

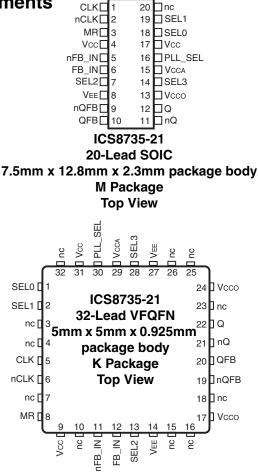
700MHz, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR

X Contraction

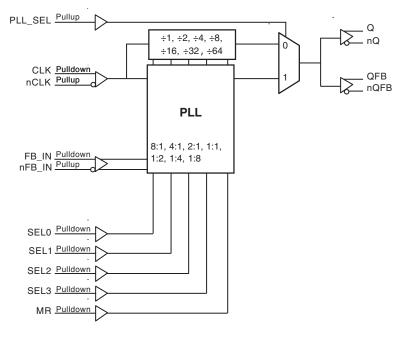
General Description

The ICS8735-21 is a highly versatile 1:1 Differentialto-3.3V LVPECL clock generator and a member of the HiPerClockS™family of High Performance Clock Solutions from IDT. The CLK, nCLK pair can accept most standard differential input levels. The

ICS8735-21 has a fully integrated PLL and can be configured as zero delay buffer, multiplier or divider, and has an output frequency range of 31.25MHz to 700MHz. The reference divider, feedback divider and output divider are each programmable, thereby allowing for the following output-to-input frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8. The external feedback allows the device to achieve "zero delay" between the input clock and the output clocks. The PLL_SEL pin can be used to bypass the PLL for system test and debug purposes. In bypass mode, the reference clock is routed around the PLL and into the internal output dividers.


Features

- One differential 3.3V LVPECL output pair One differential feedback output pair
- Differential CLK/nCLK input pair
- CLK/nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL


ICS8735-21

- Output frequency range: 31.25MHz to 700MHz
- Input frequency range: 31.25MHz to 700MHz
- VCO range: 250MHz to 700MHz
- External feedback for "zero delay" clock regeneration with configurable frequencies
- Programmable dividers allow for the following output-to-input frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8
- Cycle-to-cycle jitter: 25ps (maximum)
- Static phase offset: 50ps ± 100ps
- Full 3.3V supply voltage
- 0°C to 70°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Block Diagram

IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR

Name	Т	уре	Description
CLK	Input	Pulldown	Non-inverting differential clock input.
nCLK	Input	Pullup	Inverting differential clock input.
nFB_IN	Input	Pullup	Inverting differential feedback input to phase detector for regenerating clocks with "zero delay."
FB_IN	Input	Pulldown	Non-inverted differential feedback input to phase detector for regenerating clocks with "zero delay."
MR	Input	Pulldown	Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing the true output Q to go low and the inverted output nQ to go high. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.
SEL0, SEL1, SEL2, SEL3	Input	Pulldown	Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.
PLL_SEL	Input	Pullup	PLL select. Selects between the PLL and reference clock as the input to the dividers. When LOW, selects reference clock. When HIGH, selects PLL. LVCMOS/LVTTL interface levels.
nQ, Q	Output		Differential output pair. LVPECL interface levels.
nQFB, QFB	Output		Differential feedback output pair. LVPECL interface levels.
V _{EE}	Power		Negative supply pin.
V _{CC}	Power		Core supply pins.
V _{CCA}	Power		Analog supply pin.
V _{CCO}	Power		Output supply pin.

Table 1. Pin Descriptions

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Tables

Table 3A. Control Input Function Table

	Inputs					
SEL3	SEL2	SEL1	SEL0	Reference Frequency Range (MHz)*	Q/nQ, QFB/nQFB	
0	0	0	0	250 - 700	÷1	
0	0	0	1	125 - 350	÷1	
0	0	1	0	62.5 - 175	÷1	
0	0	1	1	31.25 - 87.5	÷1	
0	1	0	0	250 - 700	÷2	
0	1	0	1	125 - 350	÷2	
0	1	1	0	62.5 - 175	÷2	
0	1	1	1	250 - 700	÷4	
1	0	0	0	125 - 350	÷4	
1	0	0	1	250 - 700	÷8	
1	0	1	0	125 - 350	x2	
1	0	1	1	62.5 - 175	x2	
1	1	0	0	31.25 - 87.5	x2	
1	1	0	1	62.5 - 175	x4	
1	1	1	0	31.25 - 87.5	x4	
1	1	1	1	31.25 - 87.5	x8	

*NOTE: VCO frequency range for all configurations above is 250MHz to 700MHz.

Table 3B. PLL Bypass Function Table

	Inp	Outputs PLL_SEL = 0 PLL Bypass Mode		
SEL3	SEL2	SEL1	SEL0	Q/nQ, QFB/nQFB
0z	0	0	0	÷4
0	0	0	1	÷4
0	0	1	0	÷4
0	0	1	1	÷8
0	1	0	0	÷8
0	1	0	1	÷8
0	1	1	0	÷16
0	1	1	1	÷16
1	0	0	0	÷32
1	0	0	1	÷64
1	0	1	0	÷2
1	0	1	1	÷2
1	1	0	0	÷4
1	1	0	1	÷1
1	1	1	0	÷2
1	1	1	1	÷1

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V
Inputs, V _I	-0.5V to V _{CC} + 0.5V
Outputs, I _O Continuos Current Surge Current	50mA 100mA
Package Thermal Impedance, θ _{JA} 20 Lead SOIC 32 Lead VFQFN	46.2°C/W (0 lfpm) 37.0°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		3.135	3.3	3.465	V
V _{CCO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{EE}	Power Supply Current				150	mA
I _{CCA}	Analog Supply Current				15	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{CC} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
l la matil	Input High Current	SEL[0:3], MR	$V_{CC} = V_{IN} = 3.465V$			150	μA
ΙΗ	Input High Current	PLL_SEL	$V_{CC} = V_{IN} = 3.465V$			5	μA
1	Input Low Current	SEL[0:3], MR	V _{CC} = 3.465V, V _{IN} = 0V	-5			μA
IL	Input Low Current	PLL_SEL	V _{CC} = 3.465V, V _{IN} = 0V	-150			μA

			000	,	•		
Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	CLK, FB_IN	$V_{CC} = V_{IN} = 3.465V$			150	μA
Ιн	Input High Current	nCLK, nFB_IN	$V_{CC} = V_{IN} = 3.465V$			5	μA
I _{IL} Input Low Current	CLK, FB_IN	V _{CC} = 3.465V, V _{IN} = 0V	-5			μA	
	nCLK, nFB_IN	V _{CC} = 3.465V, V _{IN} = 0V	-150			μA	
V _{PP}	Peak-to-Peak Voltage	; NOTE 1		0.15		1.3	V
V _{CMR}	Common Mode Input	Voltage; NOTE 1, 2		V _{EE} + 0.5		V _{CC} – 0.85	V

Table 4C. Differential DC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as V_{IH}.

Table 4D. LVPECL DC Characteristics, V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5%, V_{EE} = 0V, T_A = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CCO} -1.4		V _{CCO} -0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{CCO} -2.0		V _{CCO} – 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50 Ω to V_{CCO} – 2V.

Table 5. Input Frequency Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f	Input Frequency	auency CLK. nCLK	PLL_SEL = 1	31.25		700	MHz
TIN	Input Frequency	OLN, HOLN	PLL_SEL = 0			700	MHz

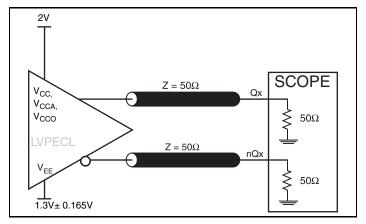
AC Electrical Characteristics

Table 6. AC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

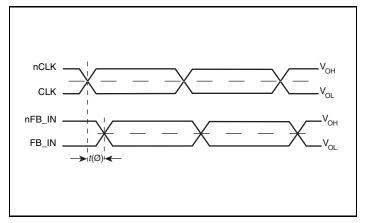
Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				700	MHz
t _{PD}	Propagation Delay; NOTE 1	$PLL_SEL = 0V, f \le 700MHz$	3.0		4.2	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 3	PLL_SEL = 0V			20	ps
<i>t</i> sk(Ø)	Static Phase Offset; NOTE 3, 4	PLL_SEL = 3.3V	-50	50	150	ps
<i>t</i> jit(cc)	Cycle-to-Cycle Jitter; NOTE 3, 5				25	ps
<i>t</i> jit(θ)	Phase Jitter; NOTE 3, 5, 6				±50	ps
tL	PLL Lock Time				1	ms
t _R / t _F	Output Rise/Fall Time; NOTE 7	20% to 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle		47		53	%

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

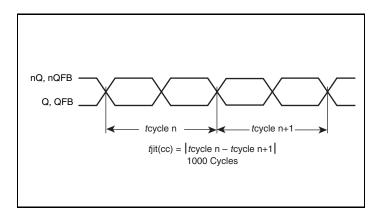
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

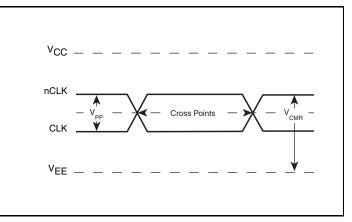

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

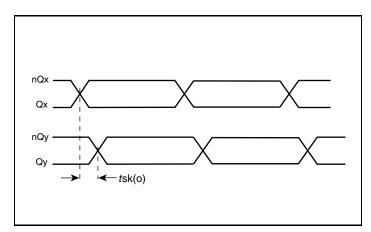
NOTE 4: Defined as the time difference between the input reference clock and the averaged feedback input signal across all conditions, when the PLL is locked and the input reference frequency is stable.

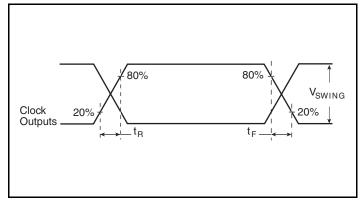

NOTE 5: Characterized at VCO frequency of 622MHz.

NOTE 6: Phase jitter is dependent on the input source used.

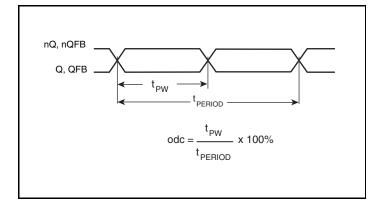



3.3V Output Load AC Test Circuit

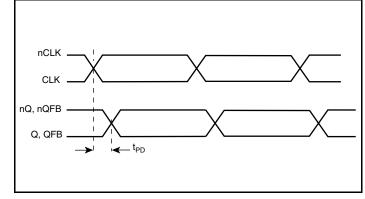

Phase Jitter and Static Phase Offset


Cycle-to-Cycle Jitter

Differential Input Level



Output Skew



Output Rise/Fall Time

Parameter Measurement Information, continued

Propagation Delay

Application Information

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

FB_IN/nFB_IN Inputs

For applications not requiring the use of the differential input, both FB_IN and nFB_IN can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from FB_IN to ground.

Outputs:

LVPECL Outputs

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS8735-21 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} , V_{CCA} and V_{CCO} should be individually connected to the power supply plane through vias, and 0.01μ F bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{CC} pin and also shows that V_{CCA} requires that an additional 10Ω resistor along with a 10μ F bypass capacitor be connected to the V_{CCA} pin. The 10Ω resistor can also be replaced by a ferrite bead.

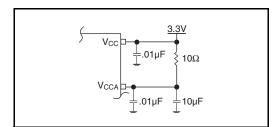


Figure 1. Power Supply Filtering

Wiring the Differential Input to Accept Single Ended Levels

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{CC}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{CC} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

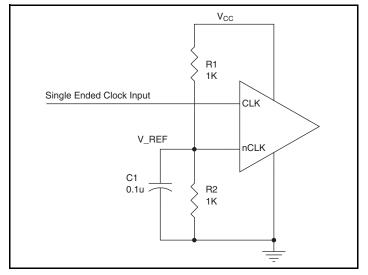
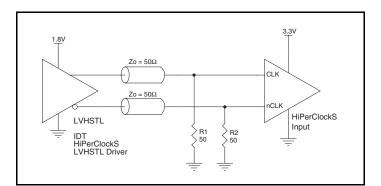
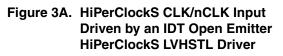




Figure 2. Single-Ended Signal Driving Differential Input

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3F* show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver

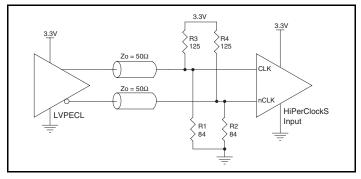
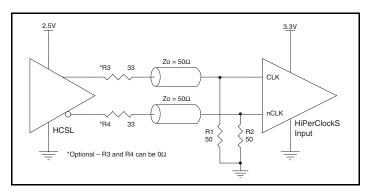
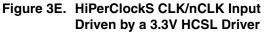




Figure 3C. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR

component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

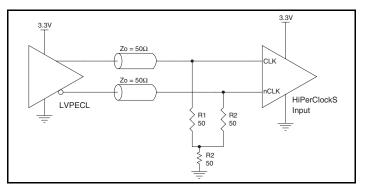


Figure 3B. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

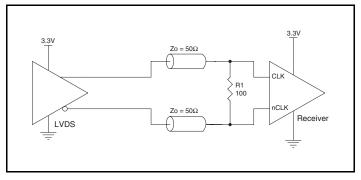


Figure 3D. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVDS Driver

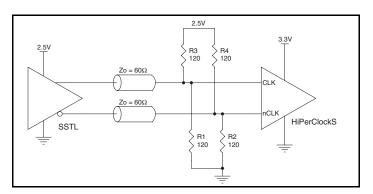


Figure 3F. HiPerClockS CLK/nCLK Input Driven by a 2.5V SSTL Driver

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

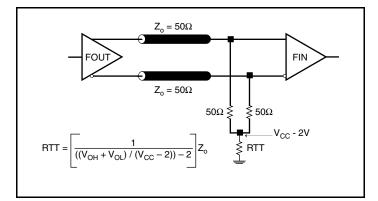


Figure 4A. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

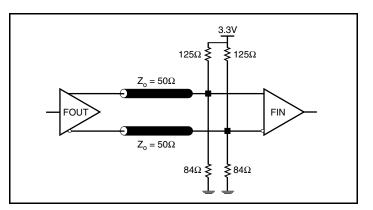
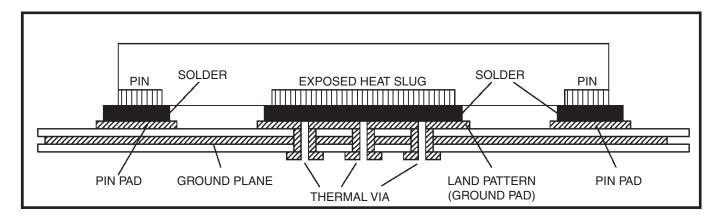


Figure 4B. 3.3V LVPECL Output Termination

Schematic Example

Figure 5 shows a schematic example of the ICS8735-21. In this example, the input is driven by an HCSL driver. The zero delay buffer is configured to operate at 155.52MHz input and 77.75MHz output. The logic control pins are configured as follows:

SEL [3:0] = 0101; PLL_SEL = 1 The decoupling capacitors should be physically located near the power pin. For ICS8735-21.


Figure 5. ICS8735-21 LVPECL Buffer Schematic Example

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 6*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are

application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadfame Base Package, Amkor Technology.

Figure 6. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8735-21. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8735-21 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{CC MAX} = 3.465V * 150mA = 519.8mW
- Power (outputs)_{MAX} = 30mW/Loaded output pair If all outputs are loaded, the total power is 2 * 30mW = 60mW

Total Power_{MAX} = (3.465V, with all outputs switching) = 519.8mW + 60mW = 579.8mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 83.2°C/W per Table 7A below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}C + 0.580W * 83.2^{\circ}C/W = 118.3^{\circ}C$. This is well below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 7A. Thermal Resistance θ_{JA} for 20 Lead SOIC, Forced Convection

$ heta_{JA}$ vs. Air Flow								
Linear Feet per Minute	0	200	500					
Single-Layer PCB, JEDEC Standard Test Boards	83.2°C/W	65.7°C/W	57.5°C/W					
Multi-Layer PCB, JEDEC Standard Test Boards	Multi-Layer PCB, JEDEC Standard Test Boards 46.2°C/W 39.7°C/W 36.8°C/W							
NOTE: Most modern PCB designs use multi-layere	NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.							

Table 7B. Thermal Resistance θ_{JA} for 32 Lead VFQFN, Forced Convection

θ _{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	37.0°C/W	32.4°C/W	29.0°C/W

IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in *Figure 7*.

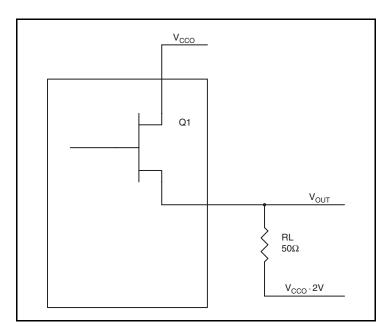


Figure 7. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CCO} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} 0.9V$ ($V_{CCO_MAX} - V_{OH_MAX}$) = 0.9V
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} 1.7V$ ($V_{CCO_MAX} - V_{OL_MAX}$) = 1.7V

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

 $Pd_{H} = [(V_{OH_{MAX}} - (V_{CCO_{MAX}} - 2V))/R_{L}] * (V_{CCO_{MAX}} - V_{OH_{MAX}}) = [(2V - (V_{CCO_{MAX}} - V_{OH_{MAX}}))/R_{L}] * (V_{CCO_{MAX}} - V_{OH_{MAX}}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$

 $Pd_{L} = [(V_{OL_{MAX}} - (V_{CCO_{MAX}} - 2V))/R_{L}] * (V_{CCO_{MAX}} - V_{OL_{MAX}}) = [(2V - (V_{CCO_{MAX}} - V_{OL_{MAX}}))/R_{L}] * (V_{CCO_{MAX}} - V_{OL_{MAX}}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$

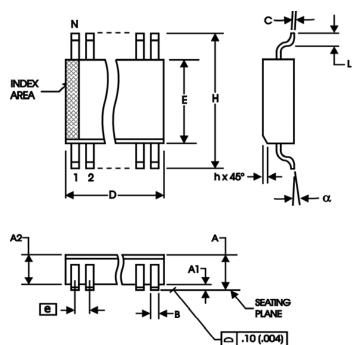
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

Reliability Information

Table 8A. θ_{JA} vs. Air Flow Table for a 20 Lead TSSOP

θ _{JA} vs. Air Flow			
Linear Feet per Minute	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	83.2°C/W	65.7°C/W	57.5°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	46.2°C/W	39.7°C/W	36.8°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.			

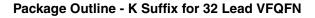
Table 8B. θ_{JA} vs. Air Flow Table for a $\mbox{ 32 Lead VFQFN, Forced Convection }$


θ _{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	37.0°C/W	32.4°C/W	29.0°C/W

Transistor Count

The transistor count for ICS8735-21 is: 2969

Package Outline and Package Dimensions


Package Outline - M Suffix for 20 Lead SOIC

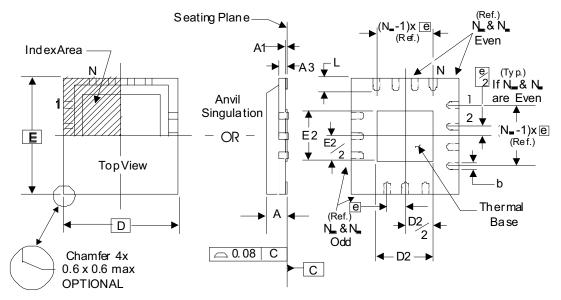


Table 9A. Package Dimensions for 20 Lead SOIC

300 Millimeters All Dimensions in Millimeters				
Symbol	Minimum	Maximum		
N	2	20		
Α		2.65		
A1	0.10			
A2	2.05	2.55		
В	0.33	0.51		
С	0.18	0.32		
D	12.60	13.00		
E	7.40	7.60		
е	1.27	1.27 Basic		
Н	10.00	10.65		
h	0.25	0.75		
L	0.40	1.27		
α	0°	7 °		

Reference Document: JEDEC Publication 95, MS-013, MS-119

The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 9B below.

Table 9B. Package Dimensions for 32 Lead VFQFN

JEDEC Variation: VHHD-2/-4 All Dimensions in Millimeters			
Symbol	Minimum	Nominal	Maximum
N	32		
A	0.80		1.00
A1	0		0.05
A3	0.25 Ref.		
b	0.18	0.25	0.30
N _D & N _E	8		
D&E	5.00 Basic		
D2 & E2	3.0		3.3
е	0.50 Basic		
L	0.30	0.40	0.50

Reference Document: JEDEC Publication 95, MO-220

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8735AM-21	ICS8735AM-21	20 Lead SOIC	Tube	0°C to 70°C
8735AM-21T	ICS8735AM-21	20 Lead SOIC	1000 Tape & Reel	0°C to 70°C
8735AM-21LF	ICS8735AM-21LF	"Lead-Free" 20 Lead SOIC	Tube	0°C to 70°C
8735AM-21LFT	ICS8735AM-21LF	"Lead-Free" 20 Lead SOIC	1000 Tape & Reel	0°C to 70°C
8735AK-21LF	ICS8735A21L	"Lead-Free" 32 Lead VFQFN	Tray	0°C to 70°C
8735AK-21LFT	ICS8735A21L	"Lead-Free" 32 Lead VFQFN	2500 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Contact Information:

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com +480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800-345-7015 (inside USA) +408-284-8200 (outside USA)

© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA