

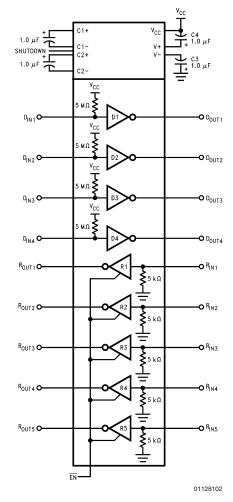
DS14C241

Single Supply TIA/EIA-232 4 x 5 Driver/Receiver

General Description

The DS14C241 is four driver, five receiver device which conforms to the TIA/EIA-232-E standard and CCITT V.28 recommendations. This device eliminates ±12V supplies by employing an internal DC-DC converter to generate the necessary output levels from a single +5V supply. Driver slew rate control and receiver noise filtering have also been internalized to eliminate the need for external slew rate control and noise filtering capacitors. With the addition of TRI-STATE®receiver outputs and a shutdown mode, device power consumption is kept to a minimum.

Features


- Conforms to TIA/EIA-232-E and CCITT V.28
- Internal DC-DC converter
- Operates with single +5V supply
- Low power requirement—I_{CC} 10 mA max
- Shutdown mode—I_{CX} 10 µA max
- Internal driver slew rate control
- Receiver noise filtering
- Operates above 120 kbits/sec
- TRI-STATE receiver outputs
- Direct replacement for MAX241

Connection Diagram

Order Number DS14C241WM See NS Package Number M28B

Functional Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 $\begin{array}{lll} \text{Supply Voltage (V$_{CC}$)} & -0.3 \text{V to } +6 \text{V} \\ \text{V}^+ \text{ Pin} & (\text{V}_{CC} - 0.3 \text{V}) \text{ to } +15 \text{V} \\ \text{V}^- \text{ Pin} & +0.3 \text{V to } -15 \text{V} \\ \end{array}$

 $\begin{array}{ll} \mbox{Driver Input Voltage} & -0.3 \mbox{V to } (\mbox{V}_{CC} + 0.3 \mbox{V}) \\ \mbox{Driver Output Voltage} & (\mbox{V}^+ + 0.3 \mbox{V}) \mbox{ to } (\mbox{V}^- -$

0.3V)

Receiver Input Voltage ± 30 V Receiver Output Voltage -0.3V to (V_{CC} + 0.3V)

Junction Temperature +150°C

Maximum Package Power Dissipation

@ +25°C (Note 6)

WM Package 1520 mW

Storage Temperature Range -65°C to +150°C

Lead Temperature (Soldering,
4 sec.) +260°C

Short Circuit Duration (D_{OUT}) continuous

ESD Rating (HBM, 1.5 $k\Omega$, 100

pF) ≥ 2.0 kV

Recommended Operating Conditions

Min Max Units

Supply Voltage (V_{CC}) 4.5 5.5 V

Operating Free Air Temp.

 (T_A)

DS14C241 0 +70 °C

Electrical Characteristics (Note 2)

Over recommended operating conditions, unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DEVICE C	HARACTERISTICS						
V ⁺	Positive Power Supply	$R_L = 3 \text{ k}\Omega$, C1–C4 = 1.0 µF, $D_{IN} = 0.8 \text{V}$			9.0		V
V-	Negative Power Supply	$R_L = 3 \text{ k}\Omega, C1-C4 = 1.0$	$R_L = 3 \text{ k}\Omega$, C1–C4 = 1.0 µF, $D_{IN} = 2.0 \text{V}$		-8.0		V
I _{CC}	Supply Current (V _{CC})	No Load			8.5	10	mA
I _{CX}	Supply Current Shutdown	$R_L = 3 \text{ k}\Omega, \text{ SD} = V_{CC}$			1.0	10	μΑ
V _{IH}	High Level Enable Voltage		SD	2.4		V _{CC}	V
V _{IL}	Low Level Enable Voltage			GND		0.8	V
I _{IH}	High Level Enable Current			-10		+10	μΑ
I _{IL}	Low Level Enable Current			-10		+10	μΑ
	HARACTERISTICS						
V _{IH}	High Level Input Voltage		D _{IN}	2.0		V _{CC}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
I _{IH}	High Level Input Current	V _{IN} ≥ 2.0V		-10		+10	μA
I _{IL}	Low Level Input Current	V _{IN} ≤ 0.8V		-10		+10	μA
V _{OH}	High Level Output Voltage	$R_L = 3 \text{ k}\Omega$	•	5.0	7.5		V
V _{OL}	Low Level Output Voltage				-6.5	-5.0	V
I _{os} +	Output High Short Circuit Current	$V_{O} = 0V, V_{IN} = 0.8V$		-30	-15	-5.0	mA
I _{os} -	Output Low Short Circuit Current	$V_{O} = 0V, V_{IN} = 2.0V$		5.0	12	30	mA
R _O	Output Resistance	$-2V \le V_O \le +2V, V_{CC} =$	GND = 0V	300			Ω
RECEIVE	R CHARACTERISTICS						
V _{TH}	Input High Threshold Voltage				1.9	2.4	V
V _{TL}	Input Low Threshold Voltage			0.8	1.5		V
V _{HY}	Hysteresis			0.2	0.4	1.0	V
R _{IN}	Input Resistance			3.0	4.5	7.0	kΩ
I _{IN}	Input Current	V _{IN} = +15V		2.14	3.8	5.0	mA
		$V_{IN} = +3V$		0.43	0.6	1.0	mA
		$V_{IN} = -3V$		-1.0	-0.6	-0.43	mA
		$V_{IN} = -15V$		-5.0	-3.8	-2.14	mA
V _{OH}	High Level Output Voltage	$V_{IN} = -3V$, $I_{O} = -3.2$ mA		3.5	4.6		V
		$V_{IN} = -3V$, $I_{O} = -20 \mu A$		4.0	4.9		V
V _{OL}	Low Level Output Voltage	$V_{IN} = +3V, I_{O} = +2.0 \text{ m/s}$			0.25	0.4	V

Electrical Characteristics (Note 2) (Continued)

Over recommended operating conditions, unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
RECEIVER CHARACTERISTICS								
V _{IH}	High Level Input Voltage		EN	2.0		V _{CC}	V	
V _{IL}	Low Level Input Voltage			GND		0.8	V	
I _{IH}	High Level Input Current	$V_{IN} \ge 2.0V$		-10		+10	μΑ	
I _{IL}	Low Level Input Current	$V_{IN} \le 0.8V$		-10		+10	μΑ	
l _{oz}	Output Leakage Current	$\overline{EN} = V_{CC}, \ 0V \le R_{OUT} \le V_{CC}$		-10		+10	μA	

Switching Characteristics (Note 4)

Over recommended operating conditions, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
DRIVER CHARACTERISTICS								
t _{PLH}	Propagation Delay LOW to HIGH	$R_L = 3 \text{ k}\Omega$		0.7	4.0	μs		
t _{PHL}	Propagation Delay HIGH to LOW	$C_L = 50 \text{ pF}$		0.6	4.0	μs		
t _{sk}	Skew It _{PLH} -t _{PHL} I	(Figures 1, 2)		0.1	1.0	μs		
SR1	Output Slew Rate	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega, C_L = 50$	pF 4.0	15	30	V/µs		
SR2	Output Slew Rate	$R_L = 3 \text{ k}\Omega, C_L = 2500 \text{ pF}$	3.0	5.0		V/µs		
RECEIVER CHARACTERISTICS								
t _{PLH}	Propagation Delay LOW to HIGH	Input Pulse Width > 10 μs		2.0	6.5	μs		
t _{PHL}	Propagation Delay HIGH to LOW	$C_L = 50 \text{ pF}$		2.8	6.5	μs		
t _{SK}	Skew It _{PLH} -t _{PHL} I	(Figures 3, 4)		0.8	2.0	μs		
t _{PLZ}		(Figures 5, 7)		0.1	2.0	μs		
t _{PZL}		1		0.6	2.0	μs		
t _{PHZ}		(Figures 5, 6)		0.2	2.0	μs		
t _{PZH}		1		0.6	2.0	μs		
t _{NW}	Noise Pulse Width Rejected	(Figures 3, 4)		2.5	1.0	μs		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified

Note 3: I_{OS}+ and I_{OS}- values are for one output at a time. If more than one output is shorted simultaneously, the device power dissipation may be exceeded.

Note 4: Receiver AC input waveform for test purposes: $t_r = t_f = 200$ ns, $V_{IH} = 3V$, $V_{IL} = -3V$, f = 64 kHz (128 kbits/sec). Driver AC input waveform for test purposes: $t_r = t_f \le 10$ ns, $V_{IH} = 3V$, $V_{IL} = 0V$, f = 64 kHz (128 kbits/sec).

Note 5: All typicals are given for $V_{CC} = 5.0V$ and $T_A = +25^{\circ}C$.

Note 6: Ratings apply to ambient temperature at +25°C. Above this temperature derate: WM package 14.3 mW/°C.

Parameter Measurement Information

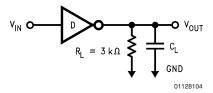


FIGURE 1. Driver Load Circuit

Parameter Measurement Information (Continued)

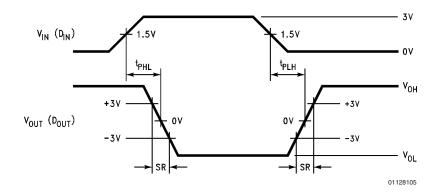


FIGURE 2. Driver Switching Waveform

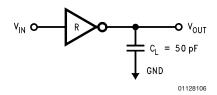


FIGURE 3. Receiver Load Circuit

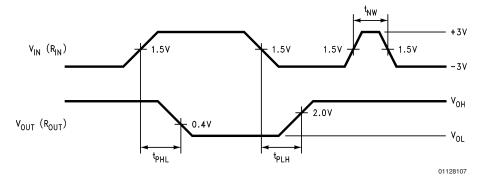


FIGURE 4. Receiver Propagation Delays and Noise Rejection

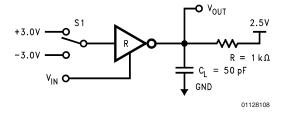


FIGURE 5. Receiver Disable Load Circuit

Parameter Measurement Information (Continued)

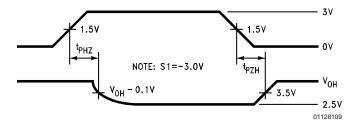


FIGURE 6. Receiver TRI-STATE Timing (t_{PHZ}, t_{PZH})

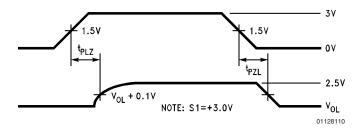


FIGURE 7. Receiver TRI-STATE Timing $(t_{PLZ},\,t_{PZL})$

Pin Descriptions

 V_{cc} (pin 11) — Power supply pin for the device, +5V (±10%).

V⁺ (pin 13) — Positive supply for TIA/EIA-232-E drivers. Recommended external capacitor: C4 = 1.0 μ F (6.3V). This supply is not intended to be loaded externally.

V⁻ (pin 17) — Negative supply for TIA/EIA-232-E drivers. Recommended external capacitor: C3 = 1.0 μ F (16V). This supply is not intended to be loaded externally.

C1 $^+$, C1 $^-$ (pins 12 and 14) — External capacitor connection pins. Recommended capacitor—1.0 μF (6.3V).

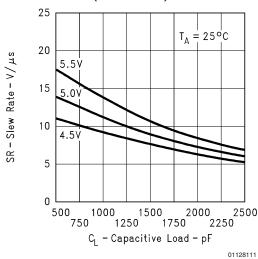
C2 $^+$, C2 $^-$ (pins 15 and 16) —External capacitor connection pins. Recommended capacitor—1.0 μF (16V).

EN (pin 24) — Controls the Receiver output TRI-STATE Circuit. A HIGH level on this pin will disable the Receiver Output.

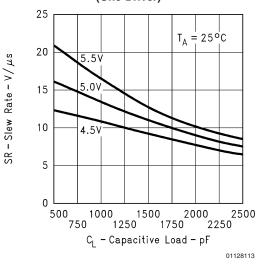
SHUTDOWN (SD) (pin 25) —A High on the SHUTDOWN pin will lower the total $I_{\rm CC}$ current to less than 10 μ A. Providing a low power state.

 D_{IN} 1–4 (pins 7, 6, 20 and 21) — Driver input pins are TTL/CMOS compatible. Inputs of unused drivers may be left open, an internal pull-up resistor (500 k Ω minimum, typically 5 M Ω) pulls input to V $_{CC}$. Output will be LOW for open inputs.

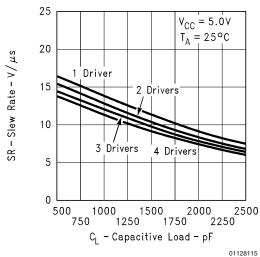
D_{OUT} 1-4 (pins 2, 3, 1 and 28) — Driver output pins conform to TIA/EIA-232-E levels.

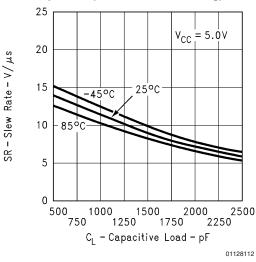

 R_{IN} 1-5 (pins 9, 4, 27, 23 and 18) — Receiver input pins accept TIA/EIA-232-E input voltages (±15V). Receivers feature a noise filter and guaranteed hysteresis of 200 mV. Unused receiver input pins may be left open. Internal input resistor (5 k Ω) pulls input LOW, providing a failsafe HIGH output

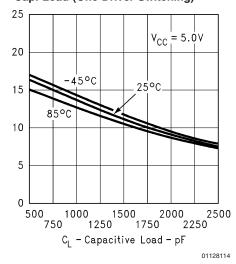
R_{OUT} 1–5 (pins 8, 5, 26, 22 and 19) — Receiver output pins are TTL/CMOS compatible. Receiver output HIGH voltage is specified for both CMOS and TTL load conditions.


GND (pin 10) — Ground pin.

Typical Performance Characteristics


Slew Rate vs Cap. Load vs V_{CC} (Four Drivers)


Slew Rate vs Cap. Load vs V_{CC} (One Driver)


Driver Slew Rate vs Cap. Load vs Number of Drivers

Slew Rate vs Temperature vs Cap. Load (Four Drivers Switching)

Slew Rate vs Temperature vs Cap. Load (One Driver Switching)

SR - Slew Rate - $V/\mu s$

www.national.com

Typical Performance Characteristics (Continued)

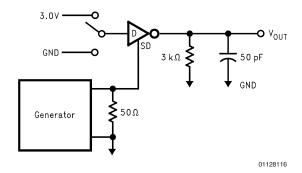
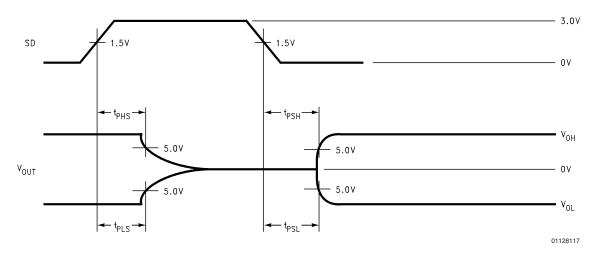
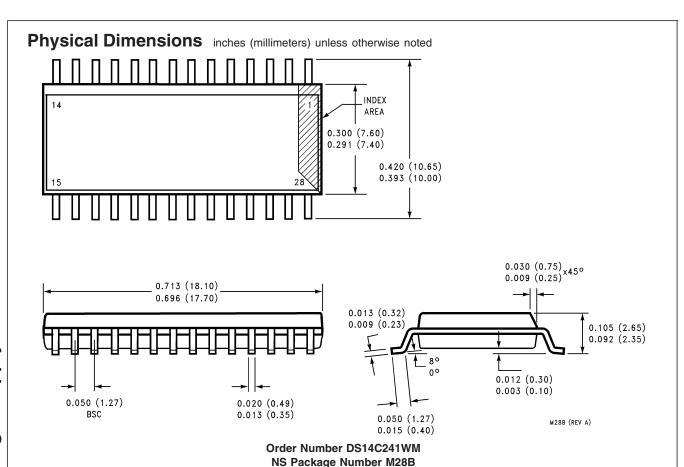


FIGURE 8. Driver Shutdown (SD) Delay Test Circuit




FIGURE 9. Driver Shutdown (SD) Delay Timing Waveforms

Typical data only.

Symbol	Parameter	Conditions	Тур	Units
t _{PHS}	Propagation Delay High to SD	V _{CC} = 5V (Notes 7, 8)	124	μs
t _{PLS}	Propagation Delay Low to SD	T _A = 25°C	110	μs
t _{PSH}	Propagation Delay SD to High		114	μs
t _{PSL}	Propagation Delay SD to Low		97	μs

Note 7: Sample size = 10 parts; 3 different datecodes.

Note 8: All drivers are loaded as shown in Figure 8.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.