Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

BIPOLAR ANALOG INTEGRATED CIRCUIT

Phase-out/Discontinued

μ**ΡC8112T**

SILICON MMIC 1st FREQUENCY DOWN-CONVERTER FOR CELLULAR/CORDLESS TELEPHONE

DESCRIPTION

The μ PC8112T is a silicon monolithic integrated circuit designed as 1st frequency down-converter for cellular/cordless telephone receiver stage. This IC consists of mixer and local amplifier. Due to optimized circuit current, the μ PC8112T improves RF performance such as intermodulation, leakage and linearity compared with conventional Si MMIC of the μ PC2757T and μ PC2758T. The μ PC8112T features 3 V supply voltage and mini mold package which contribute to make system lower voltage, space decreased and fewer components.

The μ PC8112T is manufactured using NEC's 20 GHz fr NESATTMIII silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

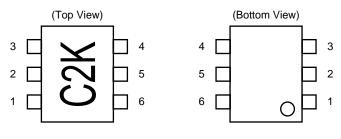
FEATURES

•	Excellent RF performance	: IIP ₃ = -7 dBm@f_{RFin} = 1.9 GHz (reference)
		$IM_3 = -88 \text{ dBm}@P_{RFin} = -38 \text{ dBm}$, 1.9 GHz (reference); on test circuit
•	Similar conversion gain to μPC	757T and lower noise figure than μ PC2758T
•	Minimized carrier leakage	: RFIO = -80 dB@fRFin = 900 MHz (reference)
		RFI0 = -55 dB@fRFin = 1.9 GHz (reference)
•	High linearity	: Po(sat) = -2.5 dBm TYP.@fRFin = 900 MHz
		$PO(sat) = -3 \text{ dBm TYP.}@f_{RFin} = 1.9 \text{ GHz}$
•	Low current consumption	: Icc = 8.5 mA TYP.
•	Supply voltage	: Vcc = 2.7 to 3.3 V
•	High-density surface mounting	: 6-pin minimold package

APPLICATIONS

- 1.5 GHz to 1.9 GHz cellular/cordless telephone (example: PHS, DECT, PDC1. 5G)
- 800 MHz to 900 MHz cellular telephone (example: PDC 800 M)

ORDERING INFORMATION


Part Number	Package	Marking	Supplying Form
μPC8112T-E3	6-pin minimold	C2K	Embossed tape 8 mm wide.
			• Pin 1, 2, 3 face to perforation side of the tape.
			• QTY 3k/reel.

Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order)

Caution Electro-static sensitive devices

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

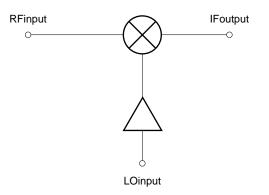
PIN CONNECTIONS

Pin No.	Pin Name	
1	RFinput	
2	GND	
3	LOinput	
4	PS	
5	Vcc	
6	IFoutput	

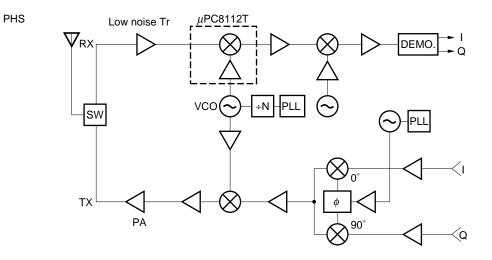
★ PRODUCT LINE-UP (TA = +25 °C, Vcc = 3.0 V, Zs = ZL = 50 Ω)

Items Part No.	No RF Icc (mA)	900 MHz SSB NF (dB)	1.5 GHz SSB NF (dB)	1.9 GHz SSB NF (dB)	900 MHz CG (dB)	1.5 GHz CG (dB)	1.9 GHz CG (dB)	900 MHz IIP ₃ (dBm)	1.5 GHz IIP₃ (dBm)	1.9 GHz IIP ₃ (dBm)
μPC2757T	5.6	10	10	13	15	15	13	-14	-14	-12
μPC2757TB	5.0	10	10	15	15	15	15	-14	-14	-12
μPC2758T		0	40	40	40	40	47	40	40	44
μPC2758TB	11	9	10	13	19	18	17	-13	-12	–11
μPC8112T	0.5				45	40	40	10	0	7
μPC8112TB	8.5	9	11	11	15	13	13	-10	-9	-7

Items Part No.	900 MHz Po _(sat) (dBm)	1.5 GHz Po _(sat) (dBm)	1.9 GHz Po _(sat) (dBm)	900 MHz RF _{lo} (dB)	1.5 GHz RFl₀ (dB)	1.9 GHz RF₀ (dB)	IF Output Configuration	Packages
μPC2757T	-3		-8					6-pin minimold
μPC2757TB	-3	_	-0	_	I	-		6-pin super minimold
μPC2758T	+1		-4				Emitter follower	6-pin minimold
μPC2758TB	+1	_	-4	_	-	-		6-pin super minimold
μPC8112T	-2.5	-3	-3	-80	57	55	Open collector	6-pin minimold
μPC8112TB	-2.5	-3	-3	-00	-57	-55	Open collector	6-pin super minimold


Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.

- Cautions 1. μ PC2757T, μ PC2758T's IIP₃ are calculated with the same inclination of IM₃ as μ PC8112T. μ PC8112T IM₃'s inclination at P_{RFin} = -38 dBm is close to 3rd order.(Refer to theoretical equation)
 - 2. This data sheet is to be specified for μ PC8112T only. The other part numbers mentioned in this document should be referred to the data sheet of each part number.


NEC

Phase-out/Discontinued

INTERNAL BLOCK DIAGRAM

μ PC8112T LOCATION EXAMPLE IN THE SYSTEM

PIN EXPLANATION

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V)	Function and Application	Internal Equivalent Circuit
5	Vcc	2.7 to 3.3	_	Supply voltage pin. This pin should be connected with bypass capacitor (example: 1 000 pf) to minimize ground imped-ance.	
6	IFoutput	as same as Vcc voltage through external inductor	_	IF output pin. This output is configured with open collector of high impedance. This pin should be externally equipped with matching circuit of inductor should be selected as small resistance and high frequency use.	From {
1	RFinput	_	1.2	RF input pin of mixer. This mixer is designed as double balanced type. This pin should be externally coupled to front stage with DC cut capacitor.	
2	GND	0	_	Ground pin. This pin must be connected to the system ground. Form the ground pattern as wide as possible and the truck length as short as possible to minimize ground impedance.	
3	LOinput	_	1.4	Input pin of local amplifier. This amplifier is designed as differen- tial type. This pin should be externally coupled to local signal source with DC cut capacitor. Recommendable input level is –15 to 0 dBm.	5 To mixer
4	PS	Vcc or GND	_	Power save control pin. This pin can control ON/OFF operation with bias as follows;Bias: VOperationVPS ≥ 2.5 ON0 - 0.5OFF	

ABSOLUTE MAXIMUM RATINGS

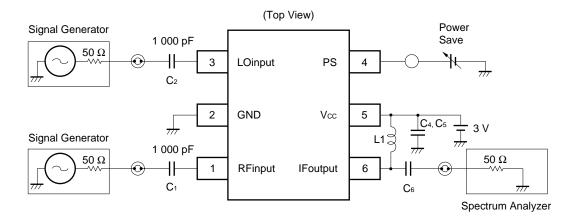
Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	$T_A = +25 \text{ °C}, 5 \text{ pin and } 6 \text{ pin}$	3.6	V
Total Circuit Current	Icc	T _A = +25 °C	77.7	mA
Total Power Dissipation	PD	Mounted on $50 \times 50 \times 1.6$ mm epoxy glass PWB (T _A = +85 °C)	280	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remark
Supply Voltage	Vcc	2.7	3.0	3.3	V	5 pin and 6 pin should be applied to same voltage.
Operating Ambient Temperature	TA	-40	+25	+85	°C	
LO Input Level	PLOin	-15	-10	0	dBm	Zs = 50 Ω
RF Input Frequency	f RFin	0.8	1.9	2.0	GHz	
IF Output Frequency	fIFout	100	250	300	MHz	With external matching

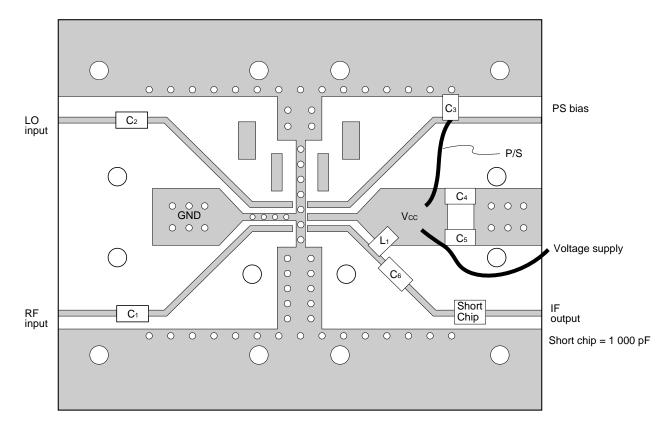
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $T_A = +25$ °C, $V_{CC} = V_{PS} = V_{IFout} = 3.0$ V, $P_{LOin} = -10$ dBm, $Z_S = Z_L = 50 \Omega$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No signals	4.9	8.5	11.7	mA
Circuit Current at Power Save Mode	Icc(PS)	Vcc = 3.0 V, Vps = 0.5 V	-	-	0.1	μA
Conversion Gain	CG	$\label{eq:result} \begin{array}{l} f_{\text{RFin}} = 900 \text{ MHz}, \ f_{\text{LOin}} = 1 \ 000 \text{ MHz} \\ f_{\text{RFin}} = 1.9 \text{ GHz}, \ f_{\text{LOin}} = 1.66 \text{ GHz} \end{array}$	11.5 9.5	15 13	17.5 15.5	dB
Single Side Band Noise Figure	SSB NF	$\label{eq:result} \begin{array}{l} f_{\text{RFin}} = 900 \text{ MHz}, \ f_{\text{LOin}} = 1 \ 000 \text{ MHz} \\ f_{\text{RFin}} = 1.9 \text{ GHz}, \ f_{\text{LOin}} = 1.66 \text{ GHz} \end{array}$		9.0 11.2	11 13.2	dB
Saturated Output Power	Po _(sat)	$\label{eq:RFin} \begin{array}{l} f_{RFin} = 900 \mbox{ MHz}, f_{LOin} = 1 000 \mbox{ MHz} \\ f_{RFin} = 1.9 GHz, f_{LOin} = 1.66 GHz \\ (P_{RFin} = -10 dBm each) \end{array}$	6.5 7	-2.5 -3	_	dBm


STANDARD CHARACTERISTICS FOR REFERENCE (TA = +25 °C, Vcc = VPs = VIFout = 3.0 V,

Parameter	Symbol	Test Conditions	Reference	Unit
Conversion Gain	CG	$f_{RFin} = 1.5 \text{ GHz}, f_{LOin} = 1.6 \text{ GHz}$	13	dB
Single Side Band Noise Figure	SSB NF	fRFin = 1.5 GHz, fLOin = 1.6 GHz	11	dB
LO Leakage at RF Pin	LOrf	$\label{eq:result} \begin{array}{l} f_{\text{RFin}} = 900 \mbox{ MHz}, f_{\text{LOin}} = 1 000 \mbox{ MHz} \\ f_{\text{RFin}} = 1.5 GHz, f_{\text{LOin}} = 1.6 GHz \\ f_{\text{RFin}} = 1.9 GHz, f_{\text{LOin}} = 1.66 GHz \end{array}$	-45 -46 -45	dB
RF Leakage at LO Pin	RFio	$\label{eq:result} \begin{array}{l} f_{\text{RFin}} = 900 \mbox{ MHz}, \mbox{ floin} = 1 \mbox{ 000 \mbox{ MHz}} \\ f_{\text{RFin}} = 1.5 \mbox{ GHz}, \mbox{ floin} = 1.6 \mbox{ GHz} \\ f_{\text{RFin}} = 1.9 \mbox{ GHz}, \mbox{ floin} = 1.66 \mbox{ GHz} \end{array}$	80 57 55	dB
LO Leakage at IF Pin	LOif	$\label{eq:result} \begin{array}{l} f_{\text{RFin}} = 900 \mbox{ MHz}, f_{\text{LOin}} = 1 000 \mbox{ MHz} \\ f_{\text{RFin}} = 1.5 GHz, f_{\text{LOin}} = 1.6 GHz \\ f_{\text{RFin}} = 1.9 GHz, f_{\text{LOin}} = 1.66 GHz \end{array}$	-32 -33 -30	dB
Input 3rd Order Intercept Point ^{Note}	IIP₃	$ f_{RFin} = 900 \text{ MHz}, \ f_{LOin} = 1 \ 000 \text{ MHz} $	10 9 7	dBm

 $P_{LOin} = -10 \text{ dBm}, \text{Zs} = \text{ZL} = 50 \Omega$


Note IIP₃ is determined by comparing two method; theoretical calculation and cross point of IM₃ curve. IIP₃ = $(\Delta IM_3 \times Pin + CG - IM_3) \div (\Delta IM_3 - 1)$ (dBm) [ΔIM_3 : IM₃ curve inclination in linear range] $\mu PC8112T$'s ΔIM_3 is closer to 3 (theoretical inclination) than $\mu PC2757T$ and $\mu PC2758T$ of conventional ICs.

TEST CIRCUIT

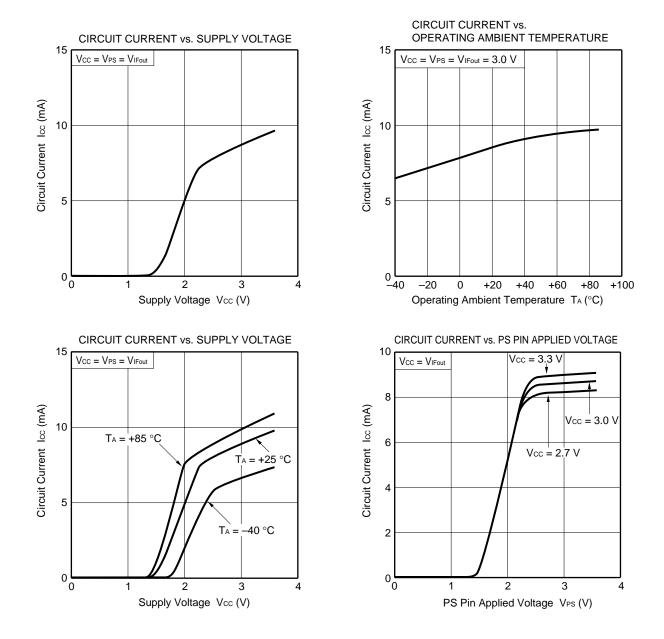
ILLUSTRATION OF TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

Component Number	IF 100 MHz Matching	IF 200 MHz Matching	Remarks
C1 to C5	1 000 pF	1 000 pF	CHIP C
C ₆	5 pF	2 pF	CHIP C
Lı	330 nH	84 nH	CHIP L

EVALUATION BOARD CHARACTERS AND NOTE

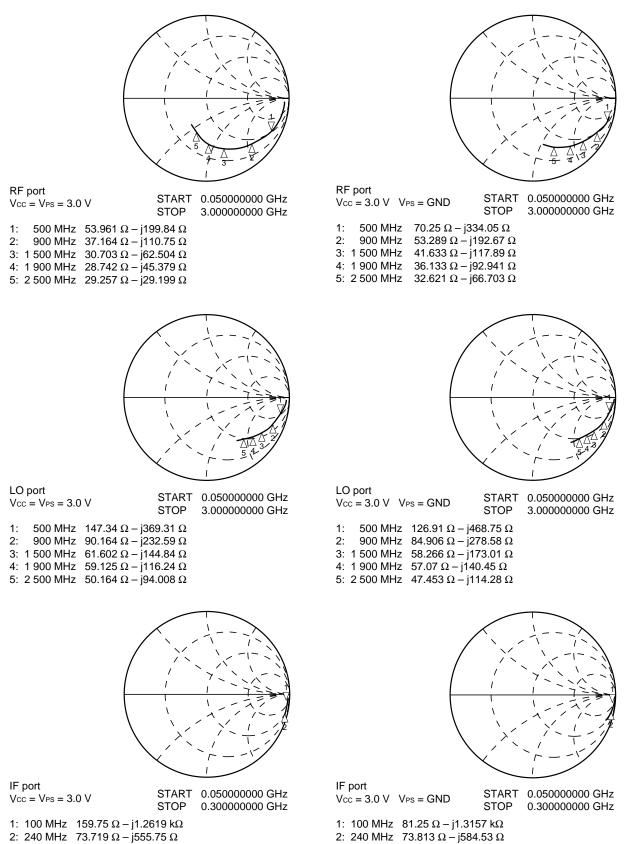
- (1) 35 μ m thick double-sided copper clad 35 \times 42 \times 0.4 mm polyimide board
- (2) Back side: GND pattern
- (3) Solder plated patterns
- (4) \circ O: Through holes
- (5) To mount C₆, pattern should be cut.
 - Caution Test circuit or print pattern in this sheet is for testing IC characteristics. They are not an application circuit or recommended system circuit.

In the case of actual system application, external circuits including print pattern and matching circuit constant of output port should be designed in accordance with IC's S parameters and environmental components.


- Remark External circuits of the IC can be referred to following application notes.
 - To RF and IF port: μPC2757, μPC2758, μPC8112 application note (Document No. P11997E)

NEC

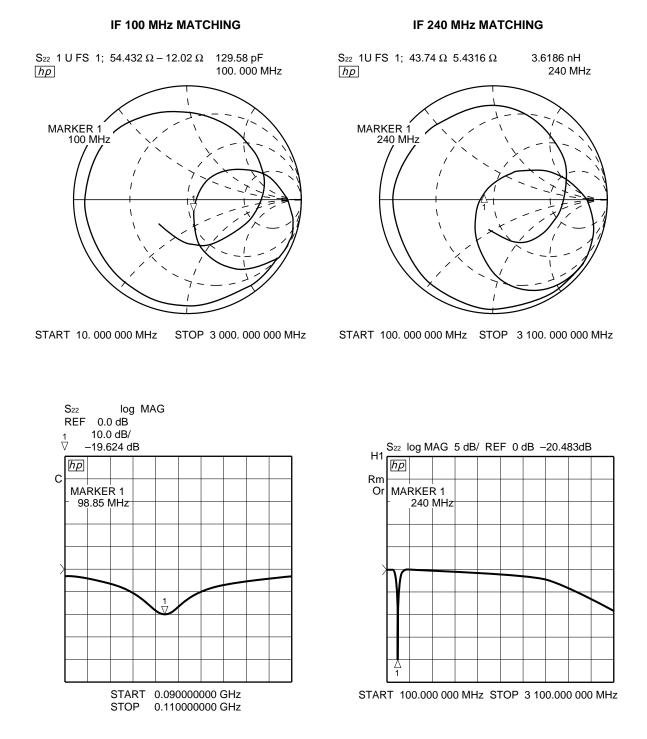
TYPICAL CHARACTERISTICS (T_A = +25 °C, unless otherwise specified, measured on test circuits)


- Without Signals -

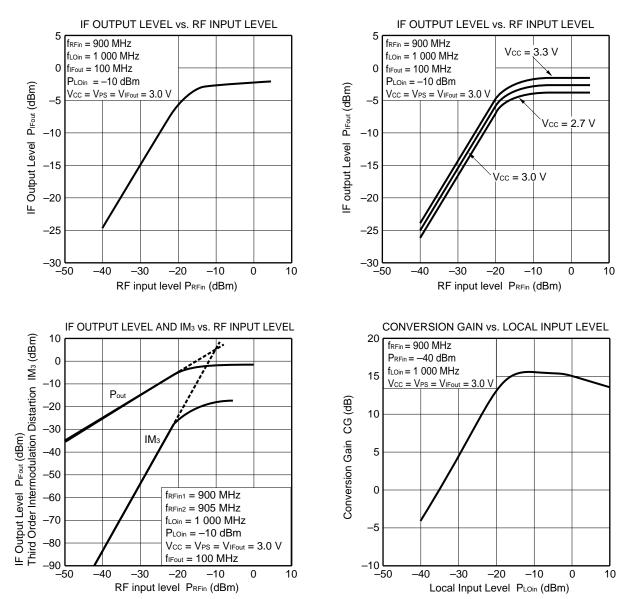
µPC8112T

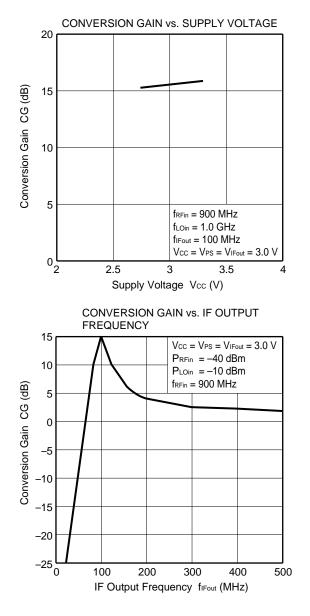
- S-PARAMETER -

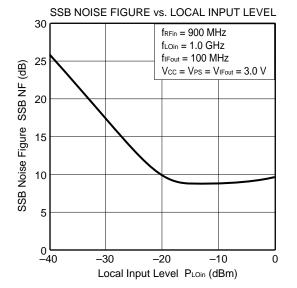
Calibrated on pin of DUT

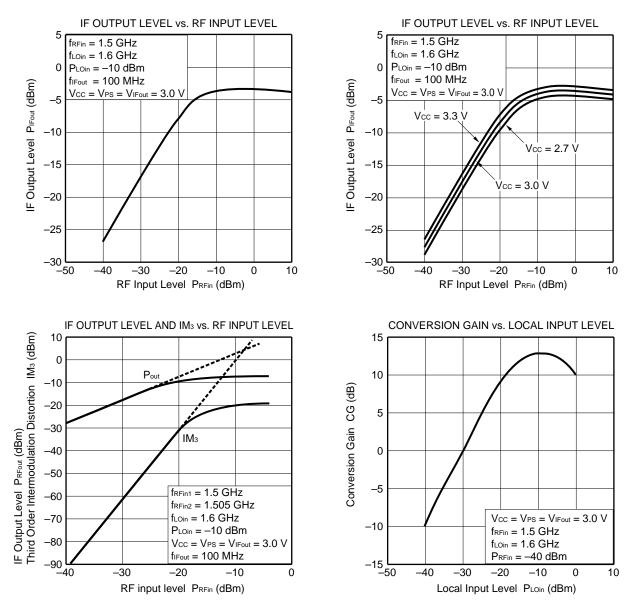


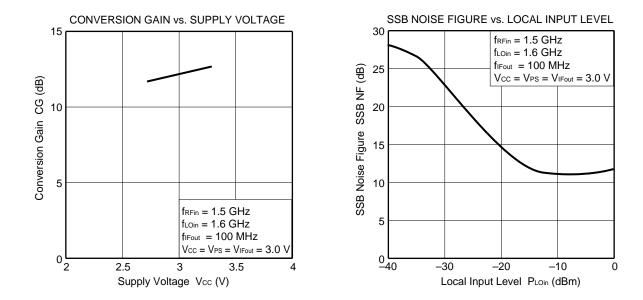
2: 240 MHz 73.719 Ω – j555.75 Ω

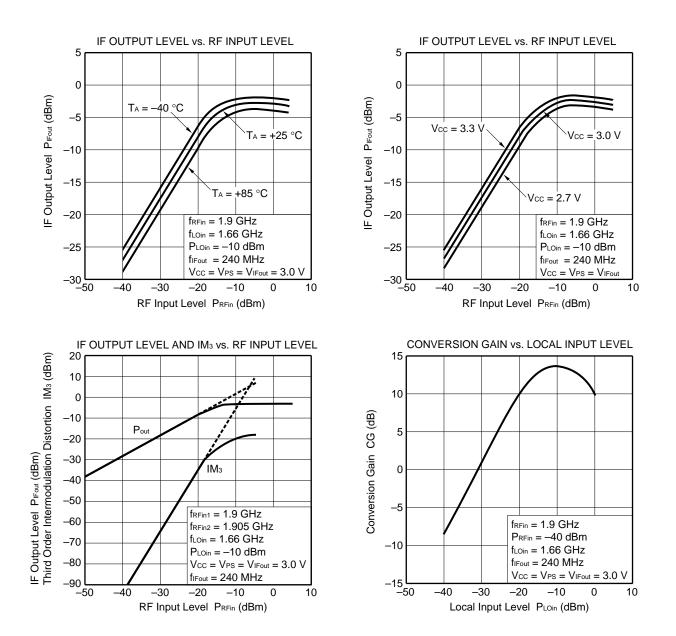

S-PARAMETERS OF IF OUTPUT MATCHING (Vcc = VPs = VIFout = 3.0 V) - ON TEST CIRCUIT -

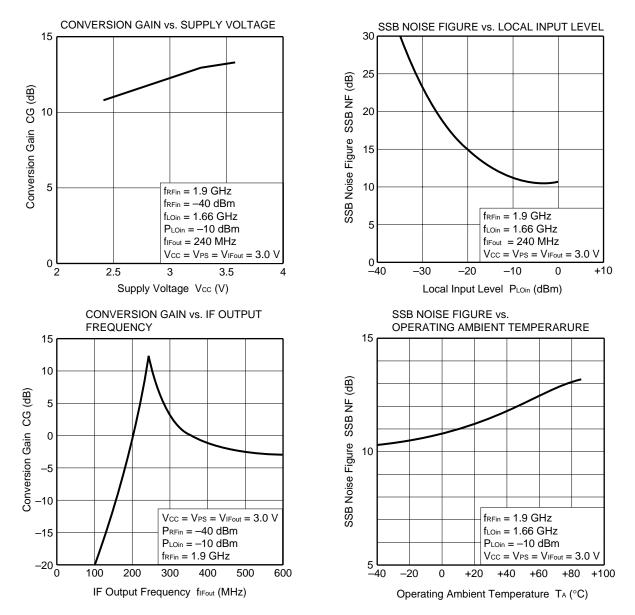

(This S22 is monitored at IF connector on test circuit fixture.)

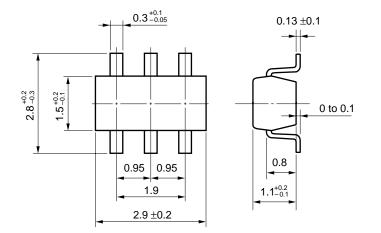


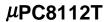

The data in this page are to make clear the test condition of impedance matched to next stage, not specify the recommended condition. The S₂₂ smith charts of the test fixture setting IC are normalized to Zo = 50 Ω , because the IC's load is the measurement equipment of 50 Ω impedance.


In your use, the output return loss value can be helpful information to adjust your circuit matching to next stage.









PACKAGE DIMENSIONS

6 PIN MINIMOLD (Unit: mm)

NOTE ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation).

Phase-out/Discontinued

- (3) Keep the track length of the ground pins as short as possible.
- (4) The bypass capacitor (example: 1 000 pF) should be attached to the Vcc pin.
- (5) The matching circuit should be externally attached to the IF output pin.
- (6) The DC cut capacitor must be each attached to the input and output pins.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235 °C or below Time: 30 seconds or less (at 210 °C) Count: 3, Exposure limit: None ^{Note}	IR35-00-3
VPS	Package peak temperature: 215 °C or below Time: 40 seconds or less (at 200 °C) Count: 3, Exposure limit: None ^{Note}	VP15-00-3
Wave Soldering	Soldering bath temperature: 260 °C or below Time: 10 seconds or less Count: 1, Exposure limit: None ^{Note}	WS60-00-1
Partial Heating	Pin temperature: 300 °C Time: 3 seconds or less (per side of device) Exposure limit: None ^{Note}	_

Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

[MEMO]

NEC

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

hase-out/Discontinued

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.