
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA31136FG,TA31136FNG

FM IF DETECTOR IC FOR CORDLESS TELEPHONE

TA31136FNG Package is Pb-Free.

TOSHIBA

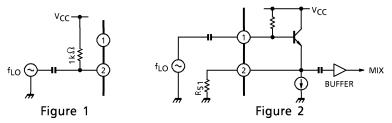
PIN No.	PIN NAME	FUNCTION	INTERNAL EQUIVALENT CIRCUIT			
1 2	OSC IN OSC OUT	Local oscillator input and output terminals. Colpitts oscillator is formed by internal emitter follower				
		and external X'tal. And external injection is possible from pin 2 or pin 1.				
3	MIX OUT	MIX output terminal. Output impedance is around 1.8kΩ.	V _{CC}			
4	V _{CC}	Power supply	_			
5	IF IN	2nd IF input and decoupling for bias. Input impedance is around				
6	DEC	1.8kΩ.				
7	FIL OUT	INVERTER AMP input and output terminals. BPF is composed of external				
8	FIL IN	capacitors and resistors. Connected internally to rectifier circuit by coupling capacitor.				
9	AF OUT	Demodulate signal output terminal. Carrier leak is small as LPF is built-in. Output impedance is around 360Ω .				

PIN FUNCTION (The values of resistor and capacitor are typical.)

TOSHIBA

PIN No.	PIN NAME	FUNCTION	INTERNAL EQUIVALENT CIRCUIT			
10	QUAD	Phase shift signal input terminal of FM demodulator.				
11	IF OUT	Output terminal of IF AMP.				
12	RSSI	This terminal outputs DC level according to input signal level to IF AMP. Dynamic range is around 70dB.				
13	N-DET	The result of noise detection is output by comparing output voltage of N-REC terminal with internal refrence. Hysteresis range is about 100mV and output is open collector.	(3) (3) (3) (3)			
14	N-REC	After output of INVERTER AMP amplified around 20dB, noise signal is rectified by external capacitor.	V _{CC} NOISE COMP (14)			
15	GND	GND terminal.	_			
16	MIX IN	1st IF signal input terminal. Input impedance is around $4k\Omega$ at 21.7MHz.				

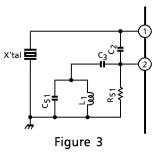
DESCRIPTION


1. Local oscillator external injection method

Inject as shown in Figure 1, setting the injection level between $95dB\mu V$ and $100dB\mu V$. A built-in BUFFER amp. minimizes leakage from the mixer.

Input from pin 1 is possible as shown in Figure 2. However, when the input frequency is high, the level at pin 2 may not be sufficient, causing a decrease in sensitivity.

In such a case, add resistor R_{51} and set the input signal so that signal level at pin 2 is $95{\sim}100dB\mu V.$


The input capacitance of pins 1 and 2 is respectively 1.5pF (typ.) and 4.6pF (typ.).

2. Overtone oscillation

Figure 3 shows the basic configuration of the local oscillation circuit using overtone oscillation. The C_{51} and L_1 tuning circuits prevent crystal fundamental oscillation. Therefore, set C_{51} and L_1 to inductive at the fundamental frequency and capacitive at the overtone frequency.

Since the level at pin 2 may decrease and the sensitivity may fall at high frequency as with external injection, adjust the oscillation level using R_{51} .

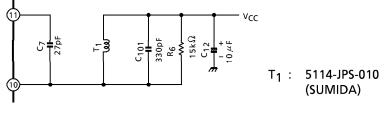
3. Detection circuit

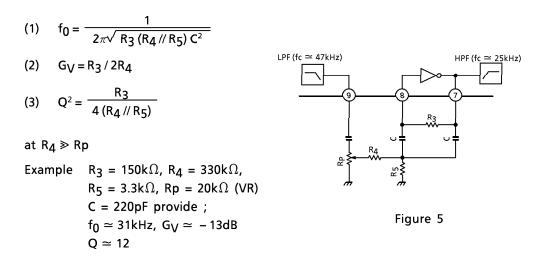
Detection stage is quadrature method.

Oscillator is ceramic discriminator on reference application. In case of using coil, connect as shown in Figure 4. In this case, demodulation output V_{OD} is about $80mV_{rms}$. Demodulation output can be increased by raising damping resistance R₃. However, be careful because the temperature dependency of the modulation output also increases.

Center frequency f_0 and demodulation output depends largely on phase shifter and C₇. For C₇, use a capacitor with good temperature characteristics.

In case of coil, especially C_{101} , use a capacitor with good temperature characteristics.




Figure 4

4. Demodulation output distortion factor

Demodulation output distortion factor is about -43dB when ceramic discriminator CDB450C24 used, is about -50dB when coil 5114-JPS-010 used. (IF 100dB μ V EMF input, measured pin 9 before when input from MIX demodulation output distortion factor depends largely on a ceramic filter band and a group delay characteristic. Select ceramic filter adequately.

5. INVERTER AMP usage

The INVERTER AMP can be used to form a band pass filter as shown in Figure 4. Set constants as in equations (1) to (3). However, because a low pass filter and a high pass filter are built in, it is recommended that center frequency f_0 be about 30kHz.

6. Noise detection rise time

The rise time is a proportion of time constant 7.5ms of the smoothing capacitor $C_9 = 0.1 \mu F$ of the noise rectifier and internal resistor $75k\Omega$. Although decreasing the capacitance of C₉ can shorten the rise time, note that the noise detection output fluctuation may increase. This should be taken into account before use.

7. RSSI function

A DC voltage corresponding to the input level of IF input pins (pin 5) is output to the RSSI pin (P21). While the linear range is about 80dB when $V_{CC} = 2V$, the range can be expanded to 80dB as in Figure 6.

However, in such a case, note that the temperature characteristics of the RSSI output may alter due to a disparity between the temperature coefficient of the external resistor and the internal resistance of the IC.

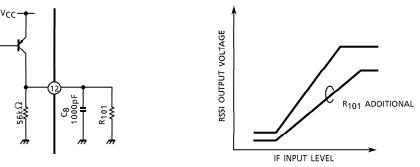


Figure 6

~

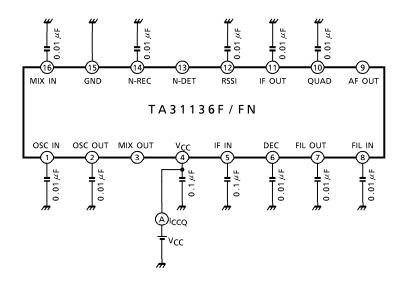
. .

					$V_{CC} = 2.0V$
PIN No.	PIN NAME	VOLTAGE	PIN No.	PIN NAME	VOLTAGE
1	OCS IN	1.98	9	AF OUT	_
2	OSC OUT	1.33	10	QUAD	2.0
3	MIX OUT	0.74	11	IF OUT	1.14
4	Vcc	2.0	12	RSSI	_
5	IF IN	1.67	13	N-DET	_
6	DEC	1.67	14	N-REC	_
7	FIL OUT	0.67	15	GND	0.0
8	FIL IN	0.65	16	MIX IN	0.94
					(UNIT : V)

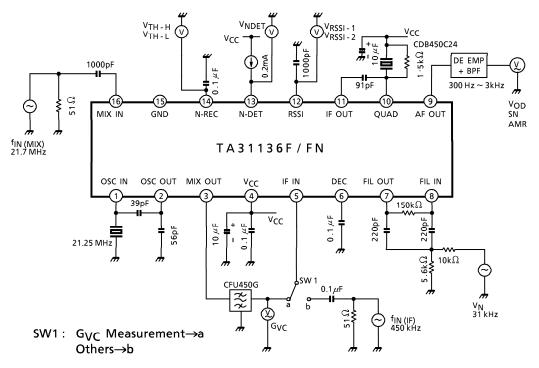
8. DC voltages for pins (Typical values for reference)

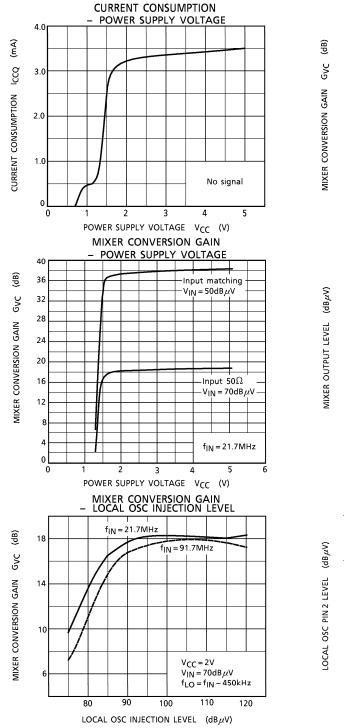
MAXIMUM RATINGS (Ta = 25°C)

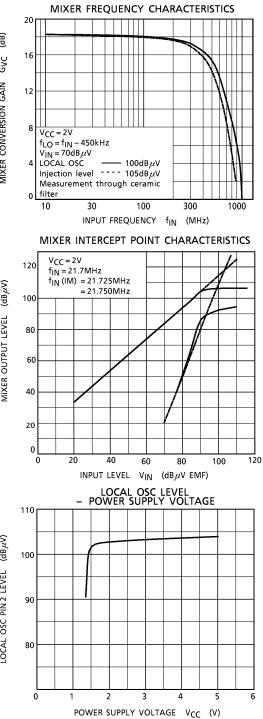
CHARAC	TERISTIC	SYMBOL	RATING	UNIT		
Supply Voltage	<u>)</u>	Vcc	7	V		
Power	TA31136F	Da	370	mW		
Dissipation	TA31136FN	PD	560	mvv		
Operating Tem	perature	T _{opr}	- 30~85	°C		
Storage Tempe	erature	T _{stg}	- 50~150	°C		

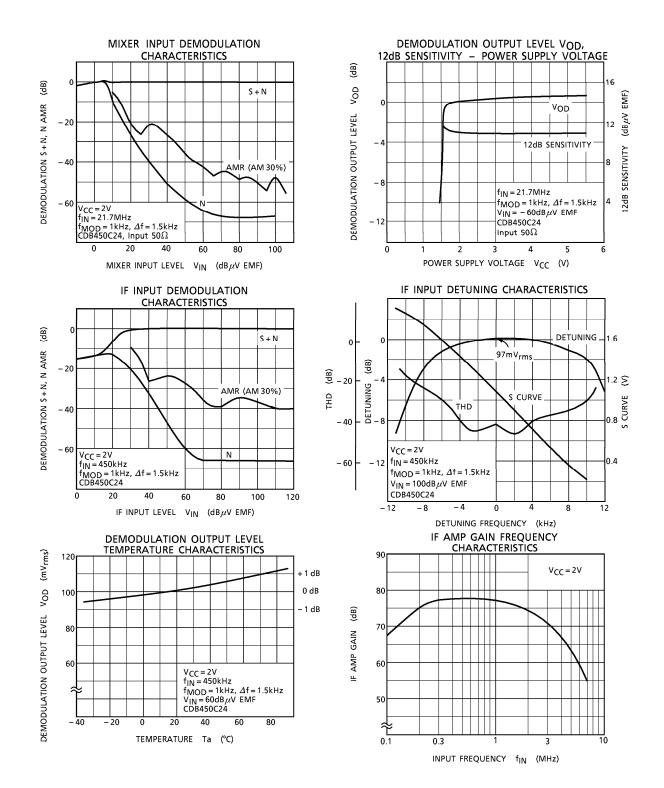

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 2.0V$, f_{IN} (MIX) = 21.7MHz, f_{IN} (IF) = 450kHz, $\Delta f = \pm 1.5$ kHz, $f_{MOD} = 1$ kHz, $\underline{Ta} = 25^{\circ}$ C

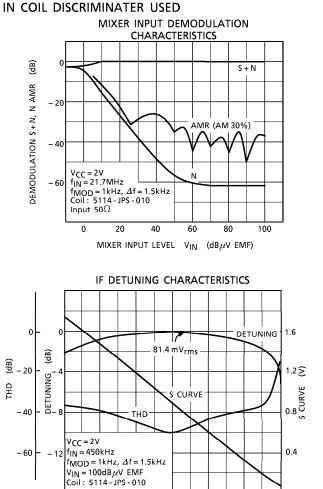
([†] MOD = 1	Γa = 25°C			/		
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Power Supply Voltage	V _{CC}	—	—	1.8	2.0	5.5	V
Current Consumption	lccQ	1	—	—	3.2	4.6	mA
Mixer Conversion Gain	GVC	2	Measured through ceramic filter. VIN (MIX) = 46dBµV	15	18	21	dB
Mixer Intercept Point	Рім	—	Input 50 Ω	_	96	—	dBμV
Mixer Input Impedance	RIN (MIX)	—		_	5.5	—	kΩ
mixer input impedance	CIN (MIX)	—	_	_	2.8	—	pF
Mixer Output Resistance	RO (MIX)	-	—	1.2	1.8	2.4	kΩ
12dB Sensitivity	12dB SN	—	—	_	11	—	dBμV
Demodulation Output Level	V _{OD}	2	V _{IN (IF)} =80dBμV	70	100	130	mV _{rms}
SN Ratio	SN	2	VIN (IF) = 80dBµV	43	65	—	dB
AM Rejection Ratio	AMR	2	V_{IN} (IF) = 80dB μ V, AM = 30%	—	40	—	dB
IF AMP. Input Resistance	RIN (IF)	—		1.2	1.8	2.4	kΩ
RSSI Output Voltage	V _{RSSI-1}	2	$V_{CC} = 3V \frac{V_{IN} (IF) = 30 dB \mu V}{V_{UV} (IF) = 100 dB \mu V}$	200	360	520	mV
KSSI Output Voltage	V _{RSSI-2}	2	V_{IN} (IF) = 100dB μ V	1.4	2.0	2.6	V
Noise Detection Output Voltage	V _{NDET}	2	I SINK = 0.2mA	_	0.1	0.5	v
Noise Detection Output Leak Current	ILEAK	_	$V_{NREC} = 0.6V, V_{NDET} = 2V$	_	0	5	μΑ
Noise "H" Level	V _{TH-H}	2			0.5	0.7	v
Detection Level "L" Level	V _{TH-L}		_	0.3	0.4		v

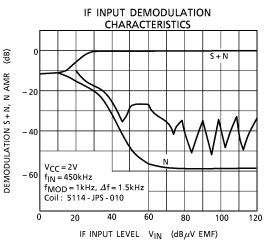

All AC levels are indicated by open level (EMF).


TOSHIBA


TEST CIRCUIT 1



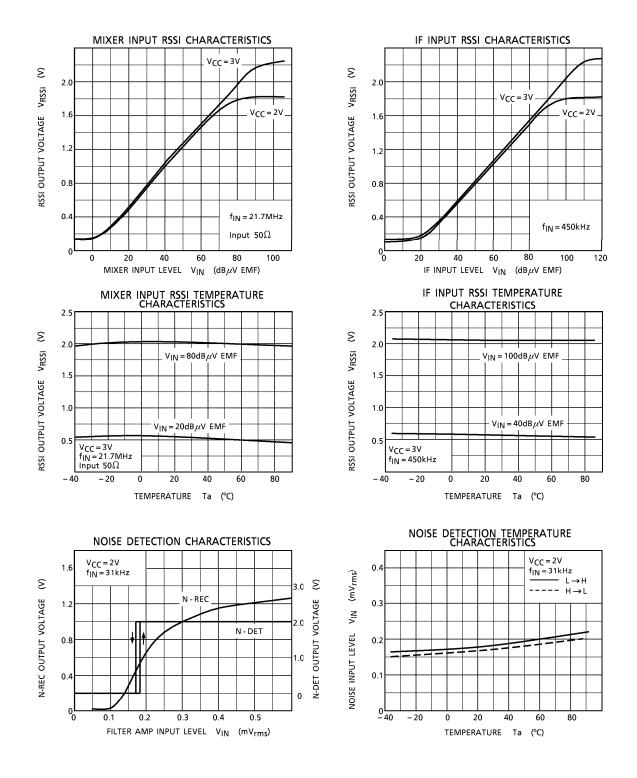

TEST CIRCUIT 2

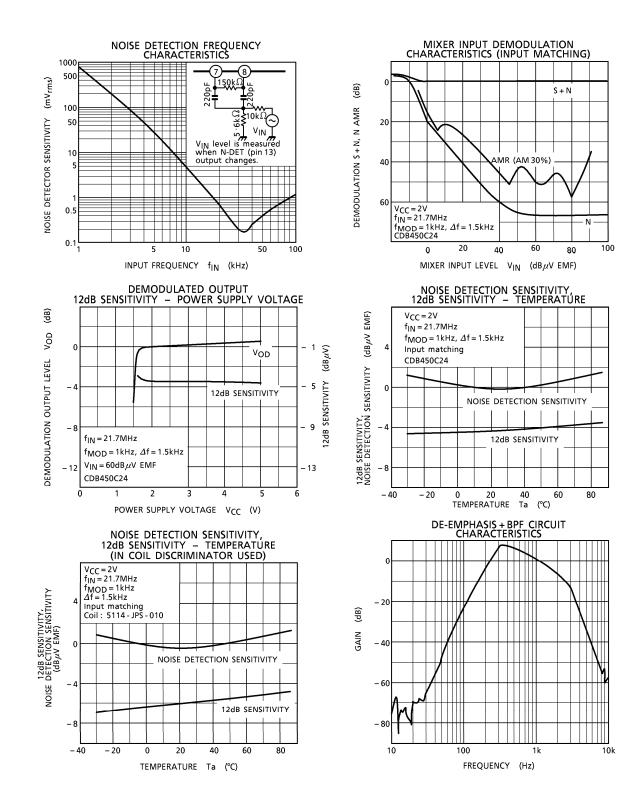


- 12

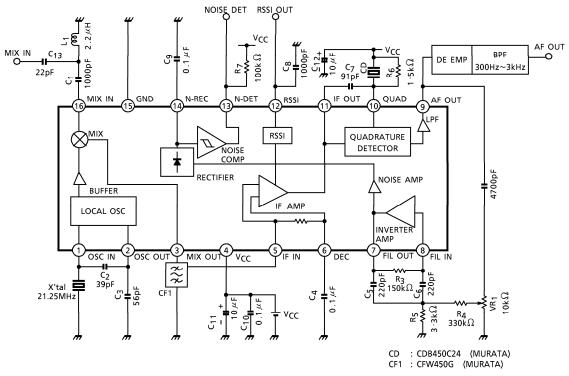
- 8

- 4

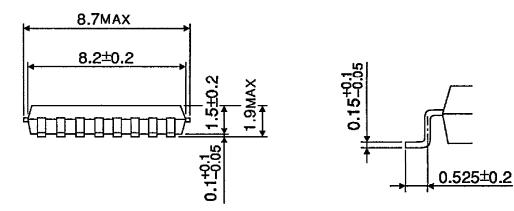

4


12

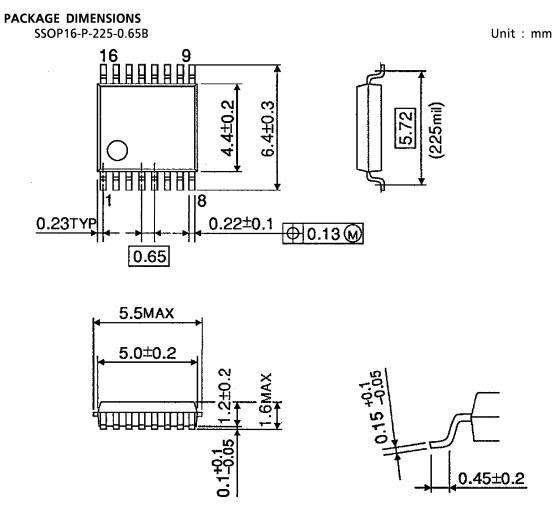
8


0

DETUNING FREQUENCY (kHz)



APPLICATION CIRCUIT



Weight : 0.14g (Typ.)

Unit : mm

(225mil)

2003-10-31

Weight : 0.07g (Typ.)

<u>TOSHIBA</u>

Notice for Pb free product About solderability, following conditions were confirmed Solderability (1) Use of Sn-63Pb solder bath • Solder bath temperature = 230 • Dipping time = 5seconds • The number of times = once • Use of R-type flux (2) Use of Sn-3.0Ag-0.5Cu solder bath • Solder bath temperature = 245 Dipping time = 5seconds

- Dipping time = 5seconds
- The number of times = once
 Use of R-type flux

RESTRICTIONS ON PRODUCT USE

000707EBA

● TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.