TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic

TB2132FNG

3-V AM/FM/TV Single Chip Tuner IC with On-Chip PLL

The TB2132FNG is an IC suitable for $3-\mathrm{V}$ headphone radio and radio cassette application. It has FM/TV front end, FM IF, FM stereo decoder, AM function and PLL function on a single chip. The FM/TV front end is designed to lower the oscillation voltage of the FM/TV local oscillator, enabling this IC to meet the new FCC standards.

Features

- Low supply current ($\mathrm{VCC}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

FM: ICC $=18 \mathrm{~mA}$ (typ.)

Weight: 0.17 g (typ.)

AM: ICC $=7.5 \mathrm{~mA}$ (typ.)

- Operating supply voltage range
: $\mathrm{VCC}=1.8$ to $5.5 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Tuner block
- Can be used for TV band.
- Enable to meet the new FCC standards.
- Adjustment-free FM quad detector due to ceramic discriminator
- On-chip FM MPX VCO circuit
- PLL block
- Reference frequency: $1 \mathrm{kHz}, 1.5625 \mathrm{kHz}, 3 \mathrm{kHz}, 3.125 \mathrm{kHz}, 5 \mathrm{kHz}, 6.25 \mathrm{kHz}, 12.5 \mathrm{kHz}, 25 \mathrm{kHz}$
- Data transfer is performed with synchronous three-line bus, using pins CE (Chip Enable), CK (Clock) and DATA (DATA).
- Crystal oscillation frequency: 75 kHz
- IF count method: On-chip 20-bit counter

Note: The TB2132FNG is mounted with lead-free soldering alloys.

Block Diagram

Pin Description

1. Tuner Block

| Pin |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No. |
| Characteristics |

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Characteristics	Internal Circuit	Pin Voltage (typ.) (V)	
			AM	FM
7	AM IF IN		2.3	2.5
8	QUOD		2.5	2.2
9	DET OUT		1.0	0.9
10	MPX IN		0.7	0.7

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Characteristics	Internal Circuit	Pin Voltage (typ.) (V)	
			AM	FM
11	LPF1 - LPF pin for synchronous detector		0.7	2.4
12	LPF2 - LPF pin for phase detector		0	2.2
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	L-OUT R-OUT		1.2	1.2
25	AM OSC		3.0	3.0

Pin No.	Characteristics	Internal Circuit	Pin Voltage (typ.) (V)	
			AM	FM
26	FM/TV OSC		3.0	3.0
27	AM RFin		3.0	3.0
28	RF V_{CC} (V_{CC} for FM RF)	-	3.0	3.0
29	TV RF OUT	Refer to the internal circuit of pin 1.	3.0	3.0
30	FM RFout	Refer to the internal circuit of pin 1.	3.0	3.0

2. PLL Block

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Symbol \& Pin Name \& Description \& Equivalent Circuit

\hline 15

16 \& XOUT \& Crystal oscillator pin \& | These pins are used for a crystal oscillator. |
| :--- |
| A $75-\mathrm{kHz}$ reference crystal oscillator is connected to the pins XIN and XOUT. | \&

\hline 17 \& PLL GND \& Power supply input pin \& This is a power supply input pin for the PLL block. \& (17)

\hline 18 \& \[
$$
\begin{aligned}
& \text { OUT1 } \\
& \text { (ST) }
\end{aligned}
$$

\] \& General-purpose output port (ST port) \& | This port can be switched between general-purpose output port and ST output using STC bit of serial data. |
| :--- |
| Note: Upon power-on or power-on reset, pin 18 is configured as an output (the OUT1 output will be low). Thus, If an LED is connected to pin 18 for stereo display, it is illuminated at these times. | \&

\hline 19 \& $$
\begin{array}{|l}
\text { OUT2 } \\
\text { (DO2) }
\end{array}
$$ \& General-purpose output port (DO output) \& This port can be switched between general-purpose output port and DO output using DO2 bit of serial data. \&

\hline 20 \& DO \& Phase comparator output \& | This is a phase comparator output pin for the PLL block with tri-state output. |
| :--- |
| When the divided-down clock from the programmable counter is higher than the reference frequency, it will be in High-level. When it is lower, it will be in Low-level. If it matches the reference frequency, it will be in high-impedance state. |
| The output is held at Low in Standby Mode. | \&

\hline 21 \& PLL V ${ }_{\text {cc }}$ \& Power supply input pin \& This is a power supply input pin for the PLL block. \&

\hline 22, 23, 24 \& | DATA |
| :--- |
| CK |
| CE | \& Serial data I/O \& These are serial data I/O pins. \&

\hline
\end{tabular}

Application Note

1. Power Supply Line

This IC has two voltage supply pins, VCC (for stages of AM, FM IF and MPX) and RF VCC (for FM RF stage). Please keep the potential difference between these power supply pins at 0.4 V (typ.) or less. Otherwise, it may cause the IC to malfunction.
Also, please keep the potential difference between the VCC (tuner power supply) and the VDD (PLL power supply) at 1 V or less. Otherwise, due to improper interaction between analog and digital blocks, a malfunction may occur.

2. Crystal Oscillator External Constant

When the constants of external components C1 and C2 are determined, please show the IC with the final layout of the board to a crystal oscillator manufacturer and test it to confirm the constants.
If you need an IC to adjust parameter values to compensate for variables in layout, ask Toshiba.
Please use a crystal oscillator with lower CI value

Toshiba tested a crystal oscillator from DAISHINKU CORP. (CI value is $30 \mathrm{k} \Omega \max$) using a Toshiba evaluation board.

3. Miscellaneous

1) We offer information on software programs to control the TB2132FNG on Windows 95/98. For details, contact us.
(Also contact us if you are using Windows 2000/NT.)
2) We offer an interface board to run the TB2132FNG under software control on Windows 95/98.
<Interface circuit diagram>

4. Resistor in Interface Block

- When tuner power supply > Microcontroller power supply

CE, CK and DATA should be connected to the tuner power supply via pull-up resistors.
(Depending on a microcontroller specification, these pins should be connected directly to the tuner power supply, or the interface board should be inserted as shown above.)

- When tuner power supply \leqq Microcontroller power supply

Only DATA should be connected to the microcontroller power supply via a pull-up resistor.

Configuration of Local Oscillator and Programmable Counter

Operate the FM/TV local oscillator at approximately 200 MHz and select the counter input using the following settings of the bits. Then determine reference frequency and minimum step frequency.

Mode	BAND0	BAND1	Divide by 16	PW	Interna VCO IN	Input Frequency Range	Recommended Reference Frequency	Minimum Step Frequency
AM	1	0	*	0	AM OSC IN	0.1 MHz 40 MHz	$1 \mathrm{k}, 3 \mathrm{k}, 5 \mathrm{k}$	$1 \mathrm{k}, 3 \mathrm{k}, 5 \mathrm{k}$
FM 1/32	0	0	0	0			3.125 k	50 kHz
TV 1/8	0	1	0	0			6.25 k	50 kHz
FM	0	0	1	1	FM OSC IN	$30 \mathrm{MHz} \sim 230 \mathrm{MHz}$	25 kHz	25 kHz
TV 1/2	0	1	1	1			12.5 kHz	25 kHz

How to Set the Divisor

A divisor of the programmable counter is set in binary using the bits P0 to P16.

1. FM OSC IN: Pulse swallow mode (set the PW bit)

Pulse swallow mode (17 bits: FM and TV 1/2 Modes). Please set as shown below.

MSB LSB																
P16	P15	P14	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0
2^{17}																

Divisor range n: 528~131072 (210H to 1FFFH)
2. AM OSC IN (clear the PW bit)

Direct divide mode (12 bits: AM, FM 1/32, TV 1/8) please set P4 to P16 as shown below.

MSB LSB																
P16	P15	P14	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	PO
2^{12}																

Serial Transfer Format

Data input mode (DOUT is in high-impedance state at input.)

* In Input Mode 2, set Low at CE pin after D15 is passed.
* Do not enter the first data within 100 ms after the power supply is turned on.
* At power on or reset, the reset values are set as shown in the figure below.

Address Format

A0	A1	A2	A3	Mode
1	0	0	0	Input Mode 1
0	1	0	0	Input Mode 2
0	0	0	1	Output Mode (IF count data and data output)

Input Mode 1

Address

Data in Detail

- P0 to 16: N (divisor data P0: LSB, P16: MSB)
- OUT1, 2: When set, a high appears on the OUT pin. When cleared, a low appears on the OUT pin.
- BAND 0, 1

	BAND 0	BAND 1
FM	0	0
AM	1	0
TV The tundby Mode block, the PLL block and the crystal oscillator: OFF DO: Held at Low	0	1

Note: In standby mode, the X'tal I1 and X'tal I2 bits must be cleared. Otherwise, the oscillator does not run after the TB2132FNG exits from the mode.
The OUT1 and OUT2 bits can be controlled by serial input data, even in standby mode.

- DL: When cleared, DO is in normal state.

When set, DO is held at low.

- DO2: When cleared, the OUT2 pin is switched to the general-purpose output port.

When set, the OUT2 pin is switched to the DO output.

- IF GAIN: When cleared, full gain of the FM IF amplifier.

When set, 2 dB more gain than the full gain of the FM IF amplifier.

- Divide by 16: When cleared, FMOSC output: $1 / 32$, TV OSC output: $1 / 8$

When set, FMOSC output: $1 / 1$, TV OSC output: $1 / 2$

- R0, 1, 2

Reference Frequency	R0	R1	R2
1 kHz	0	0	0
1.5625 kHz	1	0	0
3 kHz	0	1	0
3.125 kHz	1	1	0
5 kHz	0	0	1
6.25 kHz	1	0	1
12.5 kHz	0	1	1
25 kHz	1	1	1

- G0, 1

G0	G1	Measuring Time	Waiting Time
0	0	1 ms	3.3 to 4.3 ms
1	0	4 ms	3.3 to 4.3 ms
0	1	16 ms	7.3 to 8.3 ms
1	1	64 ms	7.3 to 8.3 ms

- START: IF count start bit

When cleared, maintain the count value.
When set, start measuring and decrease gain by 6 dB in the FM/TV IF amplifiers after the count value is reset. MUTE is turned on.

- MUTE: When cleared, MUTE is turned off.

When set, MUTE is turned on.

Input Mode 2

- MO/ST : When cleared, it is in Auto Mode.

When set, it is in Forced Monaural Mode.

- Lo DX : When cleared, full gain of the FM/TV RF amplifiers When set, 40dB less gain than the full gain of FM/TV RF amplifiers.
- OSC level gain : For FM, the oscillation level of the OSC can be reduced from the viewpoint of FCC.

For AM, to the contrary, the oscillation can be intensified so that the oscillator can run even with a low impedance on the SW band.

OSC0	OSC1	AM OSC	FM OSC
0	0	0 dB	0 dB
1	0	$\oplus \oplus$	$\Theta \Theta$
0	1	$\oplus \oplus \oplus$	$\Theta \Theta \Theta$
1	1	$\oplus \oplus \oplus \oplus$	$\Theta \Theta \Theta \Theta$

- STC : When cleared, the OUT1 pin is switched to the general-purpose output port. When set, the OUT 1 pin is switched to the ST output (stereo output). For stereo reception, the pin is low.
- PW : When the AM, FM $1 / 32$ and TV $1 / 8$ modes are programmed, clear the PW bit. When the TV $1 / 2$ and FM are programmed, set the PW bit.
- X'tal I1/X'tal I2 : For FM and TV, set X'tal I1 and X'tal I2 to 0 and 0.

For AM, the current of the X'tal block can be reduced from the viewpoint of X'tal harmonics interference.

Note: When the standby mode is selected, be sure to reset X^{\prime} tal $I 1$ and X 'tal $I 2$, respectively, to 0 and 0 , or the oscillator will fail to run when the standby mode is released.

X'tal I1	X'tal I2	Oscillation Amplitude	Recommended Bandwidth
0	0	Large 1	FM/TV
0	1	Large 2	
1	0	Small 2	
1	1	Small 1	AM

- TEST1 to TEST8: These bits are used for IC testing and must be always 0 .

Output Mode

IF counting data

- C0 to 19: General-purpose count data (C0: LSB, C19: MSB)
- OVER: Set 1 when the measured value of general-purpose count data exceeds 20 bits.
- BUSY: When a 0 is read, general-purpose count measurement completes.

When a 1 is read, general-purpose count measurement is in progress.

- ST: When a 0 is read, it is for monaural reception.

When a 1 is read, it is for stereo reception.

Coil Data

Coil No.	Test Frequency	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \hline \mathrm{Co} \\ (\mathrm{pF}) \end{gathered}$	Qo	Turns					Wire (mm $)$	Remarks
					1-2	2-3	1-3	1-4	4-6		
$\mathrm{L}_{1} \mathrm{FM}$ RF	100 MHz	-	-	105	-	-	$3 \frac{3}{4}$	-	-	0.12UEW	Toko Co., Ltd. 666SNF-419Z
$\mathrm{L}_{2}:$ TV RF	100 MHz	-	-	55	-	-	1	-	-	0.12UEW	Toko Co., Ltd. 666SNF-413IB
L_{3} : OSC	100 MHz	-	-	79	-	-	$1 \frac{1}{2}$	-	-	0.16UEW	Toko Co., Ltd. P666SNF-421IB
$\mathrm{T}_{1} \mathrm{AM}$ OSC	796 kHz	268	-	65	19	95	-	-	-	0.05UEW	Toko Co., Ltd. 5PNR-4957Y
T ${ }_{2}$ AM IFT	455 kHz	-	470	60	-	-	109	-	7	0.05UEW	Toko Co., Ltd. 5PLG-5147X

L_{1} : FM RF
T_{1} : AM OSC
T_{2} : AM IFT
L_{2} : TV RF
L_{3} : OSC

Absolute Maximum Ratings (Unless otherwise specified, $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit	
Supply voltage	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$	-0.3 to 6.0		
Output with standing voltage (NPN open collector)	V_{O}	-0.3 to 6.0	V	
CMOS input voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$		
Power dissipation	(Note)	P_{D}	500	mW
Operating temperature		$\mathrm{T}_{\mathrm{opr}}$	-25 to 75	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$	

Note: Power consumption is rated at $25^{\circ} \mathrm{C}$. At temperatures higher than $25^{\circ} \mathrm{C}$, power consumption is decreased by 4.8 mW per ${ }^{\circ} \mathrm{C}$.

Electrical Characteristics

1. Tuner Block (Unless otherwise specified,

$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=\mathbf{3 V}$, F/E : $\mathrm{f}=\mathbf{9 8} \mathrm{MHz}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
FM IF: $\mathrm{f}=\mathbf{1 0 . 7} \mathbf{~ M H z , ~} \Delta \mathrm{f}= \pm \mathbf{7 5} \mathbf{k H z}, \mathrm{f}_{\mathrm{m}}=\mathbf{1 k H z}$
AM : $\mathrm{f}=1 \mathrm{MHz}, \mathrm{MOD}=\mathbf{3 0} \%, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
MPX : $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{LL}} \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$)

Characteristics			Symbol	Test Circuit	Test Condition		Min	Typ.	Max	Unit	
Supply current			ICC (TV)	-	In TV Mode,$V_{\text {in }}=0$	1/2 division mode incl. PLL	-	18	-	mA	
			1/8 division mode incl. PLL			-	16	23			
			ICC (FM)	-	In FM Mode,$V_{\text {in }}=0$	OSC divider bypass mode incl. PLL	-	18	-		
			1/32 division mode incl. PLL			-	16	23			
			ICC (AM)	-	In AM Mode, $\mathrm{V}_{\text {in }}=0$ (incl. PLL)		-	7.5	11		
F/E	FM input limiting voltage			$\mathrm{V}_{\text {in }}$ (lim)	-	$\mathrm{V}_{\mathrm{in}}=60 \mathrm{~dB} \mu \mathrm{~V} \text { EMF, }$ -3dB limiting		-	10	-	$\mathrm{dB} \mu \mathrm{V}$ EMF
	TV input limiting voltage		-		$\begin{aligned} & \mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V} \text { EMF, } \\ & -3 \mathrm{~dB} \text { limiting } \end{aligned}$		-	11	-	$\mathrm{dB} \mu \mathrm{V}$ EMF	
FM IF	Input limiting voltage		$\mathrm{V}_{\text {in }}(\mathrm{lim}) \mathrm{IF}$	-	$\begin{aligned} & \mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \text { EMF, } \\ & -3 \mathrm{~dB} \text { limiting } \end{aligned}$		38	43	48	$\mathrm{dB} \mu \mathrm{V}$ EMF	
	Recovered output voltage		$\mathrm{V}_{\text {OD }}$	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF		210	260	310	mV rms	
	Signal to noise ratio		S/N	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF		-	72	-	dB	
	Total harmonic distortion		THD	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF		-	0.3	-	\%	
	AM rejection ratio		AMR	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF		-	60	-	dB	
	IF count sensitivity		$\begin{aligned} & \text { IF sens } \\ & \text { (FM) } \end{aligned}$	-	-		52	57	62	$\mathrm{dB} \mu \mathrm{V}$ EMF	
AM	Gain		GV	-	$\mathrm{V}_{\text {in }}=31 \mathrm{~dB} \mu \mathrm{~V}$ EMF		20	38	70	mVrms	
	Recovered output voltage		V_{OD}	-	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF		65	90	113	mVrms	
	Signal to noise ratio		S/N	-	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF		-	40	-	dB	
	Total harmonic distortion		THD	-	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF		-	1.0	-	\%	
	IF count sensitivity		IF sens (AM)	-	-		39	44	49	$\mathrm{dB} \mu \mathrm{V}$ EMF	
MPX	Max. signal input voltage		Vin max (Monaural)	-	$\mathrm{fm}=1 \mathrm{kHz}, \mathrm{THD}=3 \%$		-	700	-	mVrms	
	Input resistance		R_{IN}	-	-		-	55	-	k Ω	
	Output resistance		ROUT	-	-		-	5	-	$\mathrm{k} \Omega$	
	Separation		Sep.	-	$\begin{aligned} & \mathrm{L}+\mathrm{R}= \\ & 180 \mathrm{mVrms}, \\ & \mathrm{P}=20 \mathrm{mVrms} \\ & \text { SW3: LPF ON } \end{aligned}$	$\mathrm{f}_{\mathrm{m}}=100 \mathrm{~Hz}$	-	45	-	dB	
			$\mathrm{fm}_{\mathrm{m}}=1 \mathrm{kHz}$			35	45	-			
			磈 $=10 \mathrm{kHz}$			-	45	-			
	Total harmonic distortion	Monaural		THD (Monaural)	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$		-	0.2	-	\%
		Stereo		THD (Stereo)	-	$\mathrm{L}+\mathrm{R}=180 \mathrm{mVrms}$, P = 20 mVrms , SW3: LPF ON		-	0.2	-	
	Voltage gain		G_{V}	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$		-2.5	-1.0	0.5	dB	
	Channel balance		C.B.	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$		-1.5	0	1.5	dB	

Characteristics			Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
MPX	Stereo sensitivity	ON	$\mathrm{V}_{\mathrm{L}}(\mathrm{ON})$	-	Apply pilot signal (19 kHz)	-	10	14	mVrms
		OFF	V_{L} (OFF)	-		5	8	-	
	Stereo hysteresis		V_{H}	-	Switched from monaural to stereo operation, and from stereo to monaural operation.	-	2	-	mVrms
	Capture challenge		C.R.	-	$\mathrm{P}=20 \mathrm{mVrms}$	-	± 8	-	\%
	Signal noise ratio		S/N	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$	-	78	-	dB
	Muting attenuation		MUTE	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$	-	78	-	dB

2. PLL Block (Unless otherwise specified, $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Operating supply voltage range	$V_{\text {DD }}$	-		1.8	\sim	5.5	V
Memory retention voltage range	V_{HD}	-	In Standby Mode	1.55	\sim	5.5	
Operating supply current	IDD1	-	PLL operation (in pulse swallow mode)	-	3.6	-	mA
	IDD2	-	PLL operation (in direct divide mode)	-	2.2	-	mA
Memory retention current	I_{HD}	-	In Standby Mode	-	0.4	1.0	mA
Crystal oscillation frequency	f_{XT}	-		-	75	-	kHz
Crystal oscillation start time	$\mathrm{t}_{\text {st }}$	-	Crystal oscillation frequency $=$ 75 kHz	-	250	-	ms

DATA at Pin 22 and CLOCK at Pin 23, CE at Pin 24

| Characteristics | | Symbol | Test
 Circuit | Test Condition | Min | Typ. | Max |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | Unit 1

OUT1 (ST) at Pin 18

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	High level	$\mathrm{IOH1}$	-	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$	-0.5	-1.0	-	mA
	Low level	IOL1	-	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$	1.2	1.7	-	

OUT2 (DO2) at Pin 19

| Characteristics | | Symbol | Test
 Circuit | Test Condition | Min | Typ. | Max |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | Unit 1

DO at Pin 20

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	High level	$\mathrm{lOH1}$	-	$\mathrm{V}_{\mathrm{OH}}=\frac{1}{2} \mathrm{~V}_{\mathrm{DD}}$	-1.5	-2.5	-	mA
	Low level	IOL1	-	$\mathrm{V}_{\mathrm{OL}}=\frac{1}{2} \mathrm{~V}_{\mathrm{DD}}$	2.0	3.0	-	
Output OFF-leak current		I_{TL}	-	$\mathrm{V}_{\mathrm{O}}=\frac{1}{2} \mathrm{~V}_{\mathrm{DD}}$	-	-	± 100	nA

DO2 at Pin 19

| Characteristics | | Symbol | Test
 Circuit | Test Condition | Min | Typ. | Max |
| :--- | :--- | :---: | :---: | :--- | :---: | :---: | :---: | Unit

Application Circuit

Application Circuit (for FM module) FM/TV

Package Dimensions

Weight: 0.17 g (typ.)

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

About solderability, following conditions were confirmed

- Solderability
(1) Use of Sn-37Pb solder Bath
- solder bath temperature $=230^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
- solder bath temperature $=245^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux

