

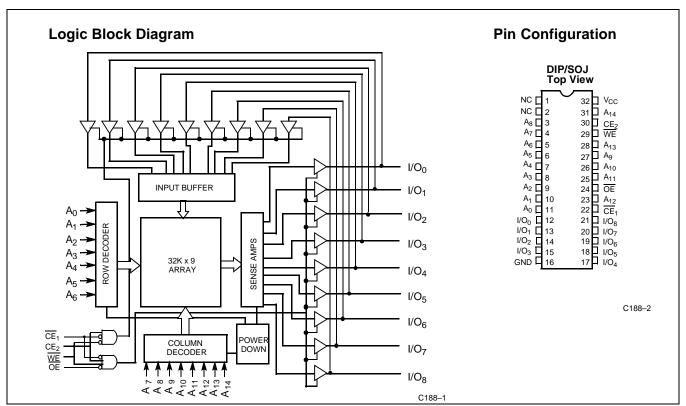
32K x 9 Static RAM

Features

- High speed
 - -15 ns
- Automatic power-down when deselected
- Low active power
 - -660 mW
- Low standby power
 - -140 mW
- CMOS for optimum speed/power
- TTL-compatible inputs and outputs
- Easy memory expansion with CE₁, CE₂, and OE features

Functional Description

The CY7C188 is a high-performance CMOS static RAM organized as 32,768 words by 9 bits. Easy memory expansion is


provided by an active-LOW chip enable (\overline{CE}_1) , an active-HIGH chip enable (\overline{CE}_2) , an active-LOW output enable (\overline{OE}) , and three-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking \overline{CE}_1 and write enable (\overline{WE}) inputs LOW and CE_2 input HIGH. Data on the nine I/O pins (I/O₀ – I/O₈) is then written into the location specified on the address pins (A₀ – A₁₄).

Reading from the device is accomplished by taking \overline{CE}_1 and \overline{OE} LOW while forcing \overline{WE} and \overline{CE}_2 HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The nine input/output pins $(I/O_0 - I/O_8)$ are placed in a high-impedance state when the device is deselected $(\overline{CE}_1 \text{ HIGH or } CE_2 \text{ LOW})$, the outputs are disabled $(\overline{OE} \text{ HIGH})$, or during a write operation $(\overline{CE}_1 \text{ LOW}, CE_2 \text{ HIGH}, \text{ and } \overline{WE} \text{ LOW})$.

The CY7C188 is available in standard 300-mil-wide SOJs.

Selection Guide

	7C188–15	7C188-20	7C188-25	7C188-35
Maximum Access Time (ns)	15	20	25	35
Maximum Operating Current (mA) Commercial	120	170	165	160
Maximum Standby Current (mA)	35	35	35	30

Maximum Ratings

DC Input Voltage ^[1]	-0.5V to V _{CC} +0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

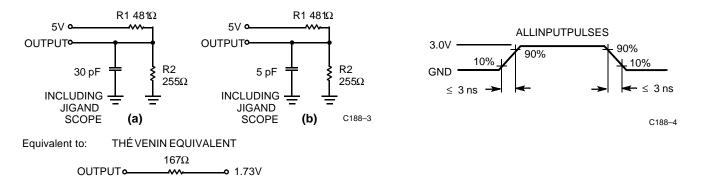
Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[2]

			7C1	88–15	7C18	88–20	7C18	88–25	7C18	88–35	
Parameter	Description	Test Conditions	Min.	Max	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$	2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-5	+5	-5	+5	- 5	+5	-5	+5	μΑ
l _{OZ}	Output Leakage Current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ & \text{Output Disabled} \end{aligned}$	-5	+5	- 5	+5	-5	+5	-5	+5	μА
los	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$		120		170		165		160	mA
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs	$\begin{aligned} &\text{Max. V}_{CC}, \overline{CE}_1 \geq V_{IH} \\ &\text{or CE}_2 \leq V_{IL}, \\ &V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, \\ &f = f_{MAX} \end{aligned}$		35		35		35		30	mA
I _{SB2}	Automatic CE Power-Down Current — CMOS Inputs	$\begin{array}{l} \underline{\text{Max. V}_{CC}}, \\ \underline{\text{CE}}_1 \geq \text{V}_{CC} - 0.3 \text{V or} \\ \text{CE}_2 \leq 0.3 \text{V}, \\ \text{V}_{IN} \geq \text{V}_{CC} - 0.3 \text{V} \\ \text{or V}_{IN} \leq 0.3 \text{V}, \text{f} = 0 \end{array}$		10		15		15		15	mA

Capacitance^[4]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN} : Addresses	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{IN} : Controls	Input Capacitance	$V_{CC} = 5.0V$	8	pF
C _{OUT}	Output Capacitance		8	pF

Notes:

- 1. Minimum voltage is equal to -2.0V for pulse durations less than 20 ns.
- 2. See the last page of this specification for Group A subgroup testing information.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- 4. Tested initially and after any design or process changes that may affect these parameters.

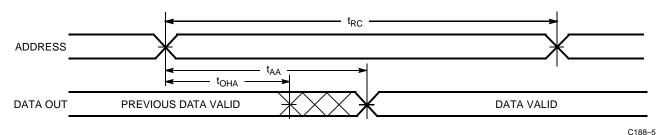
AC Test Loads and Waveforms^[5, 6]

Switching Characteristics Over the Operating Range^[2, 5]

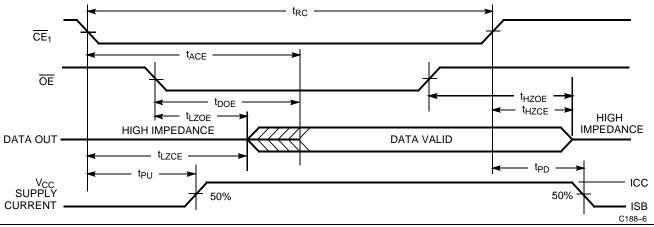
		7C18	88–15	7C18	38–20	7C18	38–25	7C18	38–35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	E			u e	u	u e		u e	l	
t _{RC}	Read Cycle Time	15		20		25		35		ns
t _{AA}	Address to Data Valid		15		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		3		3		3		ns
t _{ACE}	CE ₁ LOW or CE ₂ HIGH to Data Valid		15		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		7		9		10		16	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0		0		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[6,7]		7		9		11		15	ns
t _{LZCE}	CE ₁ LOW or CE ₂ HIGH to Low Z ^[7]	3		3		3		3		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[6, 7]		7		9		11		15	ns
t _{PU}	CE ₁ LOW or CE ₂ HIGH to Power-Up	0		0		0		0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-Down		15		20		20		20	ns
WRITE CYC	LE ^[8, 9]		•	•	•	•		•		
t _{WC}	Write Cycle Time	15		20		25		35		ns
t _{SCE}	CE ₁ LOW or CE ₂ HIGH to Write End	10		15		18		22		ns
t _{AW}	Address Set-Up to Write End	10		15		20		30		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	10		15		18		22		ns
t _{SD}	Data Set-Up to Write End	8		10		10		15		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[6]	0	7	0	7	0	11	0	15	ns
t _{LZWE}	WE HIGH to Low Z ^[6, 7]	3		3		3		3		ns

Switching Characteristics Over the Operating Range^[2, 5]

		7C188-15		7C188-20		7C188-25		7C188-35			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	

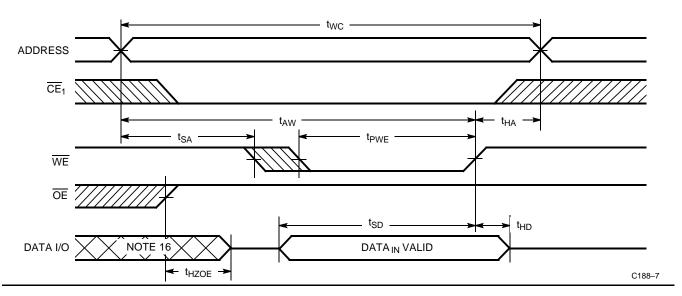

Notes:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.


 The internal write time of the memory is defined by the overlap of CE₁, LOW, CE₂ HIGH, and WE LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deasserted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

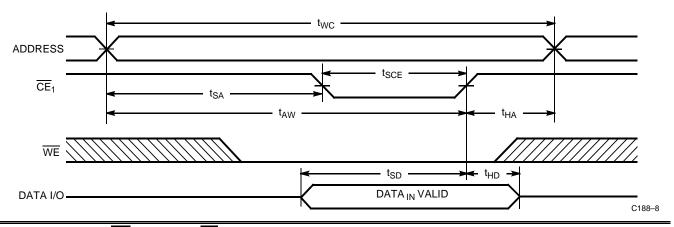
Switching Waveforms

Read Cycle No. 1^[10,11]


Read Cycle No. 2 (Chip-Enable Controlled)^[11,12,13]

Write Cycle No. 1 (WE Controlled)[8,13,14,15]

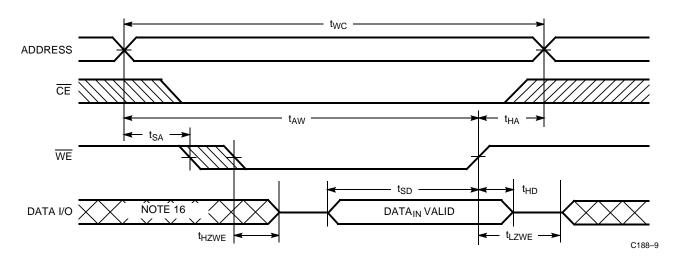
Switching Waveforms (Continued)


Notes:

- 10. Device is continuously selected. OE, CE = V_{IL}.
 11. WE is HIGH for read cycle.

- Address valid prior to or coincident with CE transition LOW.
 Timing parameters are the same for all chip enable signals (CE₁ and CE₂), so only the timing for CE₁ is shown.

- 14. Data I/O is high impedance if OE = V_{IH}.
 15. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 16. During this period, the I/Os are in the output state and input signals should not be applied.


Write Cycle No.2 (CE Controlled)[8,13,14,15]

Write Cycle No. 3 (WE Controlled, OE LOW)[9,13,15]

Switching Waveforms (Continued)

Truth Table

CE	WE	OE	Input/Output	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C188-15VC	V32	32-Lead (300-Mil) Molded SOJ	Commercial
20	CY7C188-20VC	V32	32-Lead (300-Mil) Molded SOJ	Commercial
25	CY7C188-25VC	V32	32-Lead (300-Mil) Molded SOJ	
35	CY7C188-35VC	V32	32-Lead (300-Mil) Molded SOJ	

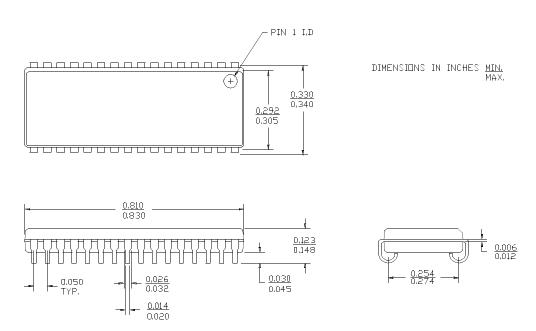
MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3

DC Characteristics

Parameter	Subgroups
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3



Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{OHA}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11
t _{DOE}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{SCE}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
t _{PWE}	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11

Package Diagrams

32-Lead (300-Mil) Molded SOJ V32

Document Title: CY7C188 32K x 9 Static RAM Document Number: 38-05053				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	107155	09/10/01	SZV	Change from Spec number: 38-00220 to 38-05053