PERFORM
32K/64Kx18 Low Voltage Deep Sync FIFOs

Features

- 3.3V operation for low power consumption and easy integration into low voltage systems
- High speed, low power, first-in first-out (FIFO) memories

■ 8K x 18 (CY7C4255V)
■ 16K x 18 (CY7C4265V)
■ 32K x 18 (CY7C4275V)
■ 64K x 18 (CY7C4285V)
■ 0.35 micron CMOS for optimum speed and power
■ High speed 100 MHz operation (10 ns read/write cycle times)
■ Low power
$\square \mathrm{I}_{\mathrm{CC}}=30 \mathrm{~mA}$
$\square I_{S B}=4 \mathrm{~mA}$

- Fully asynchronous and simultaneous read and write operation

■ Empty, Full, Half Full, and programmable Almost Empty and Almost Full status flags

- Retransmit function
- Output Enable ($\overline{\mathrm{OE}}$) pin

■ Independent read and write enable pins
■ Supports free running 50% duty cycle clock inputs

- Width Expansion Capability
- Depth Expansion Capability

■ 64-pin 10x10 STQFP
■ Pin compatible density upgrade to CY7C42X5V-ASC families
■ Pin compatible 3.3 V solutions for CY7C4255/65/75/85

Functional Description

The CY7C4255/65/75/85V are high speed, low power, first-in first-out (FIFO) memories with clocked read and write interfaces. All are 18 bits wide and are pin and functionally compatible to the CY7C42X5V Synchronous FIFO family. The CY7C4255/65/75/85V can be cascaded to increase FIFO depth. Programmable features include Almost Full/Almost Empty flags. These FIFOs provide solutions for a wide variety of data buffering needs, including high speed data acquisition, multiprocessor interfaces, and communications buffering.
These FIFOs have 18 -bit input and output ports that are controlled by separate clock and enable signals. The input port is controlled by a free-running clock (WCLK) and a write enable pin (WEN).
When WEN is asserted, data is written into the FIFO on the rising edge of the WCLK signal. While WEN is held active, data is continually written into the FIFO on each cycle. The output port is controlled in a similar manner by a free-running read clock (RCLK) and a read enable pin (REN). In addition, the CY7C4255/65/75/85V have an output enable pin (OE). The read and write clocks may be tied together for single-clock operation or the two clocks may be run independently for asynchronous read or write applications. Clock frequencies up to 67 MHz are achievable.

Retransmit and Synchronous Almost Full/Almost Empty flag features are available on these devices.

Depth expansion is possible using the cascade input (WXI, RXI), cascade output (WXO, RXO), and First Load (FL) pins. The WXO and RXO pins are connected to the WXI and RXI pins of the next device, and the WXO and RXO pins of the last device must be connected to the WXI and RXI pins of the first device. The FL pin of the first device is tied to VSS and the FL pin of all the remaining devices must be tied to VCC .

Selection Guide

Parameter	7C4255/65/75/85V-10	7C4255/65/75/85V-15	7C4255/65/75/85V-25
Maximum Frequency (MHz)	100	66.7	40
Maximum Access Time (ns)	8	10	15
Minimum Cycle Time (ns)	10	15	25
Minimum Data or Enable Setup (ns)	3.5	4	6
Minimum Data or Enable Hold (ns)	0	0	1
Maximum Flag Delay (ns)	8	10	15
$\left.\begin{array}{llll\|}\text { Active Power Supply } \\ \text { Current (ICC1) (mA) } & \text { Commercial } & \text { Industrial } & 30\end{array}\right] 30$	30		

Parameter	CY7C4255V	CY7C4265V	CY7C4275V	CY7C4285V
Density	$8 \mathrm{~K} \times 18$	$16 \mathrm{~K} \times 18$	$32 \mathrm{~K} \times 18$	$64 \mathrm{~K} \times 18$
Package	64 -pin 10×10 TQFP	$64-$ pin 10×10 TQFP	$64-$ pin 10×10 TQFP	$64-$ pin 10x10 TQFP

Logic Block Diagram

Pinouts

Figure 1. Pin Diagram - 64-Pin STQFP

Table 1. Pin Definitions - CY7C4255V/65V/75V/85V 64-Pin STQFP

Signal Name	Description	10	Function
D_{0-17}	Data Inputs	1	Data inputs for an 18-bit bus.
Q_{0-17}	Data Outputs	O	Data outputs for an 18-bit bus.
WEN	Write Enable	1	Enables the WCLK input.
REN	Read Enable	1	Enables the RCLK input.
WCLK	Write Clock	1	The rising edge clocks data into the FIFO when $\overline{\mathrm{WEN}}$ is LOW and the FIFO is not Full. When $\overline{\mathrm{LD}}$ is asserted, WCLK writes data into the programmable flag-offset register.
RCLK	Read Clock	1	The rising edge clocks data out of the FIFO when $\overline{\mathrm{REN}}$ is LOW and the FIFO is not Empty. When $\overline{L D}$ is asserted, RCLK reads data out of the programmable flag-offset register.
$\overline{\mathrm{WXO}} / \overline{\mathrm{HF}}$	Write Expansion Out/Half Full Flag	O	Dual Mode Pin: Single device or width expansion - Half Full status flag \qquad Cascaded - Write Expansion Out signal, connected to $\overline{\mathrm{WXI}}$ of next device
$\overline{\mathrm{EF}}$	Empty Flag	O	When $\overline{\mathrm{EF}}$ is LOW, the FIFO is empty. $\overline{\mathrm{EF}}$ is synchronized to RCLK.
$\overline{\mathrm{FF}}$	Full Flag	O	When $\overline{\mathrm{FF}}$ is LOW, the FIFO is full. $\overline{\mathrm{FF}}$ is synchronized to WCLK.
PAE	Programmable Almost Empty	O	When $\overline{\text { PAE }}$ is LOW, the FIFO is almost empty based on the almost empty offset value programmed into the FIFO. $\overline{\text { PAE }}$ is asynchronous when $\mathrm{V}_{\mathrm{CC}} / \overline{\text { SMODE }}$ is tied to V_{CC}. It is synchronized to RCLK when $\mathrm{V}_{\mathrm{CC}} / \overline{\mathrm{SMODE}}$ is tied to V_{SS}.
$\overline{\text { PAF }}$	Programmable Almost Full	O	When $\overline{\text { PAF }}$ is LOW, the FIFO is almost full based on the almost full offset value programmed into the FIFO. $\overline{\text { PAF }}$ is asynchronous when $\mathrm{V}_{\mathrm{CC}} / \overline{\mathrm{SMODE}}$ is tied to V_{CC}. It is synchronized to WCLK when $\mathrm{V}_{\mathrm{CC}} / \overline{\mathrm{SMODE}}$ is tied to V_{SS}.
$\overline{\text { LD }}$	Load	1	When $\overline{\mathrm{LD}}$ is LOW, $\mathrm{D}_{0-17}\left(\mathrm{Q}_{0-17}\right)$ are written (read) into (from) the programmable-flag-offset register.
$\overline{\mathrm{FL}} / \mathrm{RT}$	First Load/ Retransmit	1	Dual Mode Pin: Cascaded - The first device in the daisy chain has $\overline{\mathrm{FL}}$ tied to V_{SS}; all other devices have $\overline{\mathrm{FL}}$ tied to V_{Cc}. In standard mode or width expansion, $\overline{\mathrm{FL}}$ is tied to V_{SS} on all devices. Not Cascaded - Tied to V_{SS}. Retransmit function is also available in standalone mode by strobing RT.
$\overline{\mathrm{WXI}}$	Write Expansion Input	1	Cascaded - Connected to $\overline{\mathrm{WXO}}$ of previous device Not Cascaded - Tied to V_{SS}
$\overline{\mathrm{RXI}}$	Read Expansion Input	1	Cascaded - Connected to $\overline{\mathrm{RXO}}$ of previous device Not Cascaded - Tied to V_{SS}
$\overline{\mathrm{RXO}}$	Read Expansion Output	O	Cascaded - Connected to $\overline{\mathrm{RXI}}$ of next device
$\overline{\mathrm{RS}}$	Reset	1	Resets device to empty condition. A reset is required before an initial read or write operation after power up.
$\overline{\mathrm{OE}}$	Output Enable	1	When OE is LOW, the FIFO's data outputs drive the bus to which they are connected. If OE is HIGH, the FIFO's outputs are in High Z (high-impedance) state.
$\mathrm{V}_{\mathrm{CC}} / \overline{\text { SMODE }}$	Synchronous Almost Empty/ Almost Full Flags	1	Dual Mode Pin: Asynchronous Almost Empty/Almost Full flags - tied to V_{CC} Synchronous Almost Empty/Almost Full flags - tied to V_{SS} (Almost Empty synchronized to RCLK, Almost Full synchronized to WCLK.)

Functional Description

The CY7C4255/65/75/85V provides five status pins. These pins are decoded to determine one of five states: Empty, Almost Empty, Half Full, Almost Full, and Full (see Table 3 on page 5). The Half Full flag shares the $\overline{\mathrm{WXO}}$ pin. This flag is valid in the standalone and width expansion configurations. In the depth expansion, this pin provides the expansion out ($\overline{\mathrm{WXO}}$) information that is used to signal the next FIFO when it is to be activated.
The Empty and Full flags are synchronous, that is, they change state relative to either the read clock (RCLK) or the write clock (WCLK). When entering or exiting the Empty states, the flag is updated exclusively by the RCLK. The flag denoting Full states is updated exclusively by WCLK. The synchronous flag architecture guarantees that the flags remain valid from one clock cycle to the next. The Almost Empty/Almost Full flags become synchronous if the $\mathrm{V}_{\mathrm{CC}} /$ SMODE is tied to V_{SS}. All configurations are fabricated using an advanced 0.35μ CMOS technology. Input ESD protection is greater than 2001V, and latch-up is prevented by the use of guard rings.

Architecture

The CY7C4255/65/75/85V consists of an array of $8 \mathrm{~K} / 16 \mathrm{~K} / 32 \mathrm{~K} / 64 \mathrm{~K}$ words of 18 bits each (implemented by a dual port array of SRAM cells), a read pointer, a write pointer, control signals (RCLK, WCLK, REN, WEN, RS), and flags (EF, PAE, HF, PAF, $\overline{\mathrm{FF}}$). The CY7C4255/65/75/85V also includes the control signals WXI, RXI, $\overline{\mathrm{WXO}}, \overline{\mathrm{RXO}}$ for depth expansion.

Resetting the FIFO

Upon power up, the FIFO must be reset with a Reset ($\overline{\mathrm{RS}}$) cycle. This causes the FIFO to enter the Empty condition signified by $\overline{\mathrm{EF}}$ being LOW. All data outputs go LOW after the falling edge of $\overline{\mathrm{RS}}$ only if $\overline{\mathrm{OE}}$ is asserted. For the FIFO to reset to its default state, the user must not read or write while $\overline{\mathrm{RS}}$ is LOW.

FIFO Operation

When the $\overline{W E N}$ signal is active (LOW), data present on the D_{0-17} pins is written into the FIFO on each rising edge of the WCLK signal. Similarly, when the REN signal is active LOW, data in the FIFO memory is presented on the Q_{0-17} outputs. New data is presented on each rising edge of RCLK while $\overline{R E N}$ is active LOW and $\overline{O E}$ is LOW. REN must set up $t_{E N S}$ before RCLK for it to be a valid read function. $\overline{\text { WEN }}$ must occur teNS before WCLK for it to be a valid write function.
An output enable $(\overline{\mathrm{OE}})$ pin is provided to three-state the Q_{0-17} outputs when $\overline{\mathrm{OE}}$ is deasserted. When $\overline{\mathrm{OE}}$ is enabled (LOW), data in the output register is available to the Q_{0-17} outputs after $t_{\text {OE. }}$. If devices are cascaded, the $\overline{\mathrm{OE}}$ function only outputs data on the FIFO that is read enabled.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and under flow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its Q_{0-17} outputs even after additional reads occur.

Programming

The CY7C4255/65/75/85V devices contain two 16 -bit offset registers. Data present on D_{0-15} during a program write determine the distance from Empty (Full) that the Almost Empty (Almost Full) flags become active. If the user elects not to program the FIFO's flags, the default offset values are used (see Table 3 on page 5). When the Load $\overline{\text { LD }}$ pin is set LOW and WEN is set LOW, data on the inputs D_{0-15} is written into the Empty offset register on the first LOW-to-HIGH transition of the write clock (WCLK). When the $\overline{\mathrm{LD}}$ pin and $\overline{\mathrm{WEN}}$ are held LOW then data is written into the Full offset register on the second LOW-to-HIGH transition of the write clock (WCLK). The third transition of the write clock (WCLK) again writes to the Empty offset register (see Table 2). All offset registers do not have to be written at one time. One or two offset registers can be written and then, by bringing the LD pin HIGH, the FIFO is returned to normal read/write operation. When the $\overline{\mathrm{LD}}$ pin is set LOW, and $\overline{\mathrm{WEN}}$ is LOW, the next offset register in sequence is written.
The contents of the offset registers can be read on the output lines when the $\overline{L D}$ pin is set LOW and $\overline{\text { REN }}$ is set LOW. Then, data can be read on the LOW-to-HIGH transition of the read clock (RCLK).
Table 2. Write Offset Register

$\overline{\text { LD }}$	$\overline{\text { WEN }}$	WCLK $^{[1]}$	Selection
0	0	\sim	Writing to offset registers: Empty Offset Full Offset
0	1	-	No Operation
1	0	-	Write Into FIFO
1	1	-	No Operation

Flag Operation

The CY7C4255/65/75/85V devices provide five flag pins to indicate the condition of the FIFO contents. Empty and Full are synchronous. $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ are synchronous if $\mathrm{V}_{\mathrm{CC}} / \overline{\mathrm{SMODE}}$ is tied to V_{SS}.

Full Flag

The Full Flag ($\overline{\mathrm{FF}}$) goes LOW when device is Full. Write operations are inhibited whenever $\overline{\mathrm{FF}}$ is LOW regardless of the state of $\overline{W E N}$. $\overline{\mathrm{FF}}$ is synchronized to WCLK, that is, it is exclusively updated by each rising edge of WCLK.

Empty Flag

The Empty Flag ($\overline{\mathrm{EF}}$) goes LOW when the device is empty. Read operations are inhibited whenever EF is LOW, regardless of the state of $\overline{R E N}$. $\overline{\mathrm{EF}}$ is synchronized to RCLK, that is, it is exclusively updated by each rising edge of RCLK.

[^0]
Programmable Almost EmptylAlmost Full Flag

The CY7C4255/65/75/85V features programmable Almost Empty and Almost Full Flags. Each flag can be programmed (described in section Programming on page 4) a specific distance from the corresponding boundary flags (Empty or Full). When the FIFO contains the number of words or fewer for which
the flags have been programmed, the $\overline{\text { PAF }}$ or PAE is asserted, signifying that the FIFO is either Almost Full or Almost Empty. See Table 3 for a description of programmable flags.
When the $\overline{\text { SMODE }}$ pin is tied LOW, the $\overline{\text { PAF }}$ flag signal transition is caused by the rising edge of the write clock and the PAE flag transition is caused by the rising edge of the read clock.

Table 3. Flag Truth Table

Number of Words in FIFO				FF	$\overline{\text { PAF }}$	HF	PAE	$\overline{\mathrm{EF}}$
7C4255V - 8K x 18	7C4265V - 16K x 18	7C4275V-32K x 18	7C4285V-64K x 18					
0	0	0	0	H	H	H	L	L
1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	H	H	H	L	H
(n+1) to 4096	$(\mathrm{n}+1)$ to 8192	$(\mathrm{n}+1)$ to 16384	$(\mathrm{n}+1)$ to 32768	H	H	H	H	H
4097 to (8192-(m+1))	8193 to (16384-(m+1))	16385 to (32768-(m+1))	32769 to (65536-(m+1))	H	H	L	H	H
$(8192-m){ }^{[3]}$ to 8192	$(16384-m)^{[3]}$ to 16384	$(32768-\mathrm{m})^{[3]}$ to 32767	$(65536-\mathrm{m})^{[3]}$ to 65535	H	L	L	H	H
8192	16384	32768	65536	L	L	L	H	H

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary.
The Retransmit (RT) input is active in the standalone and width expansion modes. The retransmit feature is intended for use when a number of writes equal to or less than the depth of the FIFO have occurred and at least one word has been read since the last RS cycle. A HIGH pulse on RT resets the internal read pointer to the first physical location of the FIFO. WCLK and RCLK may be free running but must be disabled during and $t_{\text {RTR }}$ after the retransmit pulse. With every valid read cycle after retransmit, previously accessed data is read and the read pointer is incremented until it is equal to the write pointer. Flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to the FIFO after activation of RT are transmitted also. The full depth of the FIFO can be repeatedly retransmitted.

Width Expansion Configuration

The CY7C4255/65/75/85V can be expanded in width to provide word widths greater than 18 in increments of 18. During width expansion mode, all control line inputs are common and all flags are available. Empty (Full) flags must be created by ANDing the Empty (Full) flags of every FIFO. The PAE and PAF flags can be detected from any one device. This technique avoids reading data from, or writing data to the FIFO that is "staggered" by one clock cycle due to the variations in skew between RCLK and WCLK. Figure 2 on page 6 demonstrates a 36 -word width by using two CY7C4255/65/75/85Vs.

[^1]Figure 2. Block Diagram of 8K/16K/32K/64K x 18 Low Voltage Synchronous FIFO Memory in Width Expansion Configuration

Depth Expansion Configuration (with Programmable Flags)

The CY7C4255/65/75/85V can easily be adapted to applications requiring more than $8 \mathrm{~K} / 16 \mathrm{~K} / 32 \mathrm{~K} / 64 \mathrm{~K}$ words of buffering. Figure 3 on page 7 shows Depth Expansion using three CY7C4255/65/75/85Vs. Maximum depth is limited only by signal loading. Follow these steps:

1. The first device must be designated by grounding the First Load ($\overline{\mathrm{FL}}$) control input.
2. All other devices must have $\overline{\mathrm{FL}}$ in the HIGH state.
3. The Write Expansion Out $(\overline{\mathrm{WXO}})$ pin of each device must be tied to the Write Expansion In $(\overline{\mathrm{WXI}})$ pin of the next device.
4. The Read Expansion Out $(\overline{\mathrm{RXO}})$ pin of each device must be tied to the Read Expansion In $(\overline{\mathrm{RXI}})$ pin of the next device.
5. All Load ($\overline{\mathrm{LD}})$ pins are tied together.
6. The Half Full Flag ($\overline{\mathrm{HF})}$ is not available in the Depth Expansion Configuration.
7. $\overline{E F}, \overline{F F}, \overline{P A E}$, and $\overline{\text { PAF }}$ are created with composite flags by ORing together these respective flags for monitoring. The composite $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ flags are not precise.

Figure 3. Block Diagram of 8K/16K/32K/64K x 18 Low Voltage Synchronous FIFO Memory with Programmable Flags in Depth Expansion Configuration

CY7C4255V, CY7C4265V CY7C4275V, CY7C4285V

Maximum Ratings

Exceeding maximum ratings ${ }^{[4]}$ may impair the useful life of the device. These user guidelines are not tested.
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential. \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ DC Voltage Applied to Outputs in High Z State \qquad -0.5 V to $\mathrm{V}_{\mathrm{Cc}}{ }^{+0.5 \mathrm{~V}}$
DC Input Voltage \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output Current into Outputs (LOW)............................. 20 mA
Static Discharge Voltage.. $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current.. $>200 \mathrm{~mA}$

Operating Range

Range	AmbientTemperature	$\mathbf{V}_{\mathbf{C C}}{ }^{[6]}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$
Industrial ${ }^{[5]}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$

Electrical Characteristics

Over the Operating Range ${ }^{[7]}$

Parameter	Description	Test Conditions	$\begin{gathered} 7 C 4255 / 65 / 75 / \\ 85 \mathrm{~V}-10 \end{gathered}$		$\begin{gathered} \text { 7C4255/65/75/ } \\ 85 \mathrm{~V}-15 \end{gathered}$		$\begin{gathered} 7 \mathrm{C} 4255 / 65 / 75 / \\ 85 \mathrm{~V}-25 \end{gathered}$		Unit
			Min	Max	Min	Max	Min	Max	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} . \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$		0.4		0.4		0.4	V
$\mathrm{V}_{1 \mathrm{H}^{[8]}}$	Input HIGH Voltage		2.0	V_{Cc}	2.0	V_{CC}	2.0	V_{Cc}	V
$\mathrm{V}_{\mathrm{IL}}{ }^{[8]}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{X}	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\begin{array}{\|l} \hline \mathrm{I} \text { OZL } \\ \mathrm{I}_{\mathrm{OZH}} \end{array}$	Output OFF, High Z Current	$\begin{aligned} & \overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{ICC1}{ }^{[9]}$	Active Power Supply Current	Com'l		30		30		30	mA
		Ind				35			mA
$\mathrm{I}_{\mathrm{SB}}{ }^{[10]}$	Average Standby Current	Com'l		4		4		4	mA
		Ind				4			mA

Capacitance

Parameter ${ }^{[11]}$	Description	Test Conditions	Max	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	7	pF

[^2]CY7C4255V, CY7C4265V CY7C4275V, CY7C4285V

Figure 4. AC Test Loads and Waveforms (-15-25) ${ }^{[12,13]}$

Figure 5. AC Test Loads and Waveforms (-10)

ALL INPUT PULSES

4275V-7

Switching Characteristics

Over the Operating Range

Parameter	Description	7C4255/65/75/85V-10		7C4255/65/75/85V-15		7C4255/65/75/85V-25		Unit
		Min	Max	Min	Max	Min	Max	
t_{s}	Clock Cycle Frequency		100		66.7		40	MHz
t_{A}	Data Access Time	2	8	2	10	2	15	ns
$\mathrm{t}_{\text {CLK }}$	Clock Cycle Time	10		15		25		ns
${ }^{\text {t }}$ CLKH	Clock HIGH Time	4.5		6		10		ns
${ }^{\text {t CLKL }}$	Clock LOW Time	4.5		6		10		ns
t_{DS}	Data Setup Time	3.5		4		6		ns
t_{DH}	Data Hold Time	0		0		1		ns
tens	Enable Setup Time	3.5		4		6		ns
$\mathrm{t}_{\text {ENH }}$	Enable Hold Time	0		0		1		ns
t_{RS}	Reset Pulse Width ${ }^{[14]}$	10		15		25		ns
$\mathrm{t}_{\text {RSR }}$	Reset Recovery Time	8		10		15		ns
$\mathrm{t}_{\text {RSF }}$	Reset to Flag and Output Time		10		15		25	ns
$\mathrm{t}_{\text {PRT }}$	Retransmit Pulse Width	60		60		60		ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	90		90		90		ns
tolz	Output Enable to Output in Low $\mathrm{Z}^{[15]}$	0		0		0		ns
t_{OE}	Output Enable to Output Valid	3	7	3	10	3	12	ns

[^3]Switching Characteristics (continued)
Over the Operating Range

Parameter	Description	7C4255/65/75/85V-10		7C4255/65/75/85V-15		7C4255/65/75/85V-25		Unit
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{OHz}}$	Output Enable to Output in High $\mathrm{Z}^{[15]}$	3	7	3	8	3	12	ns
$\mathrm{t}_{\text {WFF }}$	Write Clock to Full Flag		8		10		15	ns
$\mathrm{t}_{\text {REF }}$	Read Clock to Empty Flag		8		10		15	ns
$\mathrm{t}_{\text {PAFasynch }}$	Clock to Programmable Almost Full Flag ${ }^{[16]}$ (Asynchronous mode, $\mathrm{V}_{\mathrm{CC}} / \overline{\text { SMODE }}$ tied to V_{CC})		15		16		20	ns
teafsynch	Clock to Programmable Almost Full Flag (Synchronous mode, $\mathrm{V}_{\mathrm{CC}} \overline{\text { SMODE }}$ tied to V_{SS})		8		10		15	ns
$\mathrm{t}_{\text {PAEasynch }}$	Clock to Programmable Almost Empty Flag ${ }^{[16]}$ (Asynchronous mode, $\mathrm{V}_{\mathrm{CC}} / \overline{\text { SMODE }}$ tied to V_{CC})		15		16		20	ns
teaEsynch	Clock to Programmable Almost Full Flag (Synchronous mode, $\mathrm{V}_{\mathrm{CC}} / \overline{\text { SMODE }}$ tied to V_{SS})		8		10		15	ns
t_{HF}	Clock to Half Full Flag		12		16		20	ns
t_{XO}	Clock to Expansion Out		6		10		15	ns
$\mathrm{t}_{\times 1}$	Expansion in Pulse Width	4.5		6.5		10		ns
$\mathrm{t}_{\text {XIS }}$	Expansion in Setup Time	4		5		10		ns
$\mathrm{t}_{\text {SKEW1 }}$	Skew Time between Read Clock and Write Clock for Full Flag	5		6		10		ns
$\mathrm{t}_{\text {SKEW2 }}$	Skew Time between Read Clock and Write Clock for Empty Flag	5		6		10		ns
$\mathrm{t}_{\text {SKEW }}$	Skew Time between Read Clock and Write Clock for Programmable Almost Empty and Programmable Almost Full Flags (Synchronous Mode only)	10		15		18		ns

[^4]CY7C4255V, CY7C4265V
CY7C4275V, CY7C4285V

Switching Waveforms

Figure 6. Write Cycle Timing

Figure 7. Read Cycle Timing

[^5]CY7C4255V, CY7C4265V
CY7C4275V, CY7C4285V

Switching Waveforms (continued)
Figure 8. Reset Timing ${ }^{[19]}$

Figure 9. First Data Word Latency after Reset with Simultaneous Read and Write

Notes

19. The clocks (RCLK, WCLK) can be free-running during reset
20. After reset, the outputs are LOW if $\overline{\mathrm{OE}}=0$ and three-state if $\overline{\mathrm{OE}}=1$.
21. When $\mathrm{t}_{\text {SKEW } 2} \geq$ minimum specification, $\mathrm{t}_{\text {FRL }}$ (maximum) $=\mathrm{t}_{\mathrm{CLK}}+\mathrm{t}_{\text {SKEW2 }}$. When $\mathrm{t}_{\text {SKEW2 }}<$ minimum specification, $\mathrm{t}_{\text {FRL }}$ (maximum) $=$ either $2 * \mathrm{t}_{\mathrm{CLK}}+\mathrm{t}_{\mathrm{SKEW} 2}$ or $\mathrm{t}_{\mathrm{CLK}}+$ $\mathrm{t}_{\text {SKEW2 }}$. The Latency Timing applies only at the Empty Boundary ($\overline{\mathrm{EF}}=\mathrm{LOW}$).
22. The first word is always available the cycle after $\overline{\mathrm{EF}}$ goes HIGH.

CY7C4255V, CY7C4265V CY7C4275V, CY7C4285V

Switching Waveforms (continued)
Figure 10. Empty Flag Timing

Figure 11. Full Flag Timing

CY7C4255V, CY7C4265V
CY7C4275V, CY7C4285V

Switching Waveforms (continued)
Figure 12. Half Full Timing

Figure 13. Programmable Almost Empty Flag Timing

Note

23. $\overline{\text { PAE }}$ is offset $=n$. Number of data words into FIFO already $=n$.

CY7C4255V, CY7C4265V
CY7C4275V, CY7C4285V

Switching Waveforms (continued)
Figure 14. Programmable Almost Empty Flag Timing (applies only in SMODE (SMODE is LOW))

Figure 15. Programmable Almost Full Flag Timing

Notes

24. PAE offset - n.
25. $\mathrm{t}_{\text {SKEW3 }}$ is the minimum time between a rising WCLK and a rising RCLK edge for $\overline{\text { PAE }}$ to change state during that clock cycle. If the time between the edge of WCLK and the rising RCLK is less than tSKEW3, then PAE may not change state until the next RCLK.
26. If a read is performed on this rising edge of the read clock, there are Empty $+(n-1)$ words in the FIFO when $\overline{\text { PAE goes LOW. }}$
27. PAF offset $=m$. Number of data words written into FIFO already $=8192-(m+1)$ for the CY7C4255V, $16384-(m+1)$ for the CY7C4265V, $32768-(m+1)$ for the CY7C4275V, and $65536-(m+1)$ for the CY7C4285V.
28. PAF is offset $=\mathrm{m}$.
29. 8192 - m words in CY7C4255V, 16384 - m words in CY7C4265V, 32768 - m words in CY7C4275V, and 65536 - m words in CY7C4285V.
$30.8192-(m+1)$ words in CY7C4255V, $16384-(m+1)$ words in CY7C4265V, $32768-(m+1)$ words in CY7C4275V, and $65536-(m+1)$ words in CY7C4285V.

CY7C4255V, CY7C4265V
CY7C4275V, CY7C4285V

Switching Waveforms (continued)
Figure 16. Programmable Almost Full Flag Timing (applies only in SMODE (SMODE is LOW))

Figure 17. Write Programmable Registers

[^6]CY7C4255V, CY7C4265V
CY7C4275V, CY7C4285V

Switching Waveforms (continued)
Figure 18. Read Programmable Registers

Figure 19. Write Expansion Out Timing

Figure 20. Read Expansion Out Timing

Figure 21. Write Expansion In Timing

Notes

33. Write to Last Physical Location.
34. Read from Last Physical Location.

CY7C4255V, CY7C4265V
CY7C4275V, CY7C4285V

Switching Waveforms (continued)
Figure 22. Read Expansion In Timing

Figure 23. Retransmit Timing ${ }^{[35,36,37]}$

[^7]CY7C4255V, CY7C4265V CY7C4275V, CY7C4285V

Ordering Information

8Kx18 Low-Voltage Deep Sync FIFO

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C4255V-10ASC	51-85051	64-Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$)	Commercial
	CY7C4255V-10ASXC		64-Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$) (Pb-Free)	
15	CY7C4255V-15ASC	51-85051	$64-$ Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$)	Commercial
	CY7C4255V-15ASXC		64-Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$) (Pb-Free)	
	CY7C4255V-15ASXI	51-85051	64-Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$) (Pb-Free)	Industrial
25	CY7C4255V-25ASC	51-85051	$64-P i n$ Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$)	Commercial

16Kx18 Low-Voltage Deep Sync FIFO

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C4265V-10ASC	$51-85051$	64-Pin Thin Quad Flat Pack $(10 \times 10 \times 1.4 \mathrm{~mm})$	Commercial
15	CY7C4265V-15ASC	$51-85051$	64-Pin Thin Quad Flat Pack $(10 \times 10 \times 1.4 \mathrm{~mm})$	Commercial
25	CY7C4265V-25ASC	$51-85051$	64-Pin Thin Quad Flat Pack $(10 \times 10 \times 1.4 \mathrm{~mm})$	Commercial

32Kx18 Low-Voltage Deep Sync FIFO

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C4275V-10ASC	$51-85051$	$64-P i n$ Thin Quad Flat Pack $(10 \times 10 \times 1.4 \mathrm{~mm})$	Commercial
15	CY7C4275V-15ASC	$51-85051$	$64-$ Pin Thin Quad Flat Pack $(10 \times 10 \times 1.4 \mathrm{~mm})$	Commercial
	CY7C4275V-15ASXC		64-Pin Thin Quad Flat Pack $(10 \times 10 \times 1.4 \mathrm{~mm})($ Pb-Free $)$	

64Kx18 Low-Voltage Deep Sync FIFO

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C4285V-10ASC	51-85051	64-Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$)	Commercial
	CY7C4285V-10ASXC		64-Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$) (Pb-Free)	
15	CY7C4285V-15ASXC	51-85051	64-Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$) (Pb-Free)	Commercial
	CY7C4285V-15ASI	51-85051	64-Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$)	Industrial
	CY7C4285V-15ASXI		64-Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$) (Pb-Free)	
25	CY7C4285V-25ASC	51-85051	$64-$ Pin Thin Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$)	Commercial

Package Diagrams

Figure 24. 64-Pin Thin Plastic Quad Flat Pack ($10 \times 10 \times 1.4 \mathrm{~mm}$)

Document History Page

Document Title: CY7C4255VICY7C4265VICY7C4275VICY7C4285V 32K/64Kx18 Low Voltage Deep Sync FIFOs Document Number: 38-06012

REV.	ECN	Orig. of Change	Submission Date	Description of Change
${ }^{* *}$	106473	SZV	$09 / 10 / 01$	Change from Spec number: 38-00654 to 38-06012
${ }^{*} \mathrm{~A}$	122264	RBI	$12 / 26 / 02$	Power up requirements added to Maximum Ratings Information
${ }^{*} \mathrm{~B}$	2556036	VKN/AESA	$08 / 22 / 2008$	Updated ordering information and data sheet template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

PSoC
Clocks \& Buffers
Wireless
Memories
Image Sensors
psoc.cypress.com
clocks.cypress.com
wireless.cypress.com
memory.cypress.com
image.cypress.com

PSoC Solutions

General
Low Power/Low Voltage
Precision Analog psoc.cypress.com/precision-analog
LCD Drive
CAN 2.0b
USB
psoc.cypress.com/solutions psoc.cypress.com/low-power psoc.cypress.com/lcd-drive psoc.cypress.com/can psoc.cypress.com/usb

[^8]
[^0]: Note

 1. The same selection sequence applies to reading from the registers. $\overline{\mathrm{REN}}$ is enabled and read is performed on the LOW-to-HIGH transition of RCLK.
[^1]: Notes
 2. $n=$ Empty Offset (Default Values: CY7C4255/65/75/85V $n=127$).
 3. $m=$ Full Offset (Default Values: CY7C4255/65/75/85V $n=127$).

[^2]: Notes
 4. The Voltage on any input or IO pin cannot exceed the power pin during power up.
 5. T_{A} is the "instant on" case temperature.
 6. V_{CC} range for commercial -10 ns is $3.3 \mathrm{~V} \pm 150 \mathrm{mV}$.
 7. See the last page of this specification for Group A subgroup testing information.
 8. The $V_{I H}$ and $V_{I L}$ specifications apply for all inputs except $\overline{W X I}, \overline{R X I}$. The $\overline{W X I}, \overline{R X I}$ pin is not a TTL input. It is connected to either $\overline{R X O}, \overline{W X O}$ of the previous device or V_{SS}.
 9. Input signals switch from $0 V$ to 3 V with a rise/fall time of less than 3 ns , clocks and clock enables switch at 20 MHz , while data inputs switch at 10 MHz . Outputs are unloaded.
 10. All inputs $=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$, except RCLK and WCLK (which are at frequency $=0 \mathrm{MHz}$), and $\overline{\mathrm{FL}} / \mathrm{RT}$ which is at V_{SS}. All outputs are unloaded.
 11. Tested initially and after any design changes that may affect these parameters.

[^3]: Notes
 12. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for all AC parameters except for $\mathrm{t}_{\mathrm{OHZ}}$
 13. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{OHz}}$
 14. Pulse widths less than minimum values are not allowed.
 15. Values guaranteed by design, not currently tested.

[^4]: Note
 16. tPAFasynch t $_{\text {PAEasynch }}$, after program register write are valid until $5 \mathrm{~ns}+t_{\text {PAF(E) }}$.

[^5]: Notes
 17. $\mathrm{t}_{\text {SKEW1 }}$ is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF goes HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than $t_{S K E W 1}$, then FF may not change state until the next WCLK rising edge.
 18. $\mathrm{t}_{\text {SKEW }}$ is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF goes HIGH during the current clock cycle. If the time between the rising edge of WCLK and the rising edge of RCLK is less than $t_{S K E W 2}$, then EF may not change state until the next RCLK rising edge.

[^6]: Notes
 31. If a write is performed on this rising edge of the write clock, there are Full - $(m-1)$ words of the FIFO when PAF goes LOW
 32. $\mathrm{t}_{\text {SKEW3 }}$ is the minimum time between a rising RCLK and a rising WCLK edge for PAF to change state during that clock cycle. If the time between the edge of RCLK and the rising edge of WCLK is less than $\mathrm{t}_{\text {SKEW3 }}$, then PAF may not change state until the next WCLK rising edge.

[^7]: Notes
 35. Clocks are free-running in this case.
 36. The flags may change state during Retransmit as a result of the offset of the read and write pointers, but flags are valid at $t_{\text {RTR }}$

[^8]: © Cypress Semiconductor Corporation, 2001-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for

 application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
 United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of
 integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

 assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 Use may be limited by and subject to the applicable Cypress software license agreement.

