256 Kb ($64 \mathrm{~K} \times 4$) Static RAM

Features

- Fast access time: 12 ns, 15 ns, and 25 ns
- Wide voltage range: $5.0 \mathrm{~V} \pm 10 \%$ (4.5 V to 5.5 V)
- CMOS for optimum speed/power
- TTL-compatible inputs and outputs
- Available in 24 DIP, 24 SOJ, 28 DIP, and 28 SOJ

General Description ${ }^{1}$

The CY7C194B-CY7C195B is a high-performance CMOS Asynchronous SRAM organized as $64 \mathrm{~K} \times 4$ bits that supports an asynchronous memory interface. The device features an automatic power-down feature that significantly reduces power consumption when deselected. Output enable ($\overline{\mathrm{OE}})$ is supported only in CY7C195B. ${ }^{2}$
See the Truth Table in this data sheet for a complete description of read and write modes.
The CY7C194B-CY7C195B is available in 24 DIP, 24 SOJ, 28 DIP, and 28 SOJ package(s).

Logic Block Diagram

Product Portfolio

	$\mathbf{1 2 ~ n s}$	$\mathbf{1 5 ~ n s}$	$\mathbf{2 5} \mathbf{~ n s}$	Unit
Maximum Access Time	12	15	25	ns
Maximum Operating Current	90	80	80	mA
Maximum CMOS Standby Current	10	10	10	mA

Notes:

1. For best-practice recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.
2. All $\overline{\mathrm{OE}}$-specific descriptions and parameters in this datasheet pertain to CY7C195 only.

Pin Layout and Specifications

$$
\text { CY7C195B } 28 \text { DIP }(6.9 \times 35.6 \times 3.5 \mathrm{~mm})-\text { P21 }
$$

CY7C195B 28 SOJ ($8 \times 18 \times 3.5 \mathrm{~mm}$) - V21

Pin Layout and Specifications (continued)

$$
\text { CY7C194B } 24 \text { SOJ }(8 \times 15 \times 3.5 \mathrm{~mm})-\mathrm{V} 13
$$

CY7C194B 24 DIP $(6.6 \times 31.8 \times 3.5 \mathrm{~mm})-\mathrm{P} 13$

Pin Description

Pin	Type	Description	28 DIP	24 DIP	24 SOJ	28 SOJ
A_{X}	Input	Address Inputs.	$\begin{gathered} 2,3,4,5,6, \\ 7,8,9,10 \\ 11,22,23, \\ 24,25,26, \\ 27 \end{gathered}$	$\begin{gathered} 1,2,3,4,5, \\ 6,7,8,9 \\ 10,18,19 \\ 20,21,22, \\ 23 \end{gathered}$	$\begin{gathered} 1,2,3,4,5, \\ 6,7,8,9, \\ 10,18,19 \\ 20,21,22, \\ 23 \end{gathered}$	$\begin{gathered} 2,3,4,5,6, \\ 7,8,9,10, \\ 11,22,23, \\ 24,25,26, \\ 27 \end{gathered}$
$\overline{\mathrm{CE}}$	Control	Chip Enable.	12	11	11	12
I/Ox	Input or Output	Data Input/Outputs.	$\begin{gathered} 16,17,18, \\ 19 \end{gathered}$	$\begin{gathered} 14,15,16, \\ 17 \end{gathered}$	$\begin{gathered} 14,15,16 \\ 17 \end{gathered}$	$\begin{gathered} 16,17,18, \\ 19 \end{gathered}$
NC	-	No Connect. Pins are not internally connected to the die.	1,20, 21	-	-	1,20, 21
$\overline{\mathrm{OE}}$	Control	Output Enable (CY7C195 only).	13	-	-	13
$\mathrm{V}_{\text {cc }}$	Supply	Power (5.0V).	28	24	24	28
$\overline{\text { WE }}$	Control	Write Enable.	15	13	13	15

CY7C195B Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	$\mathbf{I} / \mathbf{O x}$	Mode	Power
H	X	X	High Z	Deselect / Power-Down	Standby (kB)
L	L	H	Data Out	Read	Active (kc)
L	X	L	Data In	Write	Active (kc)
L	H	H	High Z	Selected, outputs disabled	Active (kc)

CY7C194B Truth Table

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	Input/Output	Mode	Power
H	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
L	H	Data Out	Read	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	L	Data In	Write	Active ($\left.\mathrm{I}_{\mathrm{Cc}}\right)$

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested.)

Parameter	Description	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {AMB }}$	Ambient Temperature with Power Applied (i.e. case temperature)	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	Core Supply Voltage Relative to $\mathrm{V}_{\text {SS }}$	-0.5 to +7.0	V
$\mathrm{~V}_{\text {CC }}$	DC Voltage Applied to any Pin Relative to $\mathrm{V}_{\text {SS }}$	-0.5 to $\mathrm{V}_{\text {CC }}+$ null	V
$\mathrm{I}_{\text {OUT }}$	Output Short-Circuit Current	20	mA
$\mathrm{~V}_{\text {ESD }}$	Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001	V
$\mathrm{I}_{\text {LU }}$	Latch-up Current	>200	mA

Operating Range

Range	Ambient Temperature $\left(\mathbf{T}_{\mathbf{A}}\right)$	Voltage Range $\mathbf{(\mathbf { V } _ { \mathbf { C C } })}$
Commercial	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$5.0 \mathrm{~V} \pm 10 \%$

DC Electrical Characteristics ${ }^{3}$

Parameter	Description	Condition	12 ns		15 ns		25 ns		Unit
			Min	Max	Min	Max	Min	Max	
V_{IH}	Input HIGH Voltage		2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}{ }^{+} \\ 0.3 \end{gathered}$	2.2	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}^{+}}{ }_{0.3} \end{gathered}$	2.2	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.3	0.8	-0.3	0.8	-0.5	0.8	V
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., loh $=-4.0 \mathrm{ma}$	2.4	-	2.4	-	2.4	-	V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., lol $=8.0 \mathrm{ma}$	-	0.4	-	0.4	-	0.4	V
${ }^{\text {CCC }}$	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \mathrm{f}= \\ & \mathrm{F}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	-	90	-	80	-	80	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-down Current TTL Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{F}_{\mathrm{MAX}} \end{aligned}$	-	30	-	30	-	30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-down Current CMOS Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{v}, \\ & \mathrm{~V}_{\text {IN }}>\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{v} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3, \mathrm{f} \\ & =0 \text { Commercial } \end{aligned}$	-	10	-	10	-	10	mA
IOZ	Output Leakage Current	GND $\leq \mathrm{Vi} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-5	+5	-5	+5	-5	+5	uA
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{Vi} \leq \mathrm{V}_{\mathrm{CC}}$	-5	+5	-5	+5	-5	+5	uA

Capacitance ${ }^{4}$

Parameter	Description	Conditions	Max	Unit
			ALL - PACKAGES	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25 \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	7	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		10	

Notes:

3. $\mathrm{V}_{\mathrm{IL}}(\min)=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
4. Tested initially and after any design or process change that may affect these parameters.

AC Test Loads

(A)*

(B)*

* including scope and jig capacitance

AC Test Conditions

Parameter	Description	Nom.	Unit
C1	Capacitor 1	30	pF
C2	Capacitor 2	5	
R1	Resistor 1	480	Ω
R2	Resistor 2	255	
R3	Resistor 3	480	
R4	Resistor 4	255	
$R_{\text {TH }}$	Resistor Thevenin	167	V
$\mathrm{~V}_{\text {TH }}$	Voltage Thevenin	1.73	

Thermal Resistance ${ }^{5}$

Parameter	Description	Conditions	28 SOJ	24 SOJ	28 DIP	24 DIP	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3×4.5 square inches, two-layer printed circuit board	69	TBD	TBD	TBD	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Theta_{\text {JC }}$	Thermal Resistance (Junction to Case)		29.84	TBD	TBD	TBD	

Notes:

5. Test Conditions assume a transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V

AC Electrical Characteristics ${ }^{2678}$

Parameter	Description	12 ns		15 ns		25 ns		Unit
		Min	Max	Min	Max	Min	Max	
t_{RC}	Read Cycle Time	12	-	15	-	25	-	ns
t_{AA}	Address to Data Valid	-	12	-	15	-	25	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3	-	3	-	3	-	ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ to Data Valid	-	12	-	15	-	25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE to Data Valid }}$	-	6	-	7	-	10	ns
t LZOE	$\overline{\mathrm{OE}}$ to Low Z	0	-	0	-	0	-	ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ to High Z	-	5	-	7	-	10	ns
t LZCE	$\overline{\mathrm{CE}}$ to Low Z	3	-	3	-	3	-	ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ to High Z	-	5	-	7	-	10	ns
$t_{\text {PU }}$	$\overline{\mathrm{CE}}$ to Power-up	0	-	0	-	0	-	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ to Power-down	-	12	-	15	-	25	ns
t_{wc}	Write Cycle Time	12	-	15	-	25	-	ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ to Write End	9	-	10	-	18	-	ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	9	-	10	-	20	-	ns
t_{HA}	Address Hold from Write End	0	-	0	-	0	-	ns
t_{SA}	Address Set-up to Write Start	0	-	0	-	0	-	ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	8	-	9	-	18	-	ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7	-	8	-	10	-	ns
t_{HD}	Data Hold from Write End	0	-	0	-	0	-	ns
$t_{\text {HZWE }}$	$\overline{\text { WE L L }}$ LOW to High Z	-	6	-	7	-	10	ns
t LzWE	$\overline{\text { WE HIGH to Low Z }}$	3	-	3	-	3	-	ns

Notes:

6. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device. 7. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and $\overline{W E}$ LOW. $\overline{C E}$ and $\overline{W E}$ must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
7. $\mathrm{t}_{\text {HZOE }}, \mathrm{t}_{\text {HZCE }}, \mathrm{t}_{\text {HZWE }}$ are specified as in part (b) of the A/C Test Loads. Transitions are measured $\pm 200 \mathrm{mV}$ from steady state voltage

Timing Waveforms
Read Cycle No. 1^{910}

Read Cycle No. $2{ }^{21112}$

Notes:

9. Device is continuously selected. $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}=\overline{\mathrm{CE}}$.
10. $\overline{W E}$ is HIGH for Read Cycle.
11. This cycle is $\overline{\mathrm{OE}}$ Controlled and $\overline{\mathrm{WE}}$ is HIGH read cycle.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Write Cycle No. 1 ($\overline{\text { WE Controlled) }} 2131415$

Notes:

13. This cycle is $\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}}$ is HIGH during write.
14. Data $\mathrm{In} /$ Out is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
15. During this period the I/Os are in output state and input signals should not be applied.
16. This cycle is CE controlled.
17. Data $\mathrm{In} /$ Out is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
18. If $\overline{C E}$ goes HIGH simultaneously with $\overline{W E}$ going HIGH, the output remains in a high-impedance state.

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ Low) 219

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Power Option	Operating Range
12 ns	CY7C195B-12VC	V21	28 SOJ $(8 \times 18 \times 3.5 \mathrm{~mm})$	Standard	Commercial
15 ns	CY7C194B-15PC	P13	24 DIP $(6.6 \times 31.8 \times 3.5 \mathrm{~mm})$	Standard	Commercial
15 ns	CY7C194B-15VC	V13	24 SOJ $(8 \times 15 \times 3.5 \mathrm{~mm})$	Standard	Commercial
15 ns	CY7C195B-15VC	V21	28 SOJ $(8 \times 18 \times 3.5 \mathrm{~mm})$	Standard	Commercial
25 ns	CY7C194B-25VC	V13	24 SOJ $(8 \times 15 \times 3.5 \mathrm{~mm})$	Standard	Commercial
25 ns	CY7C195B-25PC	P21	28 DIP $(6.9 \times 35.6 \times 3.5 \mathrm{~mm})$	Standard	Commercial

Notes:

19. The cycle is $\overline{W E}$ controlled, $\overline{O E}$ low. The minimum write cycle time is the sum of $t_{H Z W E}$ and $t_{S D}$.

Package Diagram

CY7C194B
CY7C195B

Package Diagram (continued)

24-Lead (300-Mil) PDIP P13

51-85013-*B

28-Lead (300-Mil) Molded DIP P21

All product and company names mentioned in this document may be the trademarks of their respective holders.

CY7C194B
CY7C195B

Document History Page

Document Title: CY7C194B-CY7C195B 256 Kb (64K x 4) Static RAM Document Number: 38-05409				
REV.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	129234	09/16/03	HGK	New Data Sheet
*A	129786	09/18/03	AJU	Found typos in AC Electrical Characteristics table. Modified the following: $t_{\text {SCE }}$ from 10, 12 and 20 to 9,10 and 18; t_{AW} from 10, 12 and 20 to 9,10 and 20 ; $t_{\text {PWE }}$ from 10, 12 and 20 to 8,9 and 18.

