYPICAL CHARACTERISTICS

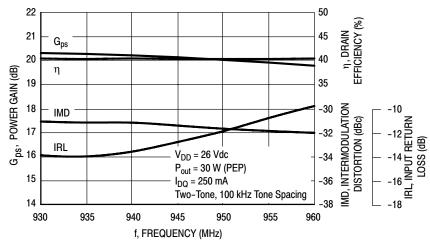


Figure 4. Class AB Broadband Circuit Performance

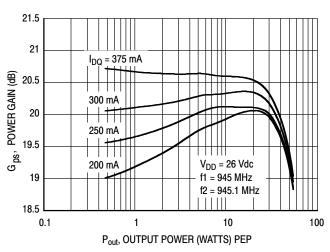


Figure 5. Power Gain versus Output Power

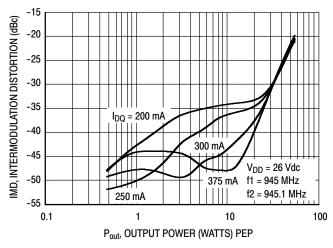


Figure 6. Intermodulation Distortion versus
Output Power

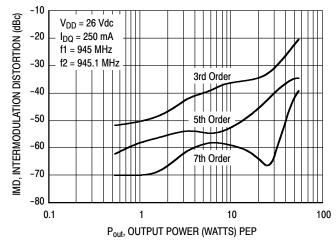


Figure 7. Intermodulation Distortion Products versus Output Power

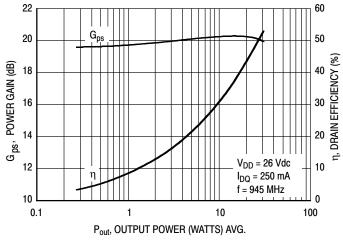
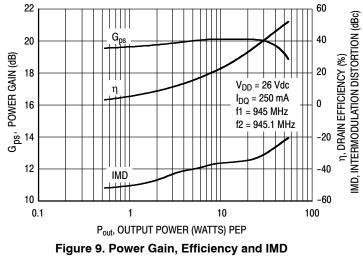
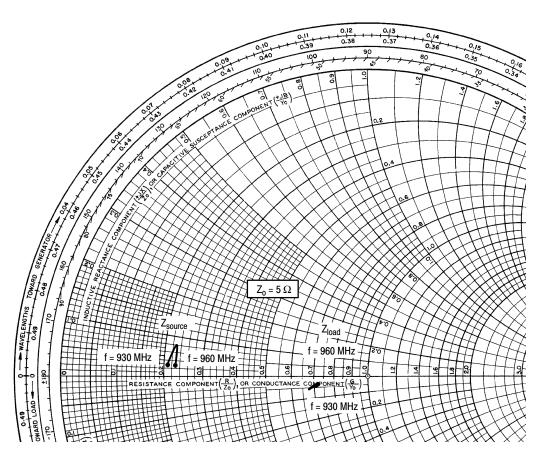




Figure 8. Power Gain and Efficiency versus Output Power

versus Output Power

 V_{DD} = 26 V, I_{DQ} = 250 mA, P_{out} = 30 Watts (PEP)

f MHz	$\mathbf{Z_{source}}_{\Omega}$	Z_{load} Ω
930	1.07 + j0.160	3.53 - j0.20
945	1.14 + j0.385	3.41 - j0.24
960	1.17 + j0.170	3.60 - j0.17

Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

Note: Z_{load} was chosen based on tradeoffs between gain, output power, drain efficiency and intermodulation distortion.

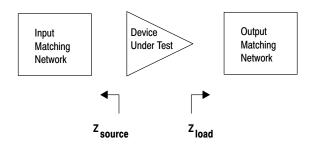
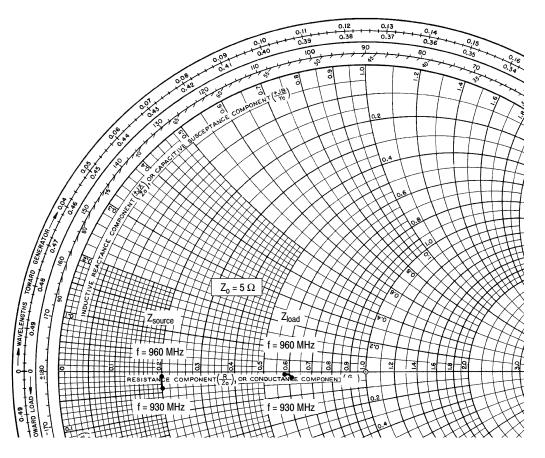



Figure 10. Series Equivalent Source and Load Impedance (MRF9030MR1)

MRF9030MR1 MRF9030MBR1

ARCHIVE INFORMATION

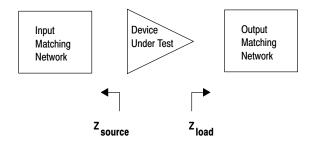
 V_{DD} = 26 V, I_{DQ} = 250 mA, P_{out} = 30 Watts (PEP)

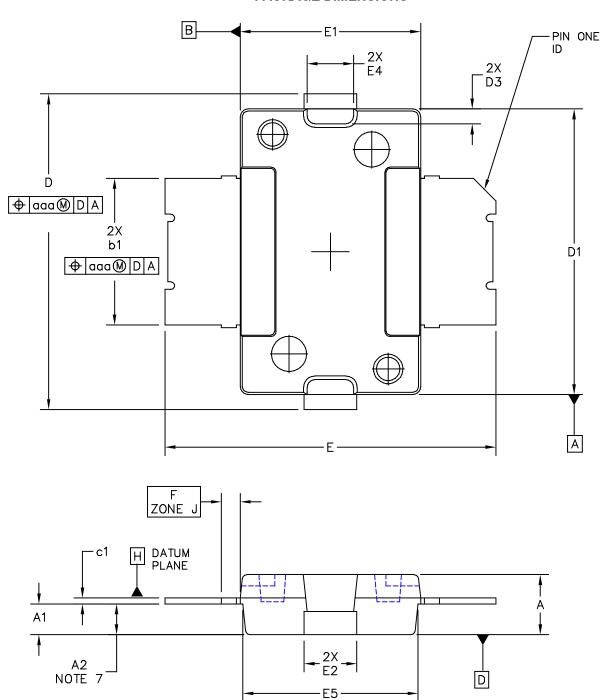
f MHz	$\mathbf{Z_{source}}_{\Omega}$	$\mathbf{Z_{load}}_{\Omega}$
930	1.0 - j0.18	3.05 - j0.09
945 1.0 - j0.10		3.00 - j0.07
960	1.0 - j0.03	2.95 - j0.03

 Z_{source} = Test circuit impedance as measured from gate to ground.

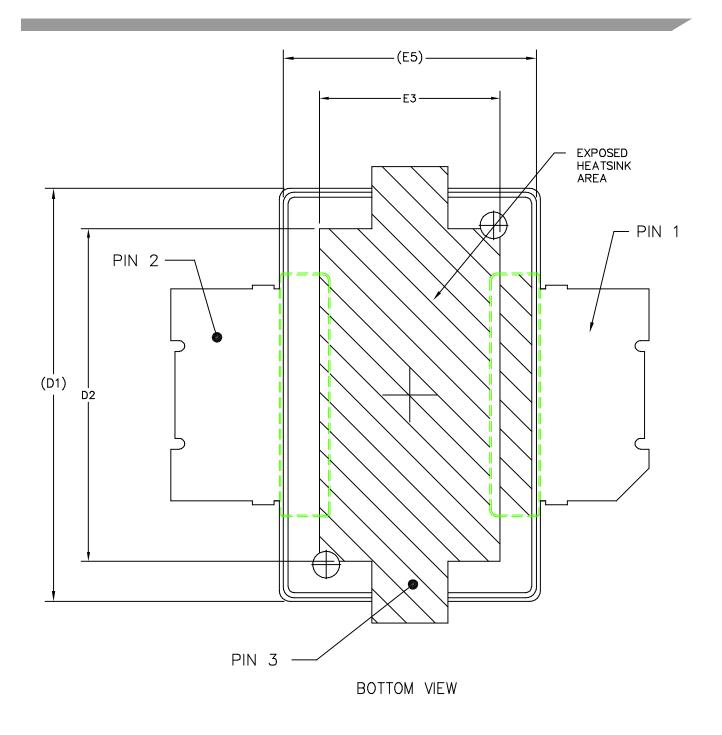
Z_{load} = Test circuit impedance as measured from drain to ground.

Note: Z_{load} was chosen based on tradeoffs between gain, output power, drain efficiency and intermodulation distortion.




Figure 11. Series Equivalent Source and Load Impedance (MRF9030MBR1)

NOTES


NOTES

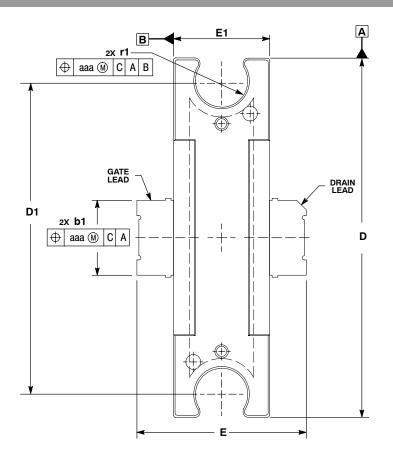
NOTES

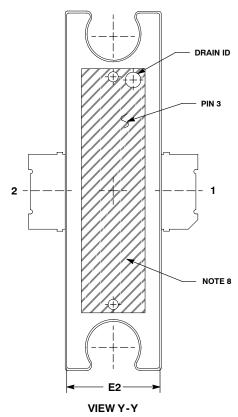
PACKAGE DIMENSIONS

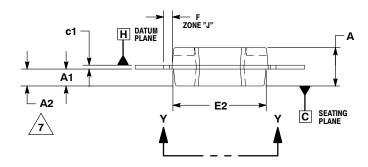
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASH98117A	REV: J
TO-270 SURFACE MOUNT		CASE NUMBER	2: 1265–08	01 APR 2005
SONI ACE MOON	STANDARD: NO	N-JEDEC		

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL	OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	D	OCUMENT NO): 98ASH98117A	REV: J
TO-270 SURFACE MOUNT	_ C	CASE NUMBER	: 1265–08	01 APR 2005
JOIN ACE MOON		STANDARD: NO	N-JEDEC	

NOTES:


- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION "A2" APPLIES WITHIN ZONE "J" ONLY.
- 8. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. OVERALL LENGTH INCLUDING MOLD PROTRUSION SHOULD NOT EXCEED 0.430 INCH FOR DIMENSION "D" AND 0.080 INCH FOR DIMENSION "E2". DIMENSIONS "D" AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -D-.


STYLE 1:


PIN 1 - DRAIN

PIN 2 - GATE PIN 3 - SOURCE

	IN	CH	MIL	LIMETER			INCH		IILLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	.078	.082	1.98	2.08	F	F .025 BSC 0.6		0.64 BSC	
A1	.039	.043	0.99	1.09	b1	.193	.199	4.90	5.06
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	0.28
D	.416	.424	10.57	10.77	aaa		.004		0.10
D1	.378	.382	9.60	9.70					
D2	.290	.320	7.37	8.13					
D3	.016	.024	0.41	0.61					
E	.436	.444	11.07	11.28					
E1	.238	.242	6.04	6.15					
E2	.066	.074	1.68	1.88					
E3	.150	.180	3.81	4.57					
E4	.058	.066	1.47	1.68					
E5	.231	.235	5.87	5.97					
© F	REESCALE SEM ALL RIGHT	ICONDUCTOR, I S RESERVED.	NC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NO	T TO SCALE
TITLE:				DOCU	MENT NO): 98ASH98117	Ą	REV: J	
TO-270				CASE	NUMBER	R: 1265–08		01 APR 2005	
SURFACE MOUNT				STAN	DARD: NO	DN-JEDEC		•	

- NOTES:
- NOTES:

 1. CONTROLLING DIMENSION: INCH.
 2. INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF
 LEAD AND IS COINCIDENT WITH THE LEAD
 WHERE THE LEAD EXITS THE PLASTIC BODY AT
 THE TOP OF THE PARTING LINE.
 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE
 MOLD PROTRUSION. ALLOWABLE PROTRUSION
 IS 006 PER SIDE DIMENSIONS "D" AND "E1" DO
 IS OBE PER SIDE DIMENSIONS "D" AND "E1" DO
- MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
 5. DIMENSION "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- CONDITION.

 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.

 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.

 8. CROSSHATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	.100	.104	2.54	2.64
A1	.039	.043	0.99	1.09
A2	.040	.042	1.02	1.07
D	.928	.932	23.57	23.67
D1	.810 BSC		20.57 BSC	
E	.438	.442	11.12	11.23
E1	.248	.252	6.30	6.40
E2	.241	.245	6.12	6.22
F	.025 BSC		0.64 BSC	
b1	.193	.199	4.90	5.05
c1	.007	.011	.18	.28
r1	.063	.068	1.60	1.73
aaa	004		.10	

STYLE 1: PIN 1. DRAIN 2. GATE 2. SOUR(3. SOURCE

CASE 1337-03 ISSUE C TO-272-2 **PLASTIC** MRF9030MBR1

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

