

Functional Description Data on the

Features

- High speed20 ns
- CMOS for optimum speed/power
- Low active power
 - 743 mW
- Low standby Power
 - 220 mW
- TTL-compatible inputs and outputs
- Easy memory expansion with CE₁, CE₂ and OE features
- Automatic power-down when deselected

The CY7C185A is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\text{CE}}_1$), an active HIGH chip enable ($\overline{\text{CE}}_2$), an active LOW output enable ($\overline{\text{OE}}$), and three-state drivers. The device has an automatic power-down feature ($\overline{\text{CE}}_1$), reducing the power consumption by over 70% when deselected. The CY7C185A is in the standard 300-mil-wide DIP package and leadless chip carrier.

Writing to the device is accomplished when the chip enable one (\overline{CE}_1) and write enable (\overline{WE}) inputs are both LOW, and the chip enable two (\overline{CE}_2) input is HIGH.

Data on the eight I/O pins (I/O₀ through I/O₇) is written into the memory location specified on the address pins (A₀ through A₁₂).

8K x 8 Static RAM

Reading the device is accomplished by taking chip enable one (\overline{CE}_1) and output enable (\overline{OE}) LOW, while taking write enable (\overline{WE}) and chip enable two (CE_2) HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the I/O pins.

The I/O pins remain in a high-impedance state when chip enable one (\overline{CE}_1) or output enable (\overline{OE}) is HIGH, or write enable (\overline{WE}) or chip enable two (CE_2) is LOW.

A die coat is used to ensure alpha immunity.

Selection Guide[1]

		7C185A-15	7C185A-20	7C185A-25	7C185A-35	7C185A-45
Maximum Access Time	(ns)	15	20	25	35	45
Maximum Operating Current (mA)	Military	170	135	125	125	125
Maximum Standby Current (mA)	Military	40/20	40/20	40/20	30/20	30/20

Shaded area contains advanced information.

Note

1. For commercial specifications, see the CY7C185 datasheet.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential (Pin 28 to Pin 14)0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State $[2]$ -0.5 V to $+7.0$ V

Output Current into Outputs (LOW)	mΑ
Static Discharge Voltage	01 V
Latch-Up Current	mA

Operating Range

Range	Ambient Temperature	v _{cc}
Military ^[3]	−55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[4]

DC Input Voltage^[2] -0.5V to +7.0V

			<u> </u>	7C18	5A-15	7C18	5A-20	
Parameter	Description	Description Test Conditions			Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = Min.,$ $I_{OL} = 8.0 \text{ mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	Vcc	2.2	V_{CC}	V
V _{IL}	Input LOW Voltage ^[2]			-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-10	+10	-10	+10	μА	
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled		-10	+10	-10	+10	μΑ
I _{OS}	Output Short Circuit Current ^[5]	$V_{CC} = Max., V_{OUT} = GND$			-350		-300	mA
I_{CC}	V _{CC} Operating Supply Current	V_{CC} = Max. I_{OUT} = 0 mA	Military		170	-	135	mA
I _{SB1}	Automatic $\overline{\text{CE}}_1$ Power-Down Current	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$ Min. Duty Cycle = 100% Military			40		40	mA
I _{SB2}	Automatic CE ₁ Power-Down Current	$\begin{array}{l} \text{Max. } V_{CC}, \\ \overline{CE}_1 \geq V_{CC} - 0.3V \\ V_{IN} \geq V_{CC} - 0.3V \\ \text{or } V_{IN} \geq 0.3V \end{array} \qquad \text{Military}$			20		20	mA

Shaded area contains advanced information.

Notes:

- V_{IL} (min.) = -3.0V for pulse durations less than 30 ns.
 T_A is the "instant on" case temperature.
 See the last page of this specification for Group A subgroup testing information.
- 5. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

$\textbf{Electrical Characteristics} \ \ \text{Over the Operating Range}^{[4]} \ (\text{continued})$

				7C185	A-25	7C185A	-35, 45	
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ m/s}$	4	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{\rm CC}$ = Min., $I_{\rm OL}$ = 8.0 mA			0.4		0.4	V
V _{IH}	Input HIGH Voltage	***		2.2	V_{CC}	2.2	v_{cc}	V
$\overline{V_{\mathrm{IL}}}$	Input LOW Voltage ^[2]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-10	+10	-10	+10	μA
I _{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC}$, Output I	-10	+10	-10	+10	μA	
I _{OS}	Output Short Circuit Current ^[5]	$V_{CC} = Max., V_{OUT} = GND$			-300		-300	mA
I_{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}$	Military		125		125	mA
I _{SB1}	Automatic CE ₁ Power-Down Current	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$, Min. Duty Cycle = 100%	Military		40		30	mA
I _{SB2}	Automatic CE ₁ Power-Down Current	$\begin{array}{l} \underline{\text{Max. V}_{CC}} \\ \overline{\text{CE}_1} \geq \text{V}_{CC} - 0.3\text{V} \\ \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3\text{V} \\ \text{or V}_{\text{IN}} \geq 0.3\text{V} \end{array}$	Military		20		20	mA

Capacitance^[6]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ} \text{C, f} = 1 \text{ MHz,}$	10	pF
C _{OUT}	Output Capacitance	$V_{\rm CC} = 5.0 V$	10	pF

AC Test Loads and Waveforms

Equivalent to:

THÉVENIN EQUIVALENT

 167Ω **⊸** 1.73V OUTPUT -

Note:
6. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over the Operating Range [3, 7]

		7C185A-15		7C185A-20		7C185A-25		7C185A-35		7C185A-45		Ī
Parameter Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Uni
READ CYC	CLE	1 38334 98.83		L	-l				l		<u> </u>	<u> </u>
t _{RC}	Read Cycle Time	15		20	1	25		35		45	Ϊ	ns
t _{AA}	Address to Data Valid		15		20		25		35		45	ns
t _{OHA}	Data Hold from Address Change	3		3		3		3		3		ns
t _{ACE1}	CE ₁ LOW to Data Valid		15		20		25		35		45	ns
t _{ACE2}	CE ₂ HIGH to Data Valid		15		20		25		35	ļ	30	ns
t _{DOE}	OE LOW to Data Valid		7		10		12		15		20	ns
t _{LZOE}	OE LOW to Low Z	0		3		3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[8]		8		8		10		12		15	ns
t _{LZCE1}	CE ₁ LOW to Low Z ^[9]	3		5		5		5	, <u> </u>	5		ns
tLZCE2	CE ₂ HIGH to Low Z	3		3		3		3		3		ns
t _{HZCE}	CE ₁ HIGH to High Z ^[8, 9] CE ₂ LOW to High Z		8		8		10		15		15	ns
t _{PU}	CE ₁ LOW to Power-Up	0,		0		0	-	0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down		15		20		20		20		25	ns
WRITE CY	CLE ^[10]				<u>.</u>		I					
t _{WC}	Write Cycle Time	15		20		20		25		40	·	ns
t _{SCE1}	CE ₁ LOW to Write End	10		15		20		25		30		ns
t _{SCE2}	CE ₂ HIGH to Write End	10		15		20		25		30		ns
t _{AW}	Address Set-Up to Write End	10		15		20		25		30		ns
t _{HA}	Address Hold from Write End	0		0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	.0		0		0		0		0		ns
t _{PWE}	WE Pulse Width	10		15		15		20		20		ns
t_{SD}	Data Set-Up to Write End	7		10		10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		0		0		ns
t _{LZWE}	WE HIGH to Low Z	3		3		5		5		5		ns
tHZWE	WE LOW to High Z ^[8]		7		7		7		10		15	ns

Notes: 7. Te Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

thzoe, thzce, and thzwe are specified with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.

voltage.

 ^{9.} At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} for any given device.
 10. Device is continuously selected. \overline{OE}, \overline{CE} = V_{IL}. CE₂ = V_{IH}.

Switching Waveforms

Notes:

- 11. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.
- 12. WE is HIGH for read cycle.
- 13. The internal write time of the memory is defined by the overlap of \overline{CE}_1 LOW, CE₂ HIGH, and \overline{WE} LOW. Both signals must be LOW to initi-
- ate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 14. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled) [13, 14, 15]

Note:

Typical DC and AC Characteristics

If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics (continued)

Truth Table

\overline{CE}_1	CE ₂	WE	ŌĒ	Input/Output	Mode
Н	X	X	X	High Z	Deselect/Power-Down
X	L	X	X	High Z	Deselect
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	High Z	Deselect

Address Designators

Address Name	Address Function	Pin Number
A4	Х3	2
A5	X4	3
A6	X5	4
A7	X6	5
A8	X7	6
A 9	Y 1	7
A10	Y4	8
A11	Y3	9
A12	Y0	10
A 0	Y2	21
A1	X0	23
A2	X1	24

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C185A-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C185A-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
20	CY7C185A-20DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C185A-20LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
25	CY7C185A-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C185A-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
35	CY7C185A-35DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C185A-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
45	CY7C185A-45DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C185A-45LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Shaded area contains advanced information.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	1, 2, 3
V_{OL}	1, 2, 3
V_{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I_{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{OS}	1, 2, 3
I_{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I_{SB2}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{OHA}	7, 8, 9, 10, 11
t _{ACE1}	7, 8, 9, 10, 11
t _{ACE2}	7, 8, 9, 10, 11
t _{DOE}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{SCE1}	7, 8, 9, 10, 11
t _{SCE2}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
$t_{ m PWE}$	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11

Document #: 38-00114-B