


Agilent HMMC-5021 (2–22 GHz) HMMC-5022 (2–22 GHz) and HMMC-5026 (2–26.5 GHz) 2–26.5 GHz GaAs MMIC Traveling Wave Amplifier

Data Sheet



Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions:  $\begin{array}{l} 2980 \times 770 \ \mu m \ (117.3 \times 30.3 \ mils) \\ \pm 10 \ \mu m \ (\pm 0.4 \ mils) \\ 127 \ \pm \ 15 \ \mu m \ (5.0 \ \pm \ 0.6 \ mils) \\ 75 \times 75 \ \mu m \ (2.95 \times 2.95 \ mils), \ or \ larger \end{array}$ 

## Absolute Maximum Ratings<sup>[1]</sup>

## Features

- •Wide-Frequency Range: 2–26.5 GHz
- •High Gain: 9.5 dB
- •Gain Flatness: ± 0.75 dB
- Return Loss:
- Input: -14 dB, Output: -13 dB
- Low-Frequency Operation
- Capability: < 2 GHz
- Gain Control:
- 35 dB Dynamic Range
- Moderate Power:

20 GHz: P<sub>-1dB</sub>,18 dBm, P<sub>sat</sub>: 20dBm 26.5 GHz: P<sub>-1dB</sub>,15 dBm, P<sub>sat</sub>:17dBm

## Description

The HMMC-5021/22/26 is a broadband GaAs MMIC Traveling Wave Amplifier designed for high gain and moderate output power over the full 2 to 26.5 GHz frequency range. Seven MES-FET cascode stages provide a flat gain response, making the HMMC-5021/22/26 an ideal wideband gain block. Optical lithography is used to produce gate lengths of  $\approx 0.4 \ \mu m$ . The HMMC-5021/22/26 incorporates advanced MBE technology, Ti-Pt-Au gate metallization, silicon nitride passivation, and polyimide for scratch protection.

| Symbol                         | Parameters/Conditions                           | Min. | Max. | Units |  |
|--------------------------------|-------------------------------------------------|------|------|-------|--|
| V <sub>DD</sub>                | Positive Drain Voltage                          |      | 8.0  | volts |  |
| I <sub>DD</sub>                | Total Drain Current                             |      | 250  | mA    |  |
| V <sub>G1</sub>                | First Gate Voltage                              | -5   | 0    | volts |  |
| I <sub>G1</sub>                | First Gate Current                              | -9   | +5   | mA    |  |
| V <sub>G2</sub> <sup>[2]</sup> | Second Gate Voltage                             | -2.5 | +3.5 | volts |  |
| I <sub>G2</sub>                | Second Gate Current                             | -7   |      | mA    |  |
| P <sub>DC</sub>                | DC Power Dissipation                            |      | 2.0  | watts |  |
| P <sub>in</sub>                | CW Input Power                                  |      | 23   | dBm   |  |
| T <sub>ch</sub>                | Operating Channel Temp.                         |      | +150 | °C    |  |
| T <sub>case</sub>              | Operating Case Temp.                            | -55  |      | °C    |  |
| T <sub>stg</sub>               | Storage Temperature                             | -65  | +165 | °C    |  |
| T <sub>max</sub>               | Max. Assembly Temp.<br>(for 60 seconds maximum) |      | 300  | °C    |  |

#### Notes:

<sup>[1]</sup>Operation in excess of any one of these conditions may result in permanent damage to this device.  $T_A = 25^{\circ}C$  except for  $T_{ch'}$   $T_{stg'}$  and  $T_{max}$ .

<sup>[2]</sup>Minimum voltage on V<sub>G2</sub> must not violate the following:  $V_{G2}$ (min) >  $V_{DD}$  –9 volts.



| Symbol                                   | Parameters/Conditions                                                                      | Min. | Тур. | Max. | Units |
|------------------------------------------|--------------------------------------------------------------------------------------------|------|------|------|-------|
| I <sub>DSS</sub>                         | Saturated Drain Current ( $V_{DD}$ = 7.0V, $V_{G1}$ = 0.0V, $V_{G2}$ = open circuit)       | 115  | 180  | 250  | mA    |
| Vp                                       | First Gate Pinch-Off Voltage ( $V_{DD}$ = 7.0V, $I_{DD}$ = 16 mA, $V_{G2}$ = open circuit) | -3.5 | -1.5 | 5    | volts |
| V <sub>G2</sub>                          | Second Gate Self-Bias Voltage<br>(V <sub>DD</sub> = 7.0V, V <sub>G1</sub> = 0.0V)          |      | 2.1  |      | volts |
| I <sub>DSOFF</sub><br>(V <sub>G1</sub> ) | First Gate Pinch-Off Current ( $V_{DD}$ = 7.0V, $V_{G1}$ = -3.5V, $V_{G2}$ = open circuit) |      | 4    |      | mA    |
| I <sub>DSOFF</sub><br>(V <sub>G2</sub> ) | Second Gate Pinch-Off Current ( $V_{DD}$ = 5.0V, $V_{G1}$ = 0.0V, $V_{G2}$ = -3.5V)        |      | 8    |      | mA    |
| θ <sub>ch-bs</sub>                       | Thermal Resistance<br>(T <sub>backside</sub> = 25°C)                                       |      | 36   |      | °C/W  |

# DC Specifications/Physical Properties<sup>[1]</sup> (Applies to all part numbers)

### Notes:

 $^{[1]}\text{Measured in wafer form with T}_{chuck}$  = 25°C. (Except  $\theta_{ch\text{-}bs}$ .)

## **RF** Specifications

 $(V_{DD} = 7.0V, I_{DD}(Q) = 150mA, Z_{in} = Z_o = 50\Omega)$ [1]

|                        |                                                                                                                         | 2.        | 2         | -    |      |           |       |      |       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------|------|-----------|-------|------|-------|
| Symbol                 |                                                                                                                         | HMMC-5021 | HMMC-5022 |      |      | HMMC-5026 |       |      |       |
|                        | Parameters/Conditions                                                                                                   | Тур.      | Min.      | Тур. | Max. | Min.      | Тур.  | Max. | Units |
| BW                     | Guaranteed Bandwidth <sup>[2]</sup>                                                                                     | 2–22      | 2         |      | 22   | 2         |       | 26.5 | GHz   |
| S <sub>21</sub>        | Small Signal Gain                                                                                                       | 10        | 8.0       | 10   | 12   | 7.5       | 9.5   | 12   | dB    |
| S <sub>21</sub>        | Small Signal Gain Flatness                                                                                              | ±0.5      |           | ±0.5 | ±1.0 |           | ±0.75 | ±1.0 | dB    |
| RL <sub>in(min)</sub>  | Minimum Input Return Loss                                                                                               | 16        | 10        | 16   |      | 10        | 14    |      | dB    |
| RL <sub>out(min)</sub> | Minimum Output Return Loss                                                                                              | 13        | 10        | 13   |      | 10        | 13    |      | dB    |
| Isolation              | Minimum Reverse Isolation                                                                                               | 32        | 20        | 32   |      | 20        | 30    |      | dB    |
| P <sub>-1dB</sub>      | Output Power at 1dB Gain<br>Compression                                                                                 | 18        | 15        | 18   |      | 12        | 15    |      | dBm   |
| P <sub>sat</sub>       | Saturated Output Power                                                                                                  | 20        | 17        | 20   |      | 14        | 17    |      | dBm   |
| H <sub>2(max)</sub>    | Max. Second Harm. (2 $< f_0 < 20$ ),<br>[P <sub>0</sub> ( $f_0$ ) = 17 dBm or P <sub>-1dB</sub> ,<br>whichever is less] | 25        |           | -25  | -20  |           | -25   | -20  | dBc   |
| H <sub>3(max)</sub>    | Max. Third Harm. (2 $< f_0 < 20$ ),<br>[P <sub>0</sub> ( $f_0$ ) = 17 dBm or P <sub>-1dB</sub> ,<br>whichever is less]  | -34       |           | -34  | -20  |           | -34   | -20  | dBc   |
| NF                     | Noise Figure                                                                                                            | 8         |           | 8    |      |           | 10    |      | dB    |

Notes:

<sup>[1]</sup>Small-signal data measured in wafer form with T<sub>chuck</sub> = 25°C. Large–signal data measured on individual devices mounted in an 83040 Series Modular Microcircuit Package @  $T_A = 25^{\circ}$ C. <sup>[2]</sup>Performance may be extended to lower frequencies through the use of appropriate off-chip circuitry. Upper –3 dB corner frequency ~ 29.5 GHz.

## Applications

The HMMC-5021/22/26 series of traveling wave amplifiers are designed for use as general purpose wideband gain blocks in communication systems and microwave instrumentation. They are ideally suited for broadband applications requiring a flat gain response and excellent port matches over a 2 to 26.5 GHz frequency range. Dynamic gain control and low-frequency extension capabilities are designed into these devices.

## **Biasing and Operation**

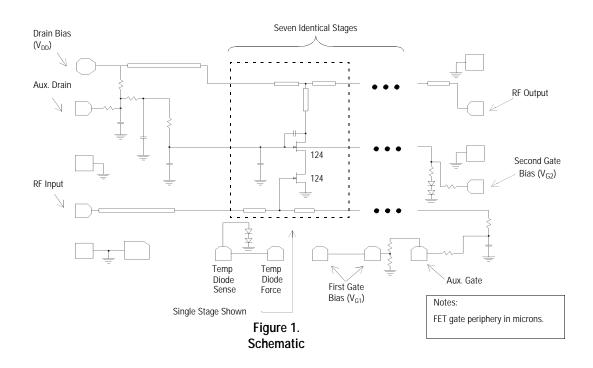
These amplifiers are biased with a single positive drain supply  $(V_{DD})$  and a single negative gate supply  $(V_{G1})$ . The recommended bias conditions for the HMMC-5021/22/26 are  $V_{DD}$ =7.0V,  $I_{DD}$ =150mA for best overall performance. To achieve this drain current level,  $V_{G1}$  is typically biased between –0.2V and –0.5V. No other bias supplies or connections to the device are required for 2 to 26.5 GHz

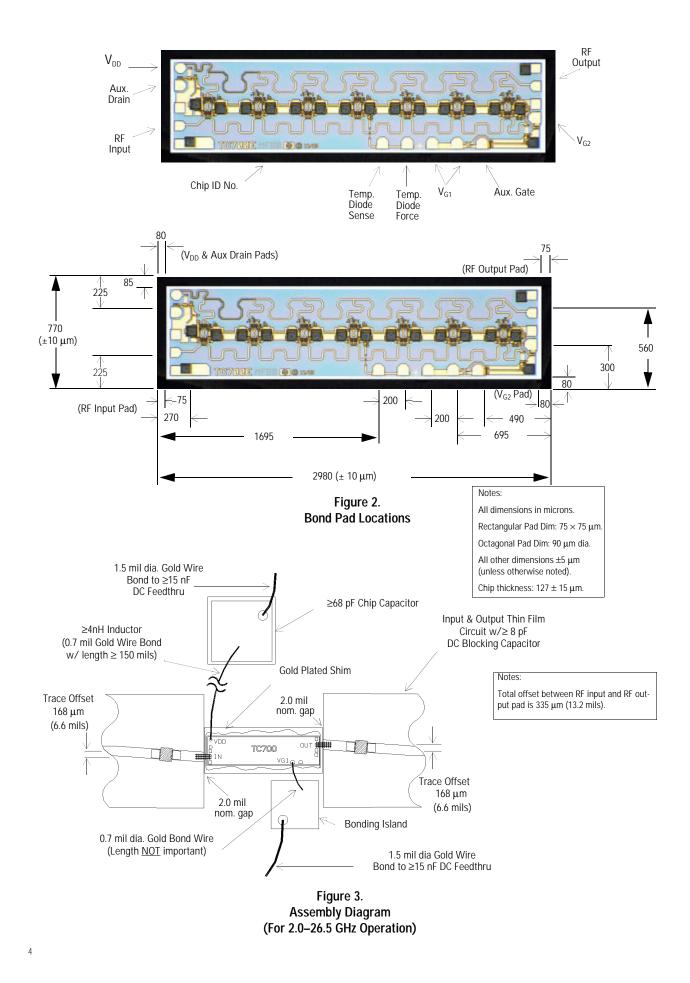
operation. See Figure 3 for assembly information.

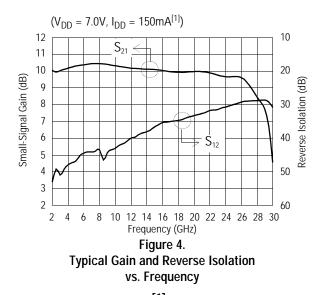
The HMMC-5021/22/26 is a DC coupled amplifier. External coupling capacitors are needed on  $RF_{IN}$  and  $RF_{OUT}$  ports. The drain bias pad is connected to RF and must be decoupled to the lowest operating frequency.

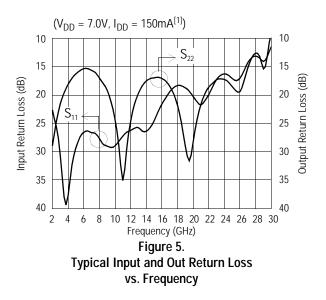
The auxiliary gate and drain contacts are provided when performance below 1 GHz is required. Connect external capacitors to ground to maintain input and output VSWR at low frequencies (see Additional References). Do not apply bias to these pads.

The second gate (V<sub>G2</sub>) can be used to obtain 35 dB (typical) dynamic gain control. For normal operation, no external bias is required on this contact and its self-bias voltage is  $\approx$  +2.1 v. Applying an external bias between its open-circuit voltage and -2.5 volts will adjust the gain while maintaining a good input/output port match.


### Assembly Techniques


GaAs MMICs are ESD sensitive. ESD preventive measures must be employed in all aspects of storage, handling, and assembly. MMIC ESD precautions, handling considerations, die attach and bonding methods are critical factors in successful GaAs MMIC performance and reliability.


Agilent application note #54, "GaAs MMIC ESD, Die Attach and Bonding Guidelines" provides basic information on these subjects.


#### Additional References:

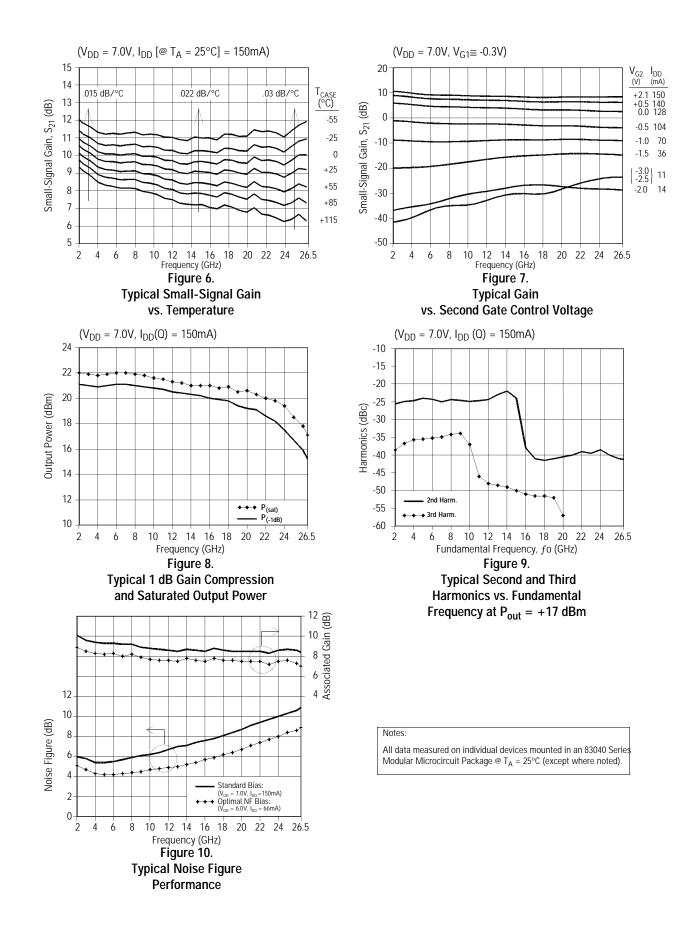
AN# 31, "2–26.5 GHz Variable Gain Amplifier Using HMMC-5021/22/26 and HMMC-1002 GaAs MMIC," AN# 34, "HMMC-5021/22/26/27 TWA Environmental Data," AN# 41, "HMMC-5021/22/26 S–Parameters Performance as a Function of Bonding Configuration," and AN# 56, "GaAs MMIC TWA Users Guide."










# Typical S–Parameters<sup>[1]</sup>

| $(T_{chuck} = 25^{\circ})$ | C, V <sub>DD</sub> = | 7.0V, I <sub>DD</sub> = | 150 mA, Zin | $= Z_{out} = 50\Omega$ |
|----------------------------|----------------------|-------------------------|-------------|------------------------|
|----------------------------|----------------------|-------------------------|-------------|------------------------|

| Freq. |       | S <sub>11</sub> |        |       | S <sub>12</sub> |        |      | S <sub>21</sub> |        |       | S <sub>22</sub> |        |  |
|-------|-------|-----------------|--------|-------|-----------------|--------|------|-----------------|--------|-------|-----------------|--------|--|
| (GHz) | dB    | Mag             | Ang    | dB    | Mag             | Ang    | dB   | Mag             | Ang    | dB    | Mag             | Ang    |  |
| 2.0   | -22.6 | 0.074           | -174.1 | -53.1 | 0.0022          | 167.3  | 10.1 | 3.183           | 123.6  | -28.9 | 0.036           | 77.3   |  |
| 3.0   | -30.6 | 0.030           | 130.4  | -51.0 | 0.0028          | 120.1  | 10.0 | 3.173           | 102.1  | -21.6 | 0.083           | 64.1   |  |
| 4.0   | -37.8 | 0.013           | -19.8  | -48.0 | 0.0040          | 95.0   | 10.2 | 3.225           | 78.2   | -18.2 | 0.124           | 45.4   |  |
| 5.0   | -29.4 | 0.034           | -79.9  | -46.8 | 0.0046          | 67.1   | 10.3 | 3.275           | 53.5   | -16.3 | 0.153           | 23.4   |  |
| 6.0   | -26.6 | 0.047           | -113.8 | -44.4 | 0.0060          | 36.0   | 10.4 | 3.303           | 28.1   | -15.4 | 0.170           | 2.5    |  |
| 7.0   | -26.6 | 0.047           | -137.0 | -44.1 | 0.0062          | 1.0    | 10.4 | 3.330           | 2.3    | -15.7 | 0.165           | -19.5  |  |
| 8.0   | -27.7 | 0.041           | -152.6 | -43.4 | 0.0067          | -27.5  | 10.5 | 3.331           | -23.8  | -17.0 | 0.141           | -40.7  |  |
| 9.0   | -29.0 | 0.035           | -149.8 | -44.3 | 0.0061          | -31.8  | 10.4 | 3.312           | -50.2  | -19.2 | 0.110           | -59.7  |  |
| 10.0  | -29.0 | 0.036           | -140.8 | -43.0 | 0.0071          | -53.6  | 10.3 | 3.282           | -76.4  | -24.3 | 0.061           | -76.8  |  |
| 11.0  | -27.3 | 0.043           | -138.1 | -41.6 | 0.0083          | -74.8  | 10.2 | 3.253           | -102.5 | -35.1 | 0.018           | -32.6  |  |
| 12.0  | -26.2 | 0.049           | -141.9 | -40.0 | 0.0100          | -96.9  | 10.2 | 3.227           | -128.8 | -24.6 | 0.059           | 21.0   |  |
| 13.0  | -25.8 | 0.052           | -148.5 | -38.9 | 0.0113          | -120.9 | 10.2 | 3.218           | -155.4 | -19.7 | 0.103           | 2.8    |  |
| 14.0  | -26.4 | 0.048           | -143.0 | -38.1 | 0.0125          | -145.6 | 10.1 | 3.204           | 177.8  | -17.6 | 0.132           | -21.2  |  |
| 15.0  | -24.6 | 0.059           | -131.7 | -36.6 | 0.0148          | -169.9 | 10.1 | 3.197           | 150.4  | -17.0 | 0.141           | -44.8  |  |
| 16.0  | -21.6 | 0.083           | -133.7 | -35.3 | 0.0172          | 160.9  | 10.0 | 3.177           | 122.5  | -17.1 | 0.140           | -67.4  |  |
| 17.0  | -19.4 | 0.107           | -143.5 | -35.0 | 0.0177          | 130.6  | 10.0 | 3.149           | 94.4   | -18.5 | 0.119           | -91.8  |  |
| 18.0  | -18.3 | 0.121           | -158.7 | -34.7 | 0.0184          | 105.0  | 9.9  | 3.138           | 65.9   | -21.8 | 0.081           | -116.0 |  |
| 19.0  | -18.7 | 0.116           | -172.6 | -33.9 | 0.0201          | 80.2   | 9.9  | 3.140           | 36.8   | -28.9 | 0.036           | -121.7 |  |
| 20.0  | -20.3 | 0.097           | -179.5 | -33.3 | 0.0217          | 50.7   | 10.0 | 3.151           | 6.6    | -28.5 | 0.038           | -57.0  |  |
| 21.0  | -21.8 | 0.082           | -168.3 | -32.7 | 0.0233          | 22.5   | 10.0 | 3.150           | -24.9  | -21.7 | 0.082           | -59.1  |  |
| 22.0  | -19.9 | 0.101           | -155.3 | -31.7 | 0.0259          | -8.4   | 9.9  | 3.126           | -57.5  | -18.6 | 0.117           | -81.5  |  |
| 23.0  | -17.3 | 0.137           | -158.8 | -31.4 | 0.0268          | -39.5  | 9.8  | 3.076           | -91.0  | -17.3 | 0.137           | -103.3 |  |
| 24.0  | -16.3 | 0.153           | -169.9 | -30.7 | 0.0291          | -71.5  | 9.7  | 3.045           | -125.5 | -17.3 | 0.137           | -123.8 |  |
| 25.0  | -17.1 | 0.139           | -175.4 | -30.0 | 0.0317          | -106.2 | 9.7  | 3.045           | -162.2 | -18.5 | 0.118           | -135.3 |  |
| 26.0  | -17.0 | 0.141           | -165.0 | -29.2 | 0.0345          | -145.5 | 9.6  | 3.027           | 157.2  | -19.4 | 0.107           | -122.5 |  |
| 26.5  | -15.7 | 0.163           | -161.1 | -29.0 | 0.0356          | -166.7 | 9.5  | 2.970           | 135.4  | -17.6 | 0.132           | -114.2 |  |
| 27.0  | -14.3 | 0.192           | -162.7 | -28.9 | 0.0357          | 171.7  | 9.2  | 2.876           | 112.9  | -15.3 | 0.173           | -116.0 |  |
| 28.0  | -13.2 | 0.220           | -175.7 | -28.8 | 0.0362          | 126.3  | 8.5  | 2.648           | 65.8   | -12.6 | 0.233           | -138.1 |  |
| 29.0  | -14.1 | 0.197           | -176.9 | -28.6 | 0.0371          | 73.0   | 7.7  | 2.433           | 10.3   | -15.4 | 0.170           | -144.7 |  |
| 30.0  | -11.5 | 0.266           | -171.6 | -30.8 | 0.0287          | 4.8    | 4.6  | 1.689           | -61.1  | -8.7  | 0.369           | -123.6 |  |

### Notes:

<sup>[1]</sup>Data Obtained from on–wafer measurements.



This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. In this data sheet the term typical refers to the 50th percentile performance. Rod additional information contact your local Agilent Technologies' sales representative.

#### www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (408) 654-8675 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6271 2451 India, Australia, New Zealand: (+65) 6271 2394 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (+65) 6271 2194 Malaysia, Singapore: (+65) 6271 2054 Taiwan: (+65) 6271 2654 Data subject to change. Copyright ©2002 Agilent Technologies, Inc. Obsoletes 5965-5449E August 28, 2002 5988-1893EN

