TECHNICAL MANUAL

LSISASx12/LSISASx12A 3.0 Gbit/s Serial Attached SCSI / Serial ATA Expander

October 2005 Version 3.0

DB14-000277-04

This document contains proprietary information of LSI Logic Corporation. The information contained herein is not to be used by or disclosed to third parties without the express written permission of an officer of LSI Logic Corporation.

LSI Logic products are not intended for use in life-support appliances, devices, or systems. Use of any LSI Logic product in such applications without written consent of the appropriate LSI Logic officer is prohibited.

Purchase of I^2C components of LSI Logic Corporation, or one of its sublicensed Associated Companies, conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C standard Specification as defined by Philips.

Document DB14-000277-04, Version 3.0, October 2005 This document describes LSI Logic Corporation's LSISASx12/LSISASx12A 3.0 Gbit/s Serial Attached SCSI expander and will remain the official reference source for all revisions/releases of this product until rescinded by an update.

LSI Logic Corporation reserves the right to make changes to any products herein at any time without notice. LSI Logic does not assume any responsibility or liability arising out of the application or use of any product described herein, except as expressly agreed to in writing by LSI Logic; nor does the purchase or use of a product from LSI Logic convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of LSI Logic or third parties.

Copyright © 2004, 2005 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT

LSI Logic, the LSI Logic logo design, Fusion-MPT, Gflx, and GigaBlaze are trademarks or registered trademarks of LSI Logic Corporation. AMBA is a trademark of ARM Ltd., used under license. All other brand and product names may be trademarks of their respective companies.

JM

To receive product literature, visit us at http://www.lsilogic.com.

For a current list of our distributors, sales offices, and design resource centers, view our web page located at

http://www.lsilogic.com/contacts/index.html

Preface

This book is the primary reference and Technical Manual for the LSISASx12 and the LSISASx12A 3.0 Gbit/s Serial Attached SCSI (SAS) expander chips. It contains a complete functional description for the devices, as well as complete physical and electrical specifications.

Audience

This document assumes that you have some familiarity with computer chips and related support devices. The people who benefit from this book are:

- Engineers and managers who are evaluating the expander for possible use in a system
- Engineers who are designing the expander into a system

Organization

This document has the following chapters and appendixes:

- Chapter 1, Introduction, provides an overview of the LSISASx12/LSISASx12A expander.
- Chapter 2, Functional Description, provides a block diagram of the LSISASx12/LSISASx12A expander, and explains the operation of the various LSISASx12/LSISASx12A components.
- Chapter 3, Signal Descriptions, provides signal descriptions for the LSISASx12/LSISASx12A signals.
- Chapter 4, Register Descriptions, provides the LSISASx12/LSISASx12A register map, as well as bit-level descriptions of the register space.

- Chapter 5, Specifications, provides the environmental, electrical, mechanical specifications for the LSISASx12/LSISASx12A, as well as pinout diagrams for the LSISASx12/LSISASx12A.
- Appendix A, **Register Summary**, provides a summary of the registers in the LSISASx12/LSISASx12A.
- Appendix B, Example Code for API2C Interface and Serial EEPROM, provides example code for programming the API2C interface to access a Serial EEPROM.

Related Publications and Specifications

LSI Logic Documents
 LSISAS1064 Serial Attached SCSI Controller Technical Manual
 DB14-000274-01

Fusion MPT Device Manager user's Guide, Version 2.0 DB15-000187-02

- LSI Logic Word Wide Web Home Page
 www.lsilogic.com
 - Serial Attached SCSI Version 1.0 T10 Technical Committee INCITS (International Committee for Information Technology Standards.) www.t10.org
- Serial ATA: High Speed Serialized AT Attachment Revision 1.0a, Serial ATA Workgroup, www.serialata.org
- Serial ATA II: Port Selector Revision 1.0, Serial ATA Workgroup, www.serialata.org
- SFF-8485 Specification for Serial GPIO (SGPIO) Bus http://www.sffcommittee.com/ns/
- Philips I²C Bus Specification http://www.semiconductors.philips.com

Conventions Used in This Manual

The word *assert* means to drive a signal true or active. The word *deassert* means to drive a signal false or inactive. Signals that are active LOW end in a "/".

Hexadecimal numbers are indicated by the prefix "0x" —for example, 0x32CF. Binary numbers are indicated by the prefix "0b" —for example, 0b0011.0010.1100.1111.

Revision History

Revision	Date	Remarks
Final Version 3.0	7/2005	Added LSISASx12A info and API2C registers and state machines.
Final Version 2.2	3/2005	Updated "Related Publications and Specifications" section. Added power dissipation footnote to Table 5.2. Added Section 5.2, "AC Characteristics."
Final Version 2.1	1/2005	Corrected ESD typo in Table 5.1.
Final Version 2.0	12/2004	Final release version.
Advance Version 0.2	12/2003	Initial release of document.

Contents

Chapter 1	Intro	oduction		
-	1.1	Overvi	ew	1-1
	1.2	Applica	ation Examples	1-3
		1.2.1	Single Expander Example	1-3
		1.2.2	Multiple Expander Example	1-4
		1.2.3	Path Redundancy Application	1-4
	1.3	Expan	1-5	
	1.4	Featur	es	1-6
		1.4.1	Expander Features	1-6
		1.4.2	STP/SATA Features	1-7
		1.4.3	SMP Features	1-7
		1.4.4	Usability	1-7
		1.4.5	Flexibility	1-8
		1.4.6	Testing and Reliability	1-8
Chapter 2	Fun	ctional D	Description	
	2.1	Block I	Diagram Description	2-1
		2.1.1	Connection Manager and Router	2-3
		2.1.2	SPhynx[n]	2-4
		2.1.3	SMP Target	2-4
		2.1.4	STP Target Enclosure Management Bridge	2-5
		2.1.5	Configuration Manager	2-6
		2.1.6	Clock/Reset/Misc/JTAG	2-9
		2.1.7	Serial Debugger	2-9
	2.2	Routin	g	2-9
		2.2.1	Direct Routing	2-10
		2.2.2	Subtractive Routing	2-10
		2.2.3	Table Routing	2-10

	2.3	Addres	sing	2-11			
		2.3.1	Address Spaces	2-11			
		2.3.2	SAS Addressing	2-11			
	2.4	Vendor	-Specific SMP Application Layer Commands	2-12			
		2.4.1	WRITE N REGISTERS (0xC0)	2-13			
		2.4.2	READ N REGISTERS (0x40)	2-15			
	2.5	Boot Lo	bader, Serial EEPROM, and API2C Interface	2-17			
	2.6	GPIO/L	ED and SIO Configuration	2-23			
		2.6.1	GPIO/LED Configuration	2-24			
		2.6.2	SIO Configuration	2-26			
		2.6.3	SGPIO Pattern Generation	2-27			
	2.7	STP E	nclosure Management Interface	2-28			
		2.7.1	Doorbell Interface	2-30			
		2.7.2	I ² C Addressing and Transfer Modes	2-30			
		2.7.3	I ² C Error Detection	2-31			
		2.7.4	I ² C Slave Write Operations	2-32			
		2.7.5	I ² C Slave Read Operations	2-33			
		2.7.6	ATAPI Command Status	2-33			
Chapter 3	Signal Descriptions						
	3.1	Signal	Types	3-2			
	3.2	Functio	nal Signal Grouping	3-2			
	3.3	SAS/S/	ATA Signals	3-4			
	3.4	Serial I	EEPROM Signals	3-5			
	3.5	I ² C and	d EMB Signals	3-5			
	3.6	Configu	uration and General-Purpose Signals	3-6			
	3.7	Multiple	exed SIO Interface	3-7			
	3.8	JTAG F	Pins	3-8			
	3.9	Factory	v Test Pins	3-8			
	3.10	Power	and Ground Pins	3-9			
Chapter 4	Regi	ster Des	criptions				
-	4.1	Primary	y Internal Registers Address Map	4-2			
	4.2	Configu	uration Manager Registers	4-3			
	4.3	SMP T	arget Registers	4-72			
	4.4	SPhyn	Registers	4-75			
		4.4.1	Link Registers	4-75			
		4.4.2	Phy Registers	4-93			

	4.5	STP Target Registers	4-99				
	4.6	Expander Connection Manager Registers					
		4.6.1 Phy Configuration Registers	4-124				
		4.6.2 Remote Bank Configuration Registers	4-129				
	4.7	EMB Slave Registers	4-133				
Chapter 5	Spec	cifications					
	5.1	DC Characteristics	5-1				
	5.2	AC Characteristics	5-7				
	5.3	Pinout	5-7				
	5.4	Package Diagram	5-14				
Appendix A	Regi	ster Summary					
Appendix B	Exar	nple Code for API2C Interface and Serial EEPROM					
	B.1	Initialize API2C Interface	B-1				
	B.2	Write a 32-Byte Page to the Serial EEPROM	B-2				
	B.3	Read a 32-Byte Page from the Serial EEPROM	B-3				
	Inde	x					

Customer Feedback

Figures

1.1	Single Expander Example	1-3
1.2	Multiple LSISASx12 Expanders	1-4
1.3	LSISASx12 Path Redundancy Application	1-5
2.1	LSISASx12 Block Diagram	2-2
2.2	Connection Manager and Router Operation	2-3
2.3	Boot Record Format	2-18
2.4	LSISASx12 GPIO/LED Control Structure	2-25
2.5	LSISASx12 GPIO/LED Pins	2-25
2.6	I ² C Slave Addressing and Transfer Modes	2-31
2.7	Slave Write Operation	2-32
2.8	Slave Read Operation	2-33
3.1	LSISASx12 Signal Functional Grouping	3-3
5.1	Reset Input	5-7
5.2	LSISASx12 472-Pin BGA Top View	5-12
5.3	472-Pin EPBGA-T (UO) Mechanical Drawing	
	(Sheet 1 of 3)	5-15

Tables

2.1	SIO Signal Description and Mapping	2-8
2.2	Port Number Encodings	2-12
2.3	SMP Write N Registers Request Frame	2-13
2.4	SMP Write N Registers Response Frame	2-15
2.5	SMP Read N Registers Request Frame	2-15
2.6	SMP Read N Registers Response Frame	2-16
2.7	Boot Record Format – Fixed Data Field	2-19
2.8	SIO Control Select Bit Encoding	2-27
2.9	Timebase Bit Definition	2-27
2.10	Expected Doorbells and SATA FISes	2-34
3.1	SAS/SATA Signal Description	3-4
3.2	Serial EEPROM Interface Signal Description	3-5
3.3	I ² C and EMB Signal Description	3-5
3.4	Configuration and General-Purpose Signal Description	3-6
3.5	Multiplexed SIO Signals	3-7
3.6	JTAG and Test Pins Signal Description	3-8
3.7	Factory Test Pins	3-8
3.8	Power and Ground Pins	3-9
4.1	Top-Level Address Map	4-2
4.2	Configuration Manager Config Register Map	4-3
4.3	LED Group Configuration Settings	4-41
4.4	Group Override Pin Operation	4-50
4.5	SMP Target Register Map	4-72
4.6	Sphynx Link Register Map	4-75
4.7	SAS Phy Register Map	4-93
4.8	Phy Operations Encodings	4-94
4.9	Jitter Pattern Selection	4-97
4.10	STP Target Register Map	4-99
4.11	SmpPhyOp Commands	4-118
4.12	Connection Manager Phy Offsets	4-124
4.13	Connection Manager Remote Bank Offsets	4-130
4.14	Connection Manager Remote Bank Register Map	4-130
4.15	I ² C Slave Register Map	4-133
5.1	Absolute Maximum Stress Ratings	5-2
5.2	Operating Conditions	5-2

5.3	GigaBlaze Transmitter Voltage Characteristics	
	— TX[11:0]	5-3
5.4	GigaBlaze Receiver Voltage Characteristics — RX[11:0]	5-3
5.5	GigaBlaze Transceiver Rise/Fall Characteristics	
	— TX[11:0] ,RX[11:0]	5-3
5.6	5 mA Bi-directional Signals — BSL_SCL, BSL_SD,	
	EMB_SCL, EMB_SD, GPIO[3:0], LED_ACTIVE[11:0]/,	
	LED_FAULT[11:0]/, LED_STATUS[11:0]/	5-3
5.7	5 mA Bi-directional Signals — CABLE_DET[11:0]/	5-4
5.8	10 mA, 3-state Outputs Signals — EMB_CRC_INT,	
	EMB_DB_INT	5-4
5.9	5 mA, 3-state Outputs — TDO	5-4
5.10	5 mA Outputs — UART_TX, LEDSYNCOUT	5-4
5.11	4 mA Outputs — PROCMON	5-5
5.12	Inputs — ISTWI_ADDR[1:0], IDDT	5-5
5.13	Inputs — UART_RX, LEDSYNCIN, TN	5-5
5.14	Inputs — MODE[3:0], SCAN_ENABLE, SCAN_MODE	5-5
5.15	Schmitt Trigger Inputs — CLK	5-6
5.16	Schmitt Trigger Inputs — RESET/, SCANCLK1,	
	SCANCLK2, SCANCLK3, TCK, TDI, TMS, TRST/	5-6
5.17	PECL Buffer — REFCLK+, REFCLK-	5-6
5.18	Capacitance	5-6
5.19	Reset Input	5-7
5.20	Listing by Signal Name	5-8
5.21	Listing by Pin Number	5-10
A.1	Configuration Manager Config Register Map	A-1
A.2	SMP Target Register Map	A-4
A.3	SPhynx Link Register Map	A-5
A.4	Phy Register Map	A-6
A.5	STP Target Register Map	A-7
A.6	ECM Phy Register Map	A-9
A.7	ECM Remote Bank Register Map	A-11
A.8	ECM Remote Bank Register Map	A-11
A.9	EMB Slave Register Map	A-14

Chapter 1 Introduction

This chapter describes the LSISASx12/LSISASx12A expander and consists of the following sections:

- Section 1.1, "Overview"
- Section 1.2, "Application Examples"
- Section 1.3, "Expander Communication"
- Section 1.4, "Features"

1.1 Overview

The LSISASx12/LSISASx12A expander is a 12-port, 3 Gbit/s Serial Attached SCSI (SAS)/Serial ATA (SATA) expander device. The LSISASx12/LSISASx12A expander provides the functionality for connecting targets and initiators. The expander provides phys for up to 12 SAS initiator, SAS target, SAS expander, or Serial ATA (SATA) target devices. The LSISASx12/LSISASx12A supports both wide and narrow port configurations. Narrow ports have one phy per port. Wide ports have multiple phys per port. The expander supports the SAS protocol as described in the *Serial Attached SCSI (SAS) Standard, version 1.0*, as well as the following features of the *SAS Standard, version 1.1*:

- BROADCAST(SES)
- BROADCAST(CHANGE) primitive for virtual phy resets, enables, and disables
- SATA II Port Selector
- Report Manufacturing Information in the format defined by the SAS version 1.1 specification
- BREAK handling clarifications

• ALIGN transmission from expanders

The LSISASx12/LSISASx12A expander manages connection requests between end devices and/or other expanders, and supports the Serial SCSI Protocol (SSP), the Serial ATA Tunneled Protocol (STP), the Serial Management Protocol (SMP), and the LSISASx12/LSISASx12A supports SATA as defined in the Serial ATA: High Speed Serialized AT Attachment Specification, version 1.0a. The expander includes an SMP target and an enclosure management bridge. The expander supports direct, table, and subtractive routing modes. LSI Logic produces the LSISASx12/LSISASx12A expander using the GflxTM (0.11 µm) process.

Each of the 12 phys on the LSISASx12 expander supports SAS transfers of up to 3.0 Gbits/s and SATA transfers of up to 1.5 Gbits/s. Each of the 12 phys on the LSISASx12A expander supports SAS transfers of up to 3.0 Gbits/s and SATA transfers of up to 3.0 Gbits/s. The SASx12A is a pin-compatible upgrade from the LSISASx12 for those customers requiring 3.0 Gbits/s SATA data transfers and/or enhanced serial GPIO (SGPIO) support.

There are two major differences between the LSISASx12 and the LSISASx12A expanders.

- The LSISASx12A supports 3.0 Gbit/s SAS and SATA connections, whereas the LSISASx12 supports only 1.5 Gbit/s SATA connections.
- The LSISASx12A provides enhanced SGPIO support which enables additional data modulation control for blink rates and patterns as well as programmable on/off times for LED/GPIO activity.

The LSISASx12/LSISASx12A 12-port SAS expander offers high performance, high disk drive connectivity, scalability and flexibility in various storage environments as an alternative to today's expensive and complex offerings. The LSISASx12/LSISASx12A¹ SAS expander is ideal for high availability and scalable server clustering environments and front-end storage subsystems used in clusters, SANs, and NAS environments. LSI Logic SAS expanders are ideal for data centers and Storage Area Networks, leveraging existing SCSI infrastructure for investment protection and ease of migration and implementation.

^{1.} In the rest of this document LSISASx12 refers to both the LSISASx12 expander and the LSISASx12A expander unless specifically noted.

1.2 Application Examples

The LSISASx12 can be used in simple topologies to attach an initiator to SAS/SATA devices, in edge expander topologies to increase the number of accessible devices, or in fault-tolerant path-redundancy topologies to improve system reliability. By cascading multiple LSISASx12 expanders, users can attach up to 144 devices.

The LSISASx12 expander can be used to construct many different SAS topologies. A few examples are shown in the following subsections.

1.2.1 Single Expander Example

Simple topologies can utilize a single expander to access SAS or SATA drives as illustrated by Figure 1.1.

Figure 1.1 Single Expander Example

D = Direct

T = Table

S = Subtractive

1.2.2 Multiple Expander Example

To increase the number of devices within a topology, multiple LSISASx12 expanders can be cascaded into edge expander device sets as illustrated in Figure 1.2. Notice that the expander requires minimal external support components including a reference clock and a Serial EEPROM device. A single serial EEPROM can provide unique configurations to up to four LSISASx12 expanders.

Figure 1.2 Multiple LSISASx12 Expanders

1.2.3 Path Redundancy Application

Path redundancy can be provided by utilizing dual-ported SAS drives. Figure 1.3 shows a path redundancy application.

1.3 Expander Communication

The LSISASx12 supports Serial SCSI Protocol (SSP), Serial ATA Tunneled Protocol (STP), Serial Management Protocol (SMP), and Serial ATA (SATA) protocol. SSP provides mapping of SCSI commands to support initiators and targets, and enables the LSISASx12 to communicate with other SSP devices, such as SAS controllers and SAS drives. STP maps serial ATA commands to support multiple initiators and targets, and enables the LSISASx12 to communicate with serial ATA devices. The STP target enclosure management bridge communicates with an external enclosure management processor.

SMP provides management commands for SAS expanders. The LSISASx12 provides an SMP block that enables initiator devices to communicate directly to the LSISASx12. The SMP Target provides access to the standard SMP functions and extended functions of the LSISASx12. Initiators can use the SMP Target to perform discovery on the LSISASx12 expander.

1.4 Features

This section lists the features of the LSISASx12 expander.

1.4.1 Expander Features

This subsection describes the expander features.

- Supports SSP, STP, and SMP as defined in the Serial Attached SCSI (SAS) Standard, version 1.0
- Supports the following features of the SAS Standard, version 1.1
 - BROADCAST(SES)
 - BROADCAST(CHANGE) primitive for virtual phy resets, enables, and disables
 - SATA Port Selector
 - Report Manufacturing Information in the format defined by the SAS version 1.1 specification
 - BREAK handling clarifications
 - ALIGH transmission from expanders
- Supports SATA as defined in the Serial ATA: High Speed Serialized AT Attachment Specification, version 1.0a
- Supports multiple data rates and auto-negotiation between
 - 1.5 Gbits/s and 3.0 Gbits/s SAS
 - 1.5 Gbits/s and 3.0 Gbits/s SATA (on LSISASx12A only)
- Provides a low latency connection router to efficiently create and maintain connections
- Provides an Inter-IC (I²C) bus to the STP target enclosure management bridge to streamline communication with an optional enclosure management processor
- Provides configurable drive spin-up sequencing on a per-phy basis
- Programmable TX and RX signal polarity for optimization of board routing
- Provides a scalable interface that supports up to 144 devices through multiple expanders

- Provides four configurable GPIO signals for each phy to indicate drive activity, data transfers, faults, and cable detection
- Offers an advanced GPIO interface that provides serial and parallel GPIO capabilities
- Provides a Serial I/O (SIO) interface for managing general-purpose data communication

1.4.2 STP/SATA Features

This subsection describes the STP features.

- The LSISASx12 supports SATA data transfers of 1.5 Gbits/s
- The LSISASx12A supports SATA data transfers of 1.5 Gbits/s or 3.0 Gbits/s
- Supports STP data transfers of 3.0 Gbits/s and 1.5 Gbits/s
- Allows addressing of multiple SATA targets
- Allows multiple initiators to address a single target

1.4.3 SMP Features

This subsection describes the SMP features.

- Implements SMP functions as defined in the SAS standard
- Uses the SMP Report Manufacturer Information Frame format that is specified in version 1.1 of the SAS standard
- Decodes SMP packets that are destined for the expander
- Performs CRC checking and generation on the request frames and response frames

1.4.4 Usability

This subsection describes the usability features.

- Simplifies cabling with a point-to-point, serial architecture
- Supports multiple routing methodologies
 - Supports direct, table, and subtractive routing
 - Allows per-phy configurable routing

1.4.5 Flexibility

This subsection describes the features that increase the flexibility of the LSISASx12 expander.

- Allows concurrent connections to SAS or SATA targets
- Offers configurable options
 - Stores configuration options in a serial EEPROM
 - A single serial EEPROM can provide unique configuration information for up to 4 LSISASx12 expanders
 - A serial EEPROM is optional if the enclosure management processor is implemented
- Allows flexible allocation of routing table entries to the LSISASx12 phys
- Allows reuse of routing table resources across all of the phys composing a wideport

1.4.6 Testing and Reliability

This subsection describes the testing and reliability features.

- Uses proven GigaBlaze[®] transceivers
- Provides 2 kV ESD protection
- Provides latch-up protection
- Has a high proportion of power and ground pins
- Uses the proven Gflx technology
- Provides a UART to support serial debugging
- Supports JTAG testing

Chapter 2 Functional Description

This chapter provides a subsystem level overview of the LSISASx12 expander chip. This chapter consists of the following sections.

- Section 2.1, "Block Diagram Description"
- Section 2.2, "Routing"
- Section 2.3, "Addressing"
- Section 2.4, "Vendor-Specific SMP Application Layer Commands"
- Section 2.5, "Boot Loader, Serial EEPROM, and API2C Interface"
- Section 2.6, "GPIO/LED and SIO Configuration"
- Section 2.7, "STP Enclosure Management Interface"

This chapter assumes that the reader understands the SAS standard.

2.1 Block Diagram Description

The LSISASx12 consists the following blocks:

- Connection Manager and Router
- SMP Target
- STP Target Enclosure Management Bridge
- SPhynx [11:0]
- Serial Debugger
- Configuration Manager
- Clock/Reset/JTAG

Figure 2.1 provides the block diagram, which shows the relationships between these modules. The following subsections discuss the modules.

Figure 2.1 LSISASx12 Block Diagram

2.1.1 Connection Manager and Router

The connection manager responds to connection requests by scheduling and allocating the connection router path resources. When a link is established, the linked phys can communicate and transfer data. The connection router connects signals between pairs of phys, or between a phy and an internal port (SMP or STP) with minimal latency.

The connection manager establishes a connection when a link requests a connection. The connection manager looks at all connection requests and establishes as many connections as possible. The connection manager uses a distributed arbitration mechanism. Once a connection is established, the connected links communicate with each other and pass the receive/transmit data stream.

Registers within the connection manager are readable and writable through the register bus interface. Section 4.2, "Configuration Manager Registers," describe the connection manager registers. Figure 2.2 illustrates the operation of the connection manager.

Figure 2.2 Connection Manager and Router Operation

2.1.2 SPhynx[n]

The SPhynx[n] modules contain SAS physical, phy, and link layer functionality. The SPhynx[n] modules interface with the connection manager and the connection router to establish connections between ports. Each SPhynx[n] module contains a GigaBlaze core that converts the serial receive data to a parallel format, and converts the parallel transmit data to a serial format. Each SPhynx module can also function as an STP to SATA bridge. The LSISASx12 expander contains 12 SPhynx[n] modules, one for each port. The modules are numbered SPhynx[0] to SPhynx[11]. These modules are also referred to as Phy[0] to Phy[11].

2.1.3 SMP Target

The SMP target supports SMP functions on the LSISASx12 expander. This block decodes SMP packets destined to the expander device and performs the requested operation. The SMP target also provides generation of SMP response frames.

The SMP target consists of:

- SMP link layer
- SMP register bus interface slave
- SMP port layer
- SMP transport layer
- SMP application layer

The SMP Target is responsible for the following tasks:

- Receiving SMP OPEN address frames (OAF)
- Transmitting OPEN_REJECT(PROTOCOL NOT SUPPORTED) frames in response to OAFs when the:
 - OAF protocol is not SMP
 - OAF initiator bit is cleared to 0b0
 - OAF Features bits [3:0] are not 0b0000
- Transmitting OPEN_REJECT(RETRY) in response to OAFs if the Application Layer is processing an SMP Request

- Transmitting OPEN_ACCEPT in response to OAFs which are not covered by the previous two bullet items
- Receiving SMP Request Frames
- CRC checking on SMP Request Frames
- Validating fields within SMP Request Frames
- Processing mandatory SMP functions
- Processing vendor-specific SMP functions
- Generating SMP response data
- Generating CRC for SMP Response Frames
- Transmitting SMP Response Frames

The SMP application layer is responsible for processing SMP commands. This layer implements the mandatory commands as the SAS standard requires, as well as several vendor-specific SMP commands. These commands are documented in Section 2.4, "Vendor-Specific SMP Application Layer Commands," on page 2-12.

2.1.4 STP Target Enclosure Management Bridge

The STP target enclosure management bridge (STP EMB) is an STP to I²C bridge that allows communication with an enclosure management processor. This block transports STP packets between the LSISASx12 expander and the optional external enclosure management processor. The STP EMB supports connection management to the external enclosure management processor, consisting of doorbell communication and data transfer functions.

The EMB_SCL and EMB_SD signals provide the clock and data interface. Two additional signals, EMB_DB_INT and EMB_CRC_INT provide the doorbell and CRC error handshaking to external enclosure processors. The STP also uses the ISTWI_ADDR[1:0] signals to communicate. Section 2.7, "STP Enclosure Management Interface," on page 2-28 provides more information on the STP EMB interface.

2.1.5 Configuration Manager

The configuration manager performs device configuration, broadcast processing, startup sequencing, and spin-up control. The configuration manager also configures the GPIO/LED usages and the SIO interface.

The configuration manager has a 64 Kbyte register block. The first 16 Kbytes is for the Config Manager registers, the second 16 Kbytes is reserved for use by the APB Register Interface, the next 16 Kbytes is for the LED control block, and the last 16 Kbytes is for the SIO interface block. Section 4.2, "Configuration Manager Registers," on page 4-3 describes these registers.

2.1.5.1 Boot Sequencer

The configuration manager reads a boot record of the configuration parameters through the boot loader. An external serial EEPROM stores the boot record. The boot record provides a fixed data field for common configuration information, and an optional data field for additional, vendor-specific configuration information. The use of the ISTWI_ADDR[1:0] signals permits a single serial EEPROM to provide boot records for up to four LSISASx12 expanders. Section 2.5, "Boot Loader, Serial EEPROM, and API2C Interface," on page 2-17 provides more information on the boot sequencer, boot record, and serial EEPROM loader.

2.1.5.2 Broadcast Processing

The configuration manager monitors broadcast request inputs from each SPhynx module and requests the transmission of BROADCAST primitive sequences by SPhynx modules.

2.1.5.3 GPIO/LED Block

The GPIO/LED block controls the activity of the GPIO signals. There are 52 independent GPIO signals. The function of each GPIO and LED signal is set in the LED control registers, which are documented in Section 4.2, "Configuration Manager Registers," Possible functions are:

- Activity LED typically supported by the LED_ACT[11:0]/ signals
- Status LED typically supported by the LED_STATUS[11:0]/ signals

- Fault LED typically supported by the LED_FAULT[11:0]/ signals
- Cable Detection typically supported by the CBL_DET[11:0]/ signals
- General GPIO typically supported by the GPIO[3:0] signals

Section 2.6, "GPIO/LED and SIO Configuration," on page 2-23 provides more information on the configuration of the GPIO and LED signals.

2.1.5.4 SIO Functional Description

The LSISASx12 transmits SGIO information on a serial interface to external logic. The SIO interface has BlinkClkin, BlinkClkout, SioClkin, Siolkout, SioDout, SioStart, SioEnd, and SioDin signals. SioStart and SioEnd control the input and output data streams, SioDout and SioDin. The SIO signals are mapped to the LSISASx12 GPIO/LED signals.

The LSISASx12A provides enhanced SGPIO support which is not available on the LSISASx12. The enhanced functionality enables additional data modulation for blink rates and blink patterns. The LSISASx12A also provides programmable LED/GPIO on/off times. Configuration of the enhanced SGPIO interface is accomplished through SMP register write commands.

Table 2.1 describes the interface signals and provides the SIO to GPIO/LED signal-pin mapping. More information on the SIO interface is available in Section 2.6.2, "SIO Configuration," on page 2-26, Section 3.7, "Multiplexed SIO Interface," on page 3-7, and in the SIO register descriptions on pages 4-55 to 4-66

SIO Signal Name	LSISASx12 Signal	I/O	Description
SioEnd	LED_STATUS[6]/	0	This output signal indicates that this module is currently driving the last bit of serial data on the SioDout line.
SioStart	LED_STATUS[7]/	I	This signal indicates that serial data may be driven on the SioDout line during the next clock cycle, and that data can be received on the SioDin line. In Single originator mode, which is set by the SioMode bit in the SIO Control register, the SioEnd signal provides the start signal, and the LSISASx12 does not require an SioStart input.
SioDout LED_STATUS[8]/		0	This signal provides the serial data output line.
SioDin LED_STATUS[9]/		I	This signal provides the serial data input line.
SioClkin	DClkin LED_STATUS[10]/		An originator with ClkEnable set to 1 in its SIO_CFG
SioClkout	LED_STATUS[11]/	0	bits in the SIO_CFG register control the frequency of this clock. Originators with ClkEnable cleared to 0 receive this clock signal on SioClkin.
BlinkClkin	LEDSYNCIN	I	An originator with ClkEnable set to 1 in its SIO_CFG
BlinkClkout	LEDSYNCOUT	0	frequency fixed at 0.5 Hz. Originators with ClkEnable cleared to 0 receive this clock signal on BlinkClkin.

Table 2.1 SIO Signal Description and Mapping

2.1.5.5 Spin-Up Control

This subblock coordinates when each SPhynx module allows an attached drive to spin up. The spin-up controller monitors spin-up requests from each SPhynx module and issues spin-up acknowledgements to the requesting SPhynx modules according to the following configurable parameters:

- Spin Number maximum number of concurrent spin-ups
- Spin-up Delay spin-up time interval
- Spin Mode selects one of three modes for spin-up of SATA drives: Immediate, Host-notify, or self-timed

The module contains 12 timers, one for each of the 12 phys. If the number of timers currently running is less than Spin Number, the spin-up controller grants a spin-up acknowledgement and then starts the associated timer. If the number of timers currently running is greater than or equal to the Spin Number, the spin-up controller does not grant any more spin-up acknowledgements until one or more of the currently running timers reaches the Spin-up Delay. The spin-up controller uses round-robin arbitration.

The spin-up timers use a 1 ms clock, are 14 bits wide, and can time from 2 ms to 16.4 seconds, in 1 ms increments. The number of timers that are allowed to run simultaneously (Spin Number) is programmable from zero to 12. A setting of zero results in no spin-up acknowledgement being granted, and setting of 12 results in every spin-up request being immediately acknowledged. The Spin-up Control register configures the spin-up controller.

The LSISASx12 uses the Spin Mode parameter to provide special spin-up support for phys that are connected to SATA drives. The Immediate mode allows OOB to occur with the drive as soon as both phys are ready. The Host-Notify mode holds OOB until a host in the domain issues a link reset to the expander phy. The Self-Timed mode holds OOB until Spin Number and Spin Delay parameters permit the drive to spin-up.

2.1.6 Clock/Reset/Misc/JTAG

This block includes the required logic for testing, clock generation, and reset generation.

2.1.7 Serial Debugger

This block contains the serial debugger functionality. The serial debugger includes a UART interface that is used for debugging the chip. The UART supports 19.2 Kbaud transfers.

2.2 Routing

The LSISASx12 supports direct routing, table routing, and subtractive routing. The individual routing method is configurable on a per-phy basis.

2.2.1 Direct Routing

Direct routing is done for SAS initiators, SAS targets, or SATA targets that directly attach to one of the LSISASx12 phys. The LSISASx12 routes frames based on the SAS address in the frame. The LSISASx12 does not use routing tables or subtractive routing when performing direct routing.

2.2.2 Subtractive Routing

Subtractive routing occurs when the LSISASx12 routes frames with unresolved addresses to a specific port. This port can be one of the SPhynx modules or a group of SPhynx modules, as in the case of a wide port. Subtractive routing is enabled through the register bus interface.

The ECM Config register configures subtractive routing. The SAS standard does not allow end devices to use subtractive routing.

2.2.3 Table Routing

The LSISASx12 supports 144 routing table entries in 12 banks with 12 entries each. Each phy can be configured to use any or all of the 12 banks, provided that the banks are contiguous. All entries include the WWN and a disable bit. The WWN is valid when the disable bit is cleared.

The table routing attribute is blocked when the Device Type is set to end device. As such, the LSISASx12 uses direct routing. The SAS standard does not allow end devices to use table routing.

Routing entries are stored in 12 register banks, which are accessible through the register bus interface. Each bank supports up to 12 entries. All entries include the WWN and a disable bit. Each phy can select any, all, or none of these banks. The Bank Enable bits control the bank selection. All banks selected by a phy are searched for an address hit to that phy during the arbitration process. The remote entry disable bit must be cleared to enable an address hit to a remote WWN in the remote routing table.

Initiators obtain routing entry data and deliver it to the SMP target. The SMP target then delivers this data to the routing table through the primary internal registers.

The LSISASx12 employs hardware logic to compare requested path attributes with all valid entries in each selected bank. If a match is found, the LSISASx12 attempts to form a link between the devices.

2.3 Addressing

This section discusses the different address spaces for the LSISASx12 and SAS addressing.

2.3.1 Address Spaces

The LSISASx12 internal registers are divided into the primary internal register space and the EMB register space. The primary internal registers allow access to most registers in the device, including registers for the configuration manager, the connection manager, and the individual SPhynx modules. The primary internal registers may be accessed through the serial debugger, the SMP target, the EMB, or the serial EEPROM boot loader. The primary internal registers are described in Section 4.1, "Primary Internal Registers Address Map," on page 4-2 through Section 4.6, "Expander Connection Manager Registers," on page 4-124.

The EMB registers have their own register space, which the primary internal registers cannot access. However, the EMB can access the primary internal registers through its register space. Through the EMB, the SEP can access the primary internal registers for device configuration and/or LED control. Access to these registers is accomplished by placing the desired command and address into the RR_Command0 - RR_Command3 registers. For write operations the data to be written is placed in the RR_Data0 - RR_Data7 registers. For read operations data returned from the primary internal registers is placed into the RR_Data0 - RR_Data7 registers. Writing to the RR_Control register causes execution of the command to the primary internal registers. These registers are described in Section 4.7, "EMB Slave Registers," on page 4-133.

2.3.2 SAS Addressing

Each LSISASx12 expander requires a block of 16 addresses starting at 0x000–0xFFFF. When performing STP-SATA Bridge addressing or

internal target addressing, address bits [63:4] are given by World Wide Name bits [63:4], and address bits [3:0] are given by the port number bits [3:0]. Table 2.2 provides the port number encodings for the LSISASx12.

Port	Definition
0x0	Phy 0 (when SATA device attached)
0x1	Phy 1 (when SATA device attached)
0x2	Phy 2 (when SATA device attached)
0x3	Phy 3 (when SATA device attached)
0x4	Phy 4 (when SATA device attached)
0x5	Phy 5 (when SATA device attached)
0x6	Phy 6 (when SATA device attached)
0x7	Phy 7 (when SATA device attached)
0x8	Phy 8 (when SATA device attached)
0x9	Phy 9 (when SATA device attached)
0xA	Phy 10 (when SATA device attached)
0xB	Phy 11 (when SATA device attached)
0xC	STP Target to EMB
0xD	Reserved
0xE	Reserved
0xF	SMP Target

 Table 2.2
 Port Number Encodings

2.4 Vendor-Specific SMP Application Layer Commands

The SMP Target implements the following the Vendor-Specific commands:

- WRITE N REGISTERS (0xC0)
- READ N REGISTERS (0x40)

The following sections describe the format for the request and response frames associated with these commands.

2.4.1 WRITE N REGISTERS (0xC0)

This Vendor-Unique function writes to N contiguous 8-byte registers, where $1 \le N \le 127$ and N specifies the number of 8-byte register write operations. Table 2.3 shows the format for the WRITE N REGISTERS request frame.

Byte	Bit								
-	7	6	5	4	3	2	1	0	
0		SMP Frame Type (0x40)							
1		Function (0xC0)							
2		Reserved							
3				1	٧				
4				StartAd	r[18:11]				
5				StartAd	dr[10:3]				
6			St	artByteE	nables[7	':0]			
7			Ei	ndByteE	nables[7	:0]			
8	(MSB)	(MSB) WriteData[3] (Register at StartAdr)							
9		WriteData[2]							
10		WriteData[1]							
11		WriteData[0] (LS						(LSB)	
12	(MSB)	(MSB) WriteData[7] (Register at StartAdr+4)							
13				Writel	Data[6]				
14		WriteData[5]							
15		WriteData[4] (LSB)							
(N-1) × 8 + 8	(MSB) WriteData[3] (N th Register)								
(N-1) × 8 + 15	WriteData[4] (LSB)								
(N-1) × 8 + 16	(MSB)	(MSB)							
(N-1) × 8 + 19	CRC (LSB								

 Table 2.3
 SMP Write N Registers Request Frame

Descriptions of these fields follow.

• **StartAdr[18:3]** specifies the starting 8-byte boundary to begin the register write operation.

- StartByteEnable[7:0] specifies the active HIGH byte enables for the first register write operation, which targets the registers located at address StartAdr and StartAdr+4. StartByteEnables[3:0] apply to the register at StartAdr. StartByteEnables[7:4] apply to the register at StartAdr+4. This allows for double dword, dword, and byte granularity on the first register write operation. All register writes in between the first and last writes assume a byte enable of 0xFF.
- EndByteEnable[7:0] specifies the active HIGH byte enables for the last register write operation. EndByteEnable[3:0] apply to the register located at EndAdr. EndByteEnables[7:4] apply to the register located at EndAdr+4, where EndAdr = StartAdr + [(N-1) × 8]. This allows for double dword and byte granularity on the last register write operation.
- WriteData[3] corresponds to bits [31:24] of the dword to be written to address StartAdr, while WriteData[0] corresponds to bits [7:0] of the dword to be written to address StartAdr. WriteData[7] corresponds to bits [31:24] of the dword to be written to address StartAdr+4, while WriteData[4] corresponds to bits [7:0] of the dword to be written to address StartAdr+4.

Table 2.4 shows the response frame format. The response conditions are:

- If N is not 0x00, and is less than or equal to 127, the Function Result is set to 0x00 to indicate SMP FUNCTION ACCEPTED.
- If N=0, the Function Result is set to 0x02 to indicate SMP FUNCTION FAILED.
- If N > 127, and the frame size is less than 259 dwords, the Function Result is set to SMP FUNCTION FAILED.
- If N > 127 and the frame size is 259 dwords or more, the link layer sends a BREAK sequence, and no SMP Response frame is sent.
- If 0 < N <128 and the size of the Request Frame is not (N × 2) + 3 dwords, the function result is set to 0xh03 (INVALID REQUEST FRAME LENGTH) and no registers are written.
All register writes in between the first and last addresses assume a byte enable of 0xFF.

 Table 2.4
 SMP Write N Registers Response Frame

Byte		Bit							
-	7	6	5	4	3	2	1	0	
0		SMP FRAME TYPE (0x41)							
1		Function (0xC0)							
2		Function Result							
3		Reserved							
4	(MSB)	(MSB)							
7		CRC							
								(LSB)	

2.4.2 READ N REGISTERS (0x40)

This Vendor-Unique function returns the contents of N contiguous 8-byte registers, where $1 \le N \le 127$ and N specifies the number of 8-byte register write operations. Table 2.5 shows the format for the READ N REGISTERS request frame.

 Table 2.5
 SMP Read N Registers Request Frame

Byte	Bit								
-	7	6	5	4	3	2	1	0	
0			SMI	P Frame	Type (0	x40)			
1				Function	n (0x40)				
2				Rese	erved				
3				1	N				
4		StartAdr[18:11]							
5	StartAdr[10:3]								
6	Reserved								
7	Reserved								
8	(MSB)								
11				CF	кС				
								(LSB)	

StartAdr[18:3] specifies the starting 8-byte boundary to begin the register read operation.

All register writes in between the first and last addresses assume a byte enable of 0xFF.

Table 2.6 provides the response frame format. The response conditions are:

- If N is not 0x00, and is less than or equal to 127, the Function Result is set to 0x00 to indicate SMP FUNCTION ACCEPTED.
- For all other cases, the Function Result is set to 0x02 to indicate SMP FUNCTION FAILED, and the Response frame is limited to the Response Header and the CRC.

Byte	Bit							
-	7	6	5	4	3	2	1	0
0			SMI	P Frame	e Type (0	x41)	1	
1				Functio	on (0x40)			
2			Functio	n Resu	lt (0x00 c	or 0x02)		
3		Reserved						
4	(MSB)	(MSB) ReadData[3] (Register at StartAdr)						
5		ReadData[2]						
6		ReadData[1]						
7				Read	Data[0]			(LSB)
8	(MSB)		ReadD	ata[7]	(Register	at Star	tAdr+4)	
9				Read	dData[6]			
10				Read	dData[5]			
11		ReadData[4] (LSB)						(LSB)
(N-1) × 8 + 4	(MSB) Read Data[3] (N th Register)							
(N-1) × 8 + 7		Read Data[4] (LSE						(LSB)
(N-1) × 8 + 8	(MSB)							
(N-1) × 8 +11				CRC				(LSB)

 Table 2.6
 SMP Read N Registers Response Frame

The following describes the Read Response frame fields.

- **ReadData[3]** corresponds to bits [31:24] of the dword read from the register located at address StartAdr, while **ReadData[0]** corresponds to bits [7:0] of the dword read from the register located at address StartAdr.
- **ReadData[7]** corresponds to bits [31:24] of the dword read from the register located at address StartAdr+4, while **ReadData[4]** corresponds to bits [7:0] of the dword read from the register located at address StartAdr+4.

If the size of the Request Frame is not 3 dwords, the Function Result is 0x03 to indicate INVALID REQUEST FRAME LENGTH, and no registers are read.

2.5 Boot Loader, Serial EEPROM, and API2C Interface

The Boot Loader reads a record of configuration from an external serial EEPROM and distributes that information to various functional blocks within the expander.

The boot record contains two sections. The first section is a fixed field of data that must be read to enable the part. The second section provides optional data where both the address and data to be written is specified. Both sections are covered by a checksum. The sum of all data and the checksum equals zero. The null pointer following the optional data field and the second checksum are required regardless of the inclusion of optional data commands.

Boots are retried up to seven times if errors occur. If the boot ultimately fails then the phys are disabled and the LSISASx12 generates an interrupt to the Enclosure Processor.

The optional data field can configure GPIO/LEDs, nonstandard time-outs, or any register that this document describes.

The configuration manager uses an AMBA[™] Peripheral Inter-IC (API2C) interface to read the serial EEPROM. To allow up to four expanders to access unique configuration records from a single serial EEPROM, the API2C serial EEPROM loader uses ISTWI_ADDR[1:0] to specify the base vector of the configuration record. ISTWI_ADDR[1:0] provide the least significant bits of the base vector address.

The API2C interface operates as a master only with 100 kHz or 400 kHz memories that support 16-bit addressing. The base vector is always read at a 100 kHz rate. If the most significant bit is set, the remaining data is read at 400 kHz. If a failure occurs, the configuration manager retries the read. After three retries, all subsequent read attempts are at 100 kHz.

Figure 2.3 shows the format of the boot record. The data fields in the boot record are 8 bits wide.

Figure 2.3 Boot Record Format

Table 2.7 shows the contents of the fixed data field within the boot record. The first byte of the fixed data record is a "Safety Byte." This byte is the XOR of the 2-bit ISTWI_ADDR[1:0] replicated four times, and the value 0x51. The safety byte is not written to the register bus interface, but is included in the fixed data record checksum.

Destination	Address	SEEPROM Offset		Field
-	-	0	Safety Byte	Safety Byte
CfgMgr	0x00000	1	WWN Base Address	WWN[63:56]
CfgMgr		2		WWN[55:48]
CfgMgr		3		WWN[47:40]
CfgMgr		4		WWN[39:32]
CfgMgr	0x00004	5		WWN[31:24]
CfgMgr		6		WWN[23:16]
CfgMgr		7		WWN[15:8]
CfgMgr		8		WWN[7:0]
CfgMgr	0x00008	9	Vendor ID	Vendor ID[63:56]
CfgMgr		10		Vendor ID[55:48]
CfgMgr		11		Vendor ID[47:40]
CfgMgr		12		Vendor ID[39:32]
CfgMgr	0x0000C	13		Vendor ID[31:24]
CfgMgr		14		Vendor ID[23:16]
CfgMgr		15		Vendor ID[15:8]
CfgMgr		16		Vendor ID[7:0]
CfgMgr	0x00010	17	Product ID	Product ID[127:120]
CfgMgr		18		Product ID[119:112]
CfgMgr		19		Product ID[111:104]
CfgMgr		20		Product ID[103:96]
CfgMgr	0x00014	21	Product ID	Product ID[95:88]
CfgMgr		22	(cont.)	Product ID[87:80]
CfgMgr	1	23		Product ID[79:72]
CfgMgr		24		Product ID[71:64]

 Table 2.7
 Boot Record Format – Fixed Data Field

Destination	Address	SEEPROM Offset		Field	
CfgMgr	0x00018	25	Product ID	Product ID[63:56]	
CfgMgr		26	(cont.)	Product ID[55:48]	
CfgMgr		27		Product ID[47:40]	
CfgMgr		28		Product ID[39:32]	
CfgMgr	0x0001C	29	Product ID	Product ID[31:24]	
CfgMgr		30	(cont.)	Product ID[23:16]	
CfgMgr		31		Product ID[15:8]	
CfgMgr		32		Product ID[7:0]	
CfgMgr	0x00020	33	Product Revision	Product Revision[31:24]	
CfgMgr		34		Product Revision[23:16]	
CfgMgr		35		Product Revision[15:8]	
CfgMgr	0x00040	36	Spin-up Control	Spin Delay[15:8]	
CfgMgr		37		Spin Delay[7:0]	
CfgMgr		38		Spin Number	
CfgMgr		39		Spin Mode	
CfgMgr	0x00044	40	Phy Config	Reserved	
CfgMgr		41		Reserved	
CfgMgr		42		SMP Target Enable, STP Target Enable, Phy Enable[11:8]	
CfgMgr		43		Phy Enable[7:0]	
CfgMgr	0x00048	44	Reserved	Reserved	
CfgMgr		45	Must write to	Reserved	
CfgMgr	1	46	0,00001	Reserved	
CfgMgr		47		Reserved	

Table 2.7 Boot Record Format – Fixed Data Field (Cont.)

Destination	Address	SEEPROM Offset		Field
CfgMgr	0x0004c	48	TX/RX Polarity	Reserved
CfgMgr		49		Reserved
CfgMgr		50		TX Polarity[11:8]
CfgMgr		51		TX Polarity[7:0]
CfgMgr	0x00050	52		Reserved
CfgMgr		53		Reserved
CfgMgr		54		RX Polarity[11:8]
CfgMgr		55		RX Polarity[7:0]
Phy (all)	0x18304	56	GigaBlaze RX	1E
Phy (all)		57	Config	1E
Phy (all)		58		1E
Phy (all)		59		1E
Phy (all)	0x18308	60	GigaBlaze TX Config (SAS)	28
Phy (all)		61		2C
Phy (all)		62		28
Phy (all)		63		2A
Phy (all)	0x1830C	64	GigaBlaze TX	28
Phy (all)		65	Config (SATA)	25
Phy (all)		66		28
Phy (all)		67		14
ECM	0x60000	68	Expander	ECM Config 0
ECM	0x60004	69	Connection Manager Registers	ECM Remote Bank Enable 0 [11:8]
ECM		70	Configuration	ECM Remote Bank Enable 0 [7:0]
ECM	0x60010	71		ECM Config 1
ECM	0x60014	72		ECM Remote Bank Enable 1 [11:8]
ECM		73		ECM Remote Bank Enable 1 [7:0]
ECM	0x60020	74		ECM Config 2
ECM	0x60024	75		ECM Remote Bank Enable 2 [11:8]
ECM		76		ECM Remote Bank Enable 2 [7:0]

Table 2.7 Boot Record Format – Fixed Data Field (Cont.)

Destination	Address	SEEPROM Offset		Field
ECM	0x60030	77	Expander	ECM Config 3
ECM	0x60034	78	Connection Manager Registers	ECM Remote Bank Enable 3 [11:8]
ECM		79	Configuration (cont)	ECM Remote Bank Enable 3 [7:0]
ECM	0x60040	80		ECM Config 4
ECM	0x60044	81		ECM Remote Bank Enable 4 [11:8]
ECM		82		ECM Remote Bank Enable 4 [7:0]
ECM	0x60050	83		ECM Config 5
ECM	0x60054	84		ECM Remote Bank Enable 5 [11:8]
ECM		85		ECM Remote Bank Enable 5 [7:0]
ECM	0x60060	86	Expander	ECM Config 6
ECM	0x60064	87	Connection Manager Registers	ECM Remote Bank Enable 6 [11:8]
ECM		88	Configuration (cont)	ECM Remote Bank Enable 6 [7:0]
ECM	0x60070	89		ECM Config 7
ECM	0x60074	90		ECM Remote Bank Enable 7 [11:08]
ECM		91		ECM Remote Bank Enable 7 [7:0]
ECM	0x60080	92		ECM Config 8
ECM	0x60084	93		ECM Remote Bank Enable 8 [11:8]
ECM		94		ECM Remote Bank Enable 8 [7:0]
ECM	0x60090	95	Expander	ECM Config 9
ECM	0x60094	96	Connection Manager Registers	ECM Remote Bank Enable 9 [11:8]
ECM		97	Configuration (cont)	ECM Remote Bank Enable 9 [7:0]
ECM	0x600A0	98		ECM Config 10
ECM	0x600A4	99		ECM Remote Bank Enable 10 [11:8]
ECM		100		ECM Remote Bank Enable 10 [7:0]
ECM	0x600B0	101		ECM Config 11
ECM	0x600B4	102		ECM Remote Bank Enable 11 [11:8]
ECM		103		ECM Remote Bank Enable 11 [7:0]

 Table 2.7
 Boot Record Format – Fixed Data Field (Cont.)

Destination	Address	SEEPROM Offset		Field
SMP Target	0x10020	104	Route Table	Route Table Offset 0 [7:0]
SMP Target		105	Configuration	Route Table Size 0 [7:0]
SMP Target	0x10024	106		Route Table Offset 1 [7:0]
SMP Target		107		Route Table Size 1 [7:0]
SMP Target	0x10028	108		Route Table Offset 2 [7:0]
SMP Target		109		Route Table Size 2 [7:0]
SMP Target	0x1002C	110	Route Table	Route Table Offset 3 [7:0]
SMP Target		111	Configuration (cont)	Route Table Size 3 [7:0]
SMP Target	0x10030	112	(00.1.)	Route Table Offset 4 [7:0]
SMP Target		113		Route Table Size 4 [7:0]
SMP Target	0x10034	114		Route Table Offset 5 [7:0]
SMP Target		115	-	Route Table Size 5 [7:0]
SMP Target	0x10038	116	Route Table Configuration (cont)	Route Table Offset 6 [7:0]
SMP Target		117		Route Table Size 6 [7:0]
SMP Target	0x1003C	118		Route Table Offset 7 [7:0]
SMP Target		119		Route Table Size 7 [7:0]
SMP Target	0x10040	120		Route Table Offset 8 [7:0]
SMP Target		121		Route Table Size 8 [7:0]
SMP Target	0x10044	122	Route Table	Route Table Offset 9 [7:0]
SMP Target		123	Configuration (cont)	Route Table Size 9 [7:0]
SMP Target	0x10048	124	(00.1.)	Route Table Offset 10 [7:0]
SMP Target		125		Route Table Size 10 [7:0]
SMP Target	0x1004C	126		Route Table Offset 11 [7:0]
SMP Target		127		Route Table Size 11 [7:0]
Fixed Data Checksum	0x10050	128	Checksum	Checksum

Table 2.7 Boot Record Format – Fixed Data Field (Cont.)

2.6 GPIO/LED and SIO Configuration

This section describes the use and configuration of the GPIO, LED, and SIO signals.

2.6.1 GPIO/LED Configuration

The LSISASx12 provides a total of 52 LED and GPIO signals. There are four GPIO signals (GPIO[3:0]) and 48 LED signals (LED_ACTIVITY[11:0]/, LED_FAULT[11:0]/, LED_STATUS[11:0]/, and CABLE_DET[11:0]/). The LED signals are associated with the SAS ports on the device, but can also be used as GPIO signals. The configuration manager LED control registers can configure the LED and GPIO signals for a variety of status functions. Figure 2.4 shows the control structure for the LSISASx12 GPIO/LED pins.

Each SAS port has four LED signals. Three of these signals are typically configured to drive LEDs that indicate device activity, fault, and status. The fourth signal can be configured to provide a cable detect input. The LSISASx12 also provides four GPIO pins, GPIO[3:0], which are not associated with a phy. For ease of reference, Figure 2.5 associates each functional GPIO and LED signal group with a group number.

Figure 2.4 LSISASx12 GPIO/LED Control Structure

(Selectable on a per Bit Basis)

The user can configure all GPIO and LED signal groups as GPIO signals. The Group GPIO Control and Group GPIO Value register bits individually set the direction and value of each signal.

The LED signals support all the functionality listed in Table 4.3. GPIO[3:0] support only the GPIO functionality, and do not support the other functionalities listed in Table 4.3. The LED Group Control register configures the Group 1–4 signals for the Activity, Fault, Combo, or Inverted Activity setting.

Note: The Group 1–4 signals support all the functionalities listed in Table 4.3, despite their pin names.

The Group Override registers can assign three independent blinker definitions to any GPIO/LED signal, including GPIO[3:0]. The Group Override register blinker settings override other configuration settings for the signal. Each blinker definition consists of a 30-bit rotating shift register. The user can configure the blink pattern by programming the shift register, which can shift every 16 ms or 64 ms. Bit 0 of the shift register determines the state of the signal.

The LSISASx12 provides LEDSYNCIN and LEDSYNCOUT pins to synchronize the LED blink patterns between multiple LSISASx12 devices. The LEDSYNCOUT pin emits a 0.5 Hz square wave, which can be applied to the LEDSYNCIN pin on other LSISASx12 devices to synchronize blinker patterns on the devices. Each blinker definition has the ability to override the blink pattern and use the 0.5 Hz LEDSYNCOUT signal to drive the signals that the blinker definition controls.

2.6.2 SIO Configuration

This section describes the enhanced SGPIO interface that is available on the LSISASx12A expander. The enhanced SGPIO interface is not available on the LSISASx12 expander.

The SPGIO interface on the LSISASx12A can operate in a standard SGPIO mode or in an enhanced SGPIO mode. The standard SGPIO mode provides the same SGPIO interface that the LSISASx12 expander provides. The enhanced SPGIO mode provides three programmable output data control registers for each phy, and four pattern definition registers. Section 4.2, "Configuration Manager Registers," on page 4-3 describes these registers.

The SIO Control Select bit in the SIO Adapter Control register enables the enhanced SPGIO interface. Clearing this bit places the LSISASx12A expander in the standard SGPIO mode. Setting this bit places the LSISASx12A expander in the enhanced SGPIO mode. Table 2.8 defines the encoding of the SIO Control Select bit.

Table 2.8	SIO Contr	ol Select	Bit	Encoding
-----------	-----------	-----------	-----	----------

SIO Control Select	SIO Mode		
0	Standard SGPIO Mode		
1	Enhanced SGPIO Mode		

2.6.3 SGPIO Pattern Generation

This section describes how to program the enhanced SGPIO interface on the LSISASx12A expander.

There are four programmable pattern definition registers that define the LED blink pattern (SIO Pattern Definition 3-0). Pages 4-67 through 4-69 define these registers. The pattern definition registers are rotating shift registers that shift to the right once per time interval. Each pattern generator uses a unique, programmable 20-bit pattern and a time base interval of either 25 ms or 100 ms. The Timebase bit in the pattern definition register determines the time base interval for the given pattern definition register. Table 2.9 provides the definition of the Timebase bit.

Table 2.9 Timebase Bit Definition

Timebase Bit Setting	Shift frequency
0	25 ms
1	100 ms

The Activity Stretch Control register and SIO Adapter Control registers provide control of the minimum assertion time, maximum assertion time, minimum deassertion time, and off time following a maximum assertion.

Several examples of programming the enhanced SGPIO interface follow.

Example 1 – This example uses the SIO Pattern Definition 0 register to create a repeating pattern of 125 ms ON and 125 ms OFF.

- Set the SIO Control Select bit in the SIO Adapter Control register to 0b1 to enable the enhanced SGPIO interface.
- Set the Timebase bit to 0b0 to program a 25 ms time base.

Program the Pattern Definition 0 register to 0b00000111110000011111.

Example 2 – This example uses the SIO Pattern Definition 3 register create a repeating pattern of 1500 ms OFF and 500 ms ON.

- Set the SIO Control Select bit in the SIO Adapter Control register to 0b1 to enable the enhanced SGPIO interface.
- Set the Timebase bit to 0b1 to program a time base of 100 ms.

2.7 STP Enclosure Management Interface

This section describes the STP interface. This block contains the I^2C clock, data, and interrupt signals. The enclosure management bridge (EMB) provides data integrity checking on the I^2C bus.

The STP Target consists of:

- STP Link Layer
- STP Port Layer
- STP Transport Layer
- STP Application Layer

The STP Target is responsible for the following tasks:

- Accepting STP OAFs.
- Rejecting OAFs when the
 - OAF protocol is not STP
 - OAF initiator bit is cleared to 0b0
 - OAF Features bits [3:0] are not cleared to 0b0000
 - STP Target has an existing Initiator Affiliation, but not with the requesting STP Initiator.
- Managing STP Affiliations.
- Receiving SATA Frame Information Structures (FIS).
- Checking CRC on inbound SATA FIS.

- Positively decoding and notifying the SEP to process the following mandatory ATAPI commands or sequences:
 - IDENTIFY PACKET DEVICE (0xA1)
 - PACKET (0xA0)
 - DEVICE RESET (0x08)
 - EXECUTE DEVICE DIAGNOSTICS (0x90)
 - Soft Reset sequence
- Positively decoding the following mandatory ATAPI commands and returning the appropriate ATAPI status without SEP intervention:
 - SET FEATURES (0xEF)
 - IDENTIFY DEVICE (0xEC)
 - READ SECTOR (0x20)
- Negatively decoding and aborting the ATAPI NOP command and the following mandatory ATAPI Power Management Feature set commands:
 - NOP (0x00)
 - CHECK POWER MODE (0xE5)
 - SLEEP (0xE6)
 - STANDBY (0xE2)
 - STANDBY IMMEDIATE (0xE0)
 - IDLE (0xE3)
 - IDLE IMMEDIATE (0xE1)
- Negatively decoding and aborting all non-mandatory ATAPI commands.
- Closing a connection after the sending ATAPI command status through the D2H Register FIS.
- Closing a connection after the receipt of the SCSI CDB associated with PACKET commands.
- Generating interrupts to the external SEP when commands and data are available for the SEP to process.
- Generating and transmitting SATA FISes (D2H Register, PIO Setup, and Data FISes).

- Generating CRC for outbound SATA FISes.
- Generating and transmitting OAFs when a SATA FIS is ready to be sent to the STP Initiator.
- Responding to PMREQ_S and PMREQ_P primitives with PMNAK.

2.7.1 Doorbell Interface

The STP EMB doorbell messaging interface provides a communication channel between the STP target and the SEP. The LSISASx12 STP sets the various bits in the STP-SEP Doorbell registers to send commands to the SEP. The STP-SEP Doorbells are the interrupt sources.

The SEP sets bits in the SEP-STP Doorbell register, which are inputs to the LSISASx12 STP.

2.7.2 I²C Addressing and Transfer Modes

The STP is accessed through the I^2C . The device addressing for the I^2C slave behaves in a similar manner to industry standard serial EEPROM devices. The first byte on the bus following a start condition provides the control byte. The control byte consists of a 4-bit device type code that is set to 0b1010. Following the device type code is a 3-bit device address (A2, A1, A0). Bit A2 is hard-coded to a value of 0, and ISTWI_ADDR[1:0] provide bit A1 and bit A0 respectively. The last bit of the control byte indicates if the operation is a read or write. When set to one (1), the operation is a read. When cleared to zero (0), the operation is a write.

Figure 2.6 provides an illustration of the slave addressing and transfer modes. The I^2C can transfer data to/from the I^2C slave using byte transfers or block transfers. The most-significant bit of the Address Pointer Hi byte (BLK) selects the transfer mode of the current operation. Clearing the BLK bit selects the byte transfer method. Setting the BLK bit selects the block transfer method. For block transfers, the third data byte provides the byte count. A byte count of zero indicates a 256 byte transfer.

Figure 2.6 I²C Slave Addressing and Transfer Modes

2.7.3 I²C Error Detection

Because the I²C bus is susceptible to errors in noisy environments, the EMB transmits CRC bytes with each data transfer. The algorithm uses an 8-bit CRC that is calculated using each byte in the data transfer, including the control byte. The polynomial used for the CRC is: $x^8 + x^2 + x + 1$.

Device users can enable or disable CRC checking by writing to the Error Detection Control register. If CRC checking is disabled, then the LSISASx12 still transmits CRC bytes during data transfers. CRC checking is enabled by default after reset. When CRC checking is enabled and the LSISASx12 detects a bad CRC value, the LSISASx12 asserts the EMB_CRC_INT signal to notify the SEP of the error.

2.7.4 I²C Slave Write Operations

Figure 2.7 illustrates an I^2C slave write operation. For byte write transfers, the fourth data byte of the transfer contains the CRC. The CRC is calculated using the control byte (0b1010_0A_1A_00), the Address_Hi byte, Address_Lo byte, and the data byte. The LSISASx12 does not commit the data until it validates the payload CRC.

Block transfers use two CRC bytes: the header CRC and the payload CRC. The header CRC covers the address and the byte count; the payload CRC covers the data. The fourth byte of the transfer contains the header CRC. If the LSISASx12 detects an error in the address or byte count, it asserts the EMB_CRC_INT signal. The data transfer can continue, but the LSISASx12 discards the data. The LSISASx12 resets the CRC calculation for the data transfer portion of the block write operation. The payload CRC byte is the last data byte before the I²C master signals a stop condition.

Figure 2.7 Slave Write Operation

2.7.5 I²C Slave Read Operations

Figure 2.8 illustrates I²C read operations. For byte read transfers, the header CRC byte follows the Address_Hi and Address_Lo bytes. The header CRC is calculated using the control byte and the two address bytes. The payload CRC byte follows the read data byte and is calculated using only the read data byte.

For block read transfers, the header CRC byte follows the Address_Hi, Address_Lo, and Byte_Count bytes. The header CRC is calculated using the control byte and the two address bytes. The payload CRC byte follows the last byte of read data, and is calculated using the read data bytes only.

2.7.6 ATAPI Command Status

Table 2.10 provides the expected results for common ATAPI commands. These commands allow the EMB to access a bridge and to operate with an ATAPI host.

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
NOP (00) (This command is always aborted.)	None	None	None	Error[ABRT] = 1 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 1 I = 1
SET FEATURES (0xEF) (Features = 0x03 and SectorCnt ≤ 0x0F)	None	None	None	Error[ABRT] = 0 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 0 I = 1
SET FEATURES (0xEF) (Features != 0x03) or (SectorCnt > 0x0F)	None	None	None	Error[ABRT] = 1 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 1 I = 1
READ SECTOR (0x20)	None	None	None	Error[ABRT] = 1 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 1 I = 1 SectorCnt = 0x01 SectorNum = 0x01 CylinderLo = 0x14 CylinderHi = 0xEB
IDENTIFY DEVICE (0xEC)	None	None	None	Error[ABRT] = 1 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 1 I = 1 SectorCnt = 0x01 SectorNum = 0x01 CylinderLo = 0x14 CylinderHi = 0xEB

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
CHECK POWER MODE (0xE5) SLEEP (0xE6) STANDBY (0xE2) STANDBY IMM (0xE0) IDLE (0xE3) IDLE IMM (0xE1)	None	None	None	Error[ABRT] = 1 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 1 I = 1
DEVICE RESET (0x08) (No SEP Diag. Error)	StpDbell[2] = 1 (RST_CMD_RCVD) SepDbell[5] = 0	StpDbell[2] = 0 CmdStatus = 0x01 SepDbell[5] = 1 (STATUS_RDY)	None	Error = 0x01 Status = 0x00 I = 0 SectorCnt = 0x01 SectorNum = 0x01 CylinderLo = 0x14 CylinderHi = 0xEB
DEVICE RESET (0x08) (SEP Diag. Error)	StpDbell[2] = 1 (RST_CMD_RCVD) SepDbell[5] = 0	StpDbell[2] = 0 CmdStatus = 8'h00 SepDbell[5] = 1 (STATUS_RDY)	None	Error = 0x01 Status = 0x00 I = 0 SectorCnt = 0x01 SectorNum = 0x01 CylinderLo = 0x14 CylinderHi = 0xEB
EXEC DEV DIAGNOSTICS (0x90) (No SEP Diag. Error)	StpDbell[2] = 1 (RST_CMD_RCVD) SepDbell[5] = 0	StpDbell[2] = 0 CmdStatus = 0x01 SepDbell[5] = 1 (STATUS_RDY)	None	Error = 0xh01 Status = 0x00 I = 1 SectorCnt = 0xh01 SectorNum = 0x01 CylinderLo = 0x14 CylinderHi = 0xEB
EXEC DEV DIAGNOSTICS (0x90) (SEP Diag. Error)	StpDbell[2] = 1 (RST_CMD_RCVD) SepDbell[5] = 0	StpDbell[2] = 0 CmdStatus = 0x00 SepDbell[5] = 1 (STATUS_RDY)	None	Error = 0x00 Status = 0x00 I = 1 SectorCnt = 0x01 SectorNum = 0x01 CylinderLo = 0x14 CylinderHi = 0xEB

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
Software Reset (SEP Diag. Error)	StpDbell[2] = 1 (RST_CMD_RCVD) SepDbell[5] = 0	StpDbell[2] = 0 CmdStatus = 0x00 SepDbell[5] = 1 (STATUS_RDY)	None	Error = 0x00 Status = 0x00 I = 0 SectorCnt = 0x01 SectorNum = 0x01 CylinderLo = 0x14 CylinderHi = 0xEB
Software Reset (No SEP Diag. Error)	StpDbell[2] = 1 (RST_CMD_RCVD) SepDbell[5] = 0	StpDbell[2] = 0 CmdStatus = 0x01 SepDbell[5] = 1 (STATUS_RDY)	None	Error = 0x01 Status = 0x00 I = 0 SectorCnt = 0x01 SectorNum = 0x01 CylinderLo = 0x14 CylinderHi = 0xEB
IDENTIFY PACKET DEVICE (0xA1)	StpDbell[1] = 1 (ID_PCKT_DEV_RCVD) SepDbell[4] = 0	StpDbell[1] = 0 SepDbell[4] = 1 (RD_DATA_RDY)	D = 1 (Data-In) $I = 1$ $IStatus[BSY] = 0$ $IStatus[DRDY] = 1$ $IStatus[DRQ] = 1$ $EStatus[BSY] = 0$ $EStatus[DRDY] = 1$ $EStatus[DRQ] = 0$ $XferCnt = 16'd512$	None
PACKET (A0h) (w/ Features[DMA] = 1)	None	None	None	Error[ABRT] = 1 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 1 I = 1
PACKET (A0h) (w/ Features[OVL] = 1)	None	None	None	Error[ABRT] = 1 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 1 I = 1

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
PACKET (A0h) CDB = Test Unit Ready (00h)	StpXferLen = 0x00 (256 dwords)		(CDB Transfer) D = 0 (Data-Out) I = 0 IStatus[BSY] = 0	
(MaxByteCnt > 16'd1024)	StpDbell[0] = 1 (PCKT_CMD_RCVD)	StpDbell[0] = 0	IStatus[DRDY] = 1 IStatus[DRQ] = 1 EStatus[BSY] = 1 EStatus[DRDY] = 1	
Note: MaxByteCnt[15:0] = {CylinderHi,		CmdStatus[7:0] = {Sense Key[3:0], 4'b0}	EStatus[DRQ] = 0 XferCnt = 16'd12	(Status Transfer) I = 1 Error[7:0] =
CylinderLo}	SepDbell[5] = 0	SepDbell[5] = 1 (STATUS_RDY)		CmdStatus[7:0] Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = (SenseKey !=0)

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
PACKET (0xA0) CDB = Send Diagnostic (0x1D) Xfer Length = 1 Kbyte (MaxByteCnt > 16'd1024)	StpZferLen = 0x00 (256 dwords) StpDbell[0] = 1 (PCKT_CMD_RCVD) SepDbell[0] = 0 StpDbell[3] = 1 (WRITE_DATA_RCVD) SepDbell[3] = 0 SepDbell[5] = 0	StpDbell[0] = 0 SepXferLen = 8'h00 (256 dwords) XferAttr[1:0] = 0b10 (LastXfer / Out) SepDbell[0] = 1 (PCKT_CMD_ACK) StpDbell[3] = 0 SepDbell[3] = 1 (WRITE_DATA_ACK) CmdStatus[7:0] = {Sense Key[3:0], 0b0000} SepDbell[5] = 1 (STATUS_RDY)	$\begin{array}{l} (\text{CDB Transfer}) \\ D = 0 & (\text{Data-Out}) \\ I = 0 \\ \text{IStatus[BSY]} = 0 \\ \text{IStatus[DRDY]} = 1 \\ \text{IStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 0 \\ \text{XferCnt} = 16'd12 \\ (\text{Data Transfer}) \\ D = 0 & (\text{Data-Out}) \\ I = 1 \\ \text{IStatus[BSY]} = 0 \\ \text{IStatus[DRDY]} = 1 \\ \text{IStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 0 \\ \text{XferCnt} = 16'd1024 \\ \end{array}$	(Status Transfer) I = 1 Error[7:0] = CmdStatus[7:0] Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = (SenseKey !=0)

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
PACKET (0xA0) CDB = Send Diagnostic (0x1D)	StpXferLen = 0x00 (256 dwords)		(CDB Transfer) D = 0 (Data-Out) I = 0	
Xfer Length = 1.5 Kbytes	StpDbell[0] = 1 (PCKT_CMD_RCVD)	StpDbell[0] = 0	IStatus[BSY] = 0 IStatus[DRDY] = 1 IStatus[DRQ] = 1	
(MaxByteCnt > 16'd1024)		SepXferLen = 0x00 (256 dwords)	EStatus[BSY] = 1 EStatus[DRDY] = 1 EStatus[DRQ] = 0	
		XferAttr[1:0] = 0b00 (Not LastXfer / Out)	X ferCnt = 16' d 12	
	SepDbell[0] = 0	SepDbell[0] = 1 (PCKT_CMD_ACK)	(Data Transfer) D = 0 (Data-Out) I = 1	
	StpDbell[3] = 1 (WRITE_DATA_RCVD)		IStatus[BSY] = 0 IStatus[DRDY] = 1 IStatus[DRQ] = 1	
		StpDbell[3] = 0	EStatus[BSY] = 1 EStatus[DRDY] = 1	
		SepXferLen = 0x80 (128 dwords)	EStatus[DRQ] = 0 XferCnt = 16 'd1024	
		XferAttr[1:0] = 0b10 (LastXfer / Out)		
	SepDbell[3] = 0	SepDbell[3] = 1 (WRITE_DATA_ACK	(Data Transfer) D = 0 (Data-Out)	
	StpDbell[3] = 1 (WRITE_DATA_RCVD)	7	IStatus[BSY] = 0 IStatus[DRDY] = 1 IStatus[DRQ] = 1 FStatus[BSY] = 1	(Status Transfer)
SanDh	SenDhell[3] - 0	StpDbell[3] = 0	EStatus[DRDY] = 1 EStatus[DRQ] = 0 XferCnt = 16/d512	Error[7:0] = CmdStatus[7:0] Status[DRDY] = 1
		SepDbell[3] = 1 (WRITE_DATA_ACK)		Status[BND1] = 0 Status[DRQ] = 0 Status[ERR] = (SenseKey !=0)
	SepDbell[5] = 0	CmdStatus[7:0] = {Sense Key[3:0], 4'b0}		
		SepDbell[5] = 1 (STATUS_RDY)		

Table 2.10 Expected Doorbells and SATA FISES (Cont.	Table 2.10	Expected	Doorbells	and SATA	FISes	(Cont.)
---	------------	----------	-----------	----------	-------	---------

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
PACKET (0xA0) CDB = Rcv Diagnostic Results (0x1C) Xfer Length = 1 Kbyte (MaxByteCnt > 16'd1024)	StpXferLen = 0x00 (256 dwords) StpDbell[0] = 1 (PCKT_CMD_RCVD) SepDbell[0] = 0 StpDbell[4] = 1 (RD_DATA_XMITTED)	StpDbell[0] = 0 SepXferLen = 0x00 (256 dwords) XferAttr[1:0] = 0b11 (LastXfer / In) SepDbell[0] = 1 (PCKT_CMD_ACK) StpDbell[4] = 0	$\begin{array}{l} (\text{CDB Transfer}) \\ \text{D} = 0 & (\text{Data-Out}) \\ \text{I} = 0 \\ \text{IStatus[BSY]} = 0 \\ \text{IStatus[DRDY]} = 1 \\ \text{IStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 0 \\ \text{XferCnt} = 16'd12 \\ \hline \text{(Data Transfer)} \\ \text{D} = 1 & (\text{Data-In}) \\ \text{I} = 1 \\ \text{IStatus[DRQ]} = 0 \\ \text{IStatus[DRDY]} = 1 \\ \text{IStatus[DRDY]} = 1 \\ \text{IStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 0 \\ \text{XferCnt} = 16'd1024 \\ \end{array}$	(Status Transfer) I = 1 Error[7:0] = 0x00 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 0

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
PACKET (0xA0) CDB = Rcv Diagnostic Results (0x1C) Xfer Length = 1.5 Kbytes (MaxByteCnt > 16'd1024)	StpXferLen = 0x00 (256 dwords) StpDbell[0] = 1 (PCKT_CMD_RCVD) SepDbell[0] = 0 StpDbell[4] = 1 (RD_DATA_XMITTED) SepDbell[4] = 0 StpDbell[4] = 1 (RD_DATA_XMITTED)	StpDbell[0] = 0 SepXferLen = 0x00 (256 dwords) XferAttr[1:0] = 0b01 (Not LastXfer / In) SepDbell[0] = 1 (PCKT_CMD_ACK) StpDbell[4] = 0 SepXferLen = 0x80 (128 dwords) XferAttr[1:0] = 0b11 (LastXfer / In) SepDbell[4] = 1 (RD_DATA_RDY) StpDbell[4] = 0	$\begin{array}{l} (\text{CDB Transfer}) \\ D = 0 & (\text{Data-Out}) \\ I = 0 \\ \text{IStatus[BSY]} = 0 \\ \text{IStatus[DRDY]} = 1 \\ \text{IStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 0 \\ \text{XferCnt} = 16'd12 \\ (\text{Data Transfer}) \\ D = 1 & (\text{Data-In}) \\ I = 1 \\ \text{IStatus[BSY]} = 0 \\ \text{IStatus[DRQ]} = 1 \\ \text{IStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 0 \\ \text{XferCnt} = 16'd1024 \\ \end{array}$ $\begin{array}{c} (\text{Data Transfer}) \\ D = 1 & (\text{Data-In}) \\ I = 1 \\ \text{EStatus[DRQ]} = 0 \\ \text{XferCnt} = 16'd1024 \\ \end{array}$ $\begin{array}{c} (\text{Data Transfer}) \\ D = 1 & (\text{Data-In}) \\ I = 1 \\ \text{IStatus[DRQ]} = 0 \\ \text{XferCnt} = 16'd1024 \\ \end{array}$ $\begin{array}{c} (\text{Data Transfer}) \\ D = 1 & (\text{Data-In}) \\ I = 1 \\ \text{IStatus[DRQ]} = 1 \\ \text{IStatus[DRQ]} = 1 \\ \text{IStatus[DRDY]} = 1 \\ \text{IStatus[DRDY]} = 1 \\ \text{IStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 1 \\ \text{EStatus[DRQ]} = 0 \\ \text{XferCnt} = 16'd512 \\ \end{array}$	(Status Transfer) I = 1 Error[7:0] = 0x00 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 0

 Table 2.10
 Expected Doorbells and SATA FISes (Cont.)

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
PACKET (0xA0) CDB = Request Sense (0x03) Xfer Length = 20 bytes	StpXferLen = 0x00 (256 dwords) StpDbell[0] = 1 (PCKT_CMD_RCVD)	StpDbell[0] = 0	$\begin{array}{l} (\text{CDB Transfer}) \\ \text{D} = 0 & (\text{Data-Out}) \\ \text{I} = 0 \\ \text{IStatus}[\text{BSY}] = 0 \\ \text{IStatus}[\text{DRDY}] = 1 \end{array}$	
(MaxByteCnt > 16'd1024)		SepXferLen = 0x05 (5 dwords / 20 bytes)	IStatus[DRQ] = 1 EStatus[BSY] = 1 EStatus[DRDY] = 1 EStatus[DRQ] = 0 XferCnt = 16'd12	
		XferAttr[1:0] = 0b11 (LastXfer / In)	(Data Transfer) D = 1 (Data-In)	
	SepDbell[0] = 0 StpDbell[4] = 1	SepDbell[0] = 1 (PCKT_CMD_ACK)	I = 1 IStatus[BSY] = 0 IStatus[DRDY] = 1 IStatus[DRQ] = 1 EStatus[BSY] = 1	
	(RD_DATA_XMITTED)	StpDbell[4] = 0	EStatus[DRDY] = 1 EStatus[DRQ] = 0 XferCnt = 16'd20	(Status Transfer)
				I = 1 Error[7:0] = 0x00 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 0

ATAPI Command	Expected STP Target Doorbell Writes	Expected SEP Doorbell Writes	Expected SATA PIO Setup FISes	Expected SATA D2H Reg. FIS
PACKET (0xA0) CDB = Rcv Diagnostic Results (0x1C) Xfer Length = 800 bytes (MaxByteCnt = 16'd512)	StpXferLen = 0x80 (128 dwords / 512 bytes) StpDbell[0] = 1 (PCKT_CMD_RCVD) SepDbell[0] = 0 StpDbell[4] = 1 (RD_DATA_XMITTED)	StpDbell[0] = 0 SepXferLen = 0x80 (128 dwords) XferAttr[1:0] = 0b01 (Not LastXfer / In) SepDbell[0] = 1 (PCKT_CMD_ACK) StpDbell[4] = 0 SepXferLen =0x80 (128 dwords)	$ (CDB Transfer) \\ D = 0 (Data-Out) \\ I = 0 \\ IStatus[BSY] = 0 \\ IStatus[DRDY] = 1 \\ IStatus[DRQ] = 1 \\ EStatus[DRQ] = 1 \\ EStatus[DRQ] = 0 \\ XferCnt = 16'd12 \\ (Data Transfer) \\ D = 1 (Data-In) \\ I = 1 \\ IStatus[DRQ] = 0 \\ IStatus[DRQ] = 0 \\ IStatus[DRQ] = 1 \\ IStatus[DRQ] = 1 \\ IStatus[DRQ] = 1 \\ EStatus[DRQ] = 0 \\ XferCnt = 16'd512 \\ $	
	SepDbell[4] = 0 StpDbell[4] = 1 (RD_DATA_XMITTED)	XferAttr[1:0] = 0b11 (LastXfer / In) SepDbell[4] = 1 (RD_DATA_RDY) StpDbell[4] = 0	$\begin{array}{l} (\text{Data Transfer})\\ D = 1 (\text{Data-In})\\ I = 1\\ \text{IStatus}[\text{BSY}] = 0\\ \text{IStatus}[\text{DRDY}] = 1\\ \text{IStatus}[\text{DRQ}] = 1\\ \text{EStatus}[\text{BSY}] = 1\\ \text{EStatus}[\text{DRDY}] = 1\\ \text{EStatus}[\text{DRQ}] = 0\\ \text{XferCnt} = 16\text{'d}288 \end{array}$	(Status Transfer) I = 1 Error[7:0] = 0x00 Status[DRDY] = 1 Status[BSY] = 0 Status[DRQ] = 0 Status[ERR] = 0

Chapter 3 Signal Descriptions

This chapter describes the LSISASx12 expander signals and consists of the following sections.

- Section 3.1, "Signal Types"
- Section 3.2, "Functional Signal Grouping"
- Section 3.3, "SAS/SATA Signals"
- Section 3.4, "Serial EEPROM Signals"
- Section 3.5, "I²C and EMB Signals"
- Section 3.6, "Configuration and General-Purpose Signals"
- Section 3.7, "Multiplexed SIO Interface"
- Section 3.8, "JTAG Pins"
- Section 3.9, "Factory Test Pins"
- Section 3.10, "Power and Ground Pins"

A slash (/) at the end of a signal indicates that the signal is active LOW. When the slash is absent, the signal is active HIGH. NC designates a No Connection signal. NC signals do not connect inside of the LSISASx12 package.

3.1 Signal Types

There are five signal types:

I	Input, a standard input-only signal
0	Output, a standard output driver
I/O	Input and output (bidirectional)
Р	Power
G	Ground

3.2 Functional Signal Grouping

Figure 3.1 contains the functional signal groupings of the LSISASx12.

Figure 3.1 LSISASx12 Signal Functional Grouping¹

^{1.} The SIO signals are multiplexed and do not appear in Figure 3.1. Refer to Section 3.7, "Multiplexed SIO Interface," on page 3-7 for the SIO signal definitions.

3.3 SAS/SATA Signals

Table 3.1 describes the SAS/SATA signals.

Table 3.1 SAS/SATA Signal Description

Signal Name	BGA Position	I/O	Description
REFCLK	AC13, AB13	1	The Reference Clock signal provides the serial differential clock to the LSISASx12 expander. Connect a 75 MHz oscillator having an accuracy of at least ±50 ppm to these pins. To use a single-ended oscillator, REFCLK+ and REFCLK- must be driven through a single-ended to differential level-shifting network. Refer to SEN S11054: LSISASx12 Design Considerations (Document Number: DB05-000116-xx) for information concerning this signal.
RTRIM	AA6	-	The Resistor Reference provides the analog resistor reference for the GigaBlaze termination logic.
RX[11:0]+ ¹	AC2, W3, P1, L2, F2, C2, C25, E25, J25, N25, V24, AB24	I	The Receive Differential Data signals provide the
RX[11:0] ^{_1}	AC1, W2, N1, L3, F3, B2, C24, E24, J24, N24, V25, AB25	differential data receiver for the respective phy[n].	
TX[11:0]+ ¹	AC3, AA1, U1, P2, G1, C1, B26, G26, L26, T25, AA26, AC25	0	The Transmit Differential Data signals provide the
TX[11:0]_ ¹	AC4, AB1, V1, P3, H1, D1, C26, H26, M26, T24, AB26, AC24	The Transmit Differential Data signals provide t differential data transmit signal for the respective	

1. Boot load options configure the polarity of the RX+/RX– signals and TX+/TX– signals for each phy through the Phy Transmit Polarity and Phy Receiver Polarity registers.

3.4 Serial EEPROM Signals

Table 3.2 describes the serial EEPROM bus signals.

Table 3.2 Serial EEPROM Interface Signal Description

Signal Name	BGA Position	I/O	Description
BSL_SCL	AE3	I/O	The Serial EEPROM Interface Clock signal provides the clock signal for the serial EEPROM.
BSL_SD	AD4	I/O	The Serial EEPROM Interface Data signal provides the data signal for the serial EEPROM.

3.5 I²C and EMB Signals

Table 3.3 describes the I^2C and EMB signals.

Table 3.3	I ² C and	EMB \$	Signal	Description
-----------	----------------------	--------	--------	-------------

Signal Name	BGA Position	I/O	Description
EMB_SCL	AE4	I/O	The EMB Clock pin provides the clock signal for the I^2C bus.
EMB_SD	AF3	I/O	The EMB Data pin provides the data signal for the I^2C bus.
EMB_DB_INT	AF4	0	The Enclosure Management Doorbell Interrupt pin provides the active HIGH doorbell interrupt from the enclosure management bridge to the external enclosure services processor.
EMB_CRC_INT	AD5	0	The Enclosure Management CRC Error Interrupt pin provides the active HIGH CRC error interrupt from the enclosure management bridge to the external enclosure services processor.
ISTWI_ADDR[1:0]	AA8, AE5	1	 The I²C Addresses This bus serves the following functions: Provides the lower two bits of the address to which the enclosure management bridge responds. The additional address bits are hard-coded. This structure enables a single enclosure services processor to address multiple expanders. Provides the block offset of the configuration data in the serial EEPROM memory to the boot strap loader. This structure enables a single a single serial EEPROM to
			contain separate configuration data for up to four LSISASx12 expanders.

3.6 Configuration and General-Purpose Signals

Table 3.4 describes a possible configuration of the general-purpose signals.

Table 3.4	Configuration ar	d General-Pur	pose Signal	Description
-----------	------------------	---------------	-------------	-------------

Signal Name	BGA Position	I/O	Description
CBL_DET[11:0]/	A5, A6, A7, A8, C8, B8, A16, D14, B16, C16, D15, E16	I/O	The Cable Detection pins can be configured to detect the presence of a cable on the associated phy. These pins can also be configured as activity LEDs, fault LEDs, status LEDs, or independent GPIO signals.
LED_ACT[11:0]/	AD6, AC7, AE6, AF5, AF6, AF7, AF21, AA18, AF22, AE22, AD22, AF23	I/O	The Activity LED pins can be configured to indicate serial port activity by driving an LED. These pins can also be configured as cable detection LEDs, fault LEDs, status LEDs, or independent GPIO signals.
LED_FAULT[11:0]/	AC9, AD9, AE9, AB11, AD10, AC12, AE23, AF24, AA20, AF25, AB21, AD23	I/O	The Fault LED pins can be configured to indicate a serial port fault by driving an LED. These pins can also be configured as cable detection LEDs, activity LEDs, status LEDs, or independent GPIO signals.
LED_STATUS[11:0]/	AF9, AF16, AF17, AF18, AB15, AE18, AD18, AE19, AB17, AF19, AF20, AB18	I/O	The Status LED pins can be configured to indicate disk drive activity by driving an LED. These pins can also be configured as cable detection LEDs, activity LEDs, fault LEDs, or independent GPIO signals. LED_STATUS[11:6]/ are multiplexed to the SIO interface. Refer to Section 3.7, "Multiplexed SIO Interface," for the SIO interface signal definitions.
RESET/	AD14	I	Asserting the Reset pin (which is an active LOW signal) forces the chip into a Power-On-Reset (POR) state.
CLK	AE11	1	The Clock pin provides 75 MHz clock for the internal control logic. Refer to SEN S11054: LSISASx12 Design Considerations (DB05-000116-xx) for information concerning this signal.
GPIO[3:0]	AC23, AE24, AA21, AD24	I/O	The General Purpose Input/Output (GPIO) pins provide general purpose inputs and/or outputs.
UART_TX	F18	0	The UART Output pin provides the UART output from the serial debugger.
Table 3.4 Configuration and General-Purpose Signal Description (Cont.)

Signal Name	BGA Position	I/O	Description
UART_RX	E18	I	The UART Input pin provides the UART input to the serial debugger.
LEDSYNCOUT	AE17	0	The LED Synchronization Output pin provides a 0.5 Hz output clock that can drive the LEDSYNCIN pin on other expanders. This signal is multiplexed to the SIO interface. Refer to Section 3.7, "Multiplexed SIO Interface," for the SIO interface signal definitions.
LEDSYNCIN	AF15	1	The LED Synchronization Input pin provides an asynchronous input to the blink pattern generators. All blink pattern generators restart their blink pattern on the rising edge of this signal. This signal is multiplexed to the SIO interface. Refer to Section 3.7, "Multiplexed SIO Interface," for the SIO interface signal definitions.

3.7 Multiplexed SIO Interface

The SIO interface is multiplexed across the LED_STATUS[11:6]/, LEDSYNCIN, and LEDSYNCOUT signals. Table 3.5 provides the multiplexed signal definitions.

Table 3.5 Multiplexed SIO Signals

LSISASx12 Signal	SIO Signal	BGA	I/O	Description
LED_STATUS[6]/	SioEnd	AE18	0	This output signal indicates that this module is currently driving the last bit of serial data on the SioDout line.
LED_STATUS[7]/	SioStart	AB15	Ι	This signal indicates that serial data may be driven on the SioDout line during the next clock cycle, and that data can be received on the SioDin line. In Single originator mode, which is set by the SioMode bit in the SIO Control register, the SioEnd signal provides the start signal, and the LSISASx12 does not require an SioStart input
LED_STATUS[8]/	SioDout	AF18	0	This signal provides the serial data output line.
LED_STATUS[9]/	SioDin	AF17	Ι	This signal provides the serial data input line.

Table 3.5	Multiplexed SIC	O Signals (C	Cont.)
-----------	-----------------	--------------	--------

LSISASx12 Signal	SIO Signal	BGA	I/O	Description
LED_STATUS[10]/	SioClkin	AF16	I	An originator with ClkEnable set to 1 in its SIO_CFG
LED_STATUS[11]/	SioClkout	AF9	0	register drives SioClkout as an output. The ClkDivide bits in the SIO_CFG register control the frequency of this clock. Originators with ClkEnable cleared to 0 receive this clock signal on SioClkin.
LEDSYNCOUT	BlinkClkin	AE17	I	An originator with ClkEnable set to 1 in its SIO_CFG
LEDSYNCIN	BlinkClkout	AF15	0	register drives BlinkClkout as an output with the frequency fixed at 0.5 Hz. Originators with ClkEnable cleared to 0 receive this clock signal on BlinkClkin.

3.8 JTAG Pins

Table 3.6 describes the JTAG signal pins.

Table 3.6	JTAG	and	Test	Pins	Signal	Description
					<u> </u>	

Signal Name	BGA Position	I/O	Description
тск	E20	Ι	JTAG Debug clock .
TRST/	E19	Ι	JTAG Debug reset (active low).
TDI	D19	Ι	JTAG Debug test data in.
TDO	D18	0	JTAG Debug test data out.
TMS	E17	I	JTAG Debug test mode select.

3.9 Factory Test Pins

Table 3.7 describes the factory test signal pins. These signals are reserved for LSI Logic test purposes.

Table 3.7	Factory	Test	Pins
-----------	---------	------	------

Signal Pin	Ball	Туре	Description
IDDT	A2	I	Active HIGH IDDQ Test Mode Enable is for LSI Logic production test only. Tie this pin to 0 for normal operation.
TN/	E6	I	Used for LSI Logic production test only. Tie this signal to 1 for normal operation.
SCANMODE	F19	I	Used for LSI Logic production test only.

Signal Pin	Ball	Туре	Description
SCANEN	D21	I	Used for LSI Logic production test only.
SCANCLK1	D4	I	Used for LSI Logic production test only.
SCANCLK2	F6	I	Used for LSI Logic production test only.
SCANCLK3	C3	I	Used for LSI Logic production test only.
PROCMON	D20	0	Used for LSI Logic production test only.
TDiode_P	AE2	I	The Thermal Diode Anode pin provide Anode connection of the thermal diode.
TDiode_N	Y7	0	The Thermal Diode Cathode pin provides Cathode connection of the thermal diode.
MODE[3:0]	B5, C5, A4, B4	I	The Mode Select pins are reserved for LSI Logic test purposes. Externally pull these signals LOW for normal operation.

Table 3.7 Factory Test Pins (Cont.)

3.10 Power and Ground Pins

Table 3.8 describes the power signals.

Table 3.8 Power and Ground	Pins
----------------------------	------

Signal Pin	Ball	Туре	Description
VDDIO33	C11, C12, AD12, AD13, AC17, AD15, AD16, AB22, AD20, AD21, C19, C20, D10, D22, C6, C7, E5, AC5, AD7, AD8, AC11	Power	VDDIO33 I/O power. These pins provide 3.3 V I/O power.
VDD2	M13, M15, U4, AA3, AB5, Y3, K23, L24, M24, N12, N14, P13, P15, R12, R14, R3, T3	Power	VDD2 Core power. These pins provide 1.2 V core power.

Signal Pin	Ball	Туре	Description
VSS2	A25, B1, B6, B7, B11, B12, B14, B15, B19, B20, D5, D11, D17, E21, E23, F5, F25, G2, G8, G25, H2, H20, K4, L23, L25, M2, M12, M14, M25, N2, N13, N15, P12, AC10, P14, P25, R2, R13, R15, R25, T2, T4, U23, W7, W25, Y2, Y19, Y25, AA2, AA22, AB4, AB6, AC16, AC22, AE7, AE8, AE12, AE13, AE15, AE16, AE20, AE21, AE26, AF2	Ground	VSS2 Ground. These pins provide Core and I/O ground.
PLL_VDD	B10	Power	PLL_VDD Power. These pins provide 1.2 V PLL power.
PLL_VSS	C10	Ground	PLL_VSS Ground . These pins provide PLL ground.
RXB_VDD[11:0]	Y4, V4, R4, K3, H5, H7, G22, J22, K25, T26, W23, AA23	Power	RXB_VDD supplies power to the input stage of the receiver analog section and the Receive Buffer of each GigaBlaze core.
RXB_VSS[11:0]	W6, U5, P4, J2, G5, G7, G21, J21, K24, R26, V23, Y23	Ground	RXB_VSS supplies ground to the input stage of the receiver analog section and the Receive Buffer of each GigaBlaze core.
RX_VDD[11:0]	AD1, W1, R1, N5, E1, D3, D24, F26, K26, P22, Y26, AD26	Power	RX_VDD supplies power to the receiver analog section of each GigaBlaze core.
RX_VSS[11:0]	AA4, W4, R5, K2, J6, G6, F23, H23, M22, U26, V22, W21	Ground	RX_VSS supplies ground to the receiver analog section of each GigaBlaze core.
TXB_VDD[11:0]	Y5, V5, U2, J1, J5, H6, G23, J23, M23, V26, V21, Y21	Power	TXB_VDD supplies power to the output stage of the transmitter analog section and to the Transmit Buffer of each GigaBlaze core.
TXB_VSS[11:0]	Y6, V6, U3, K1, H4, F4, H21, K22, N23, U25, W22, W20	Ground	TXB_VSS supplies ground to the output stage of the transmitter analog section and to the Transmit Buffer of each GigaBlaze core.
TX_VDD[11:0]	AD2, AB2, V2, P5, J3, E3, D26, H25, P26, R23, AA24, AE25	Power	TX_VDD supplies power for transmitter analog section of each GigaBlaze core.

Table 3.8 Power and Ground Pins (Cont.)

Signal Pin	Ball	Туре	Description
TX_VSS[11:0]	AA05, W05, T5, M1, J4, G4, H22, L22, N22, U24, Y22, Y20	Ground	TX_VSS supplies ground for transmitter analog section of each GigaBlaze core.
NC	A3, A9, A20, A10, A11, A12, A13, A14, A15, A17, A18, A19, A21, A22, A23, A24, B3, B9, B13, B17, B18, B21, B22, B23, B24, B25, C4, C9, C13, C14, C15, C17, C18, C21, C22, C23, D2, D7, D8, D9, D12, D13, D16, D23, D25, E1, E2, E4, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E22, E26, F1, F7, F8, F9, F19, F20, F21, F22, F24, G3, G20, G24, H3, H24, J26, K5, L1, L4, L5, M3, M4, M5, N3, N4, N26, P23, P24, R22, R24, T1, T22, T23, U22, V3, W24, W26, Y1, Y8, Y19, Y24, AA7, AA9, AA19, AA25, AB3, AB8, AB7, AB9, AB10, AB12, AB14, AB16, AB19, AB20, AB23, AC6, AC8, AC14, AC15, AC18, AC19, AC20, AC21, AC26, AD3, AD11, AD17, AD25, AE10, AE14, AF8, AF10, AF11, AF12, AF13, AF14		No connect. These signals do not connect inside of the LSISASx12 package.

Table 3.8 Power and Ground Pins (Cont.)

Chapter 4 Register Descriptions

This chapter provides the address map and register descriptions for the LSISASx12 expander chip. This chapter contains the following sections:

- Section 4.1, "Primary Internal Registers Address Map"
- Section 4.2, "Configuration Manager Registers"
- Section 4.3, "SMP Target Registers"
- Section 4.4, "SPhynx Registers"
- Section 4.5, "STP Target Registers"
- Section 4.6, "Expander Connection Manager Registers"
- Section 4.7, "EMB Slave Registers"

Do not access reserved address spaces and reserved bits.

Section 4.1, "Primary Internal Registers Address Map" through Section 4.6, "Expander Connection Manager Registers," on page 4-124 document the primary internal registers of the LSISASx12. Section 4.7, "EMB Slave Registers," on page 4-133 documents the EMB registers. The EMB register space uses a separate address space than the primary internal registers, and can only be accessed through the EMB I²C port.

4.1 Primary Internal Registers Address Map

Table 4.1 provides a top-level address map for the LSISASx12. Each address space is further explained in subsequent sections.

Table 4.1 Top-Level Address Map

Region	Size	Address Range	Page
Configuration Manager Registers	64 Kbytes	0x00000-0x0FFFF	4-3
SMP Target Registers	32 Kbytes	0x10000-0x17FFF	4-72
SPhynx Registers ¹	32 Kbytes	0x18000-0x1FFFF	4-75
Reserved	128 Kbytes	0x20000-0x3FFFF	_
SPhynx[00] Link Registers	1 Kbyte	0x40000–0x402FF	4-75
SPhynx[00] Phy Registers		0x40300–0x403FF	4-93
SPhynx[01] Link Registers	1 Kbyte	0x40400–0x406FF	4-75
SPhynx[01] Phy Registers		0x40700–0x407FF	4-93
SPhynx[02] Link Registers	1 Kbyte	0x40800-0x40AFF	4-75
SPhynx[02] Phy Registers		0x40B00-0x40BFF	4-93
SPhynx[03] Link Registers	1 Kbyte	0x40C00–0x40EFF	4-75
SPhynx[03] Phy Registers		0x40F00–0x40FFF	4-93
SPhynx[04] Link Registers	1 Kbyte	0x41000–0x412FF	4-75
SPhynx[04] Phy Registers		0x41300–0x413FF	4-93
SPhynx[05] Link Registers	1 Kbyte	0x41400–0x416FF	4-75
SPhynx[05] Phy Registers		0x41700–0x417FF	4-93
SPhynx[06] Link Registers	1 Kbyte	0x41800–0x41AFF	4-75
SPhynx[06] Phy Registers		0x41B00–0x41BFF	4-93
SPhynx[07] Link Registers	1 Kbyte	0x41C00–0x41DFF	4-75
SPhynx[07] Phy Registers		0x41F00–0x41FFF	4-93
SPhynx[08] Link Registers	1 Kbyte	0x42000–0x422FF	4-75
SPhynx[08] Phy Registers		0x42300–0x423FF	4-93
SPhynx[09] Link Registers	1 Kbyte	0x42400–0x426FF	4-75
SPhynx[09] Phy Registers		0x42700–0x427FF	4-93
SPhynx[10] Link Registers	1 Kbyte	0x42800–0x42AFF	4-75
SPhynx[10] Phy Registers		0x42B00–0x42BFF	4-93
SPhynx[11] Link Registers	1 Kbyte	0x42C00–0x42EFF	4-75
SPhynx[11] Phy Registers		0x42F00–0x42FFF	4-93
STP Target Registers	1 Kbyte	0x43000-0x433FF	4-99

Table 4.1 Top-Level Address Map (Cont.)

Region	Size	Address Range	Page
Reserved	115 Kbytes	0x43400-0x5FFFF	-
Phy Configuration Registers	64 Kbytes	0x60000-0x6FFFF	4-124
Remote Bank Configuration Registers	64 Kbytes	0x70000-0x7FFFF	4-129

1. All SPhynx modules accept writes from this region.

4.2 Configuration Manager Registers

Table 4.2 provides the register map for the Configuration Manager Config registers. Detailed register descriptions follow the address map.

 Table 4.2
 Configuration Manager Config Register Map

Offset	Register Name
0x00000	LSISASx12 Expander SAS Address High
0x00004	LSISASx12 Expander SAS Address Low
0x00008	Vendor Identifier High
0x0000C	Vendor Identifier Low
0x00010	Product Identifier 3
0x00014	Product Identifier 2
0x00018	Product Identifier 1
0x0001C	Product Identifier 0
0x00020	Product Revision
0x00024	Component Vendor ID High
0x00028	Component Vendor ID Low
0x0002C	Component ID and Revision
0x00030	Vendor Specific Dword 1
0x00034	Vendor Specific Dword 0
0x00038	Report General 1
0x0003C	Report General 2
0x00040	Spin-up Control
0x00044	Phy Configuration
0x00048	Reserved
0x0004C	Phy Transmit Polarity

Offset	Register Name
0x00050	Phy Receiver Polarity
0x00054-0x0008F	Reserved
0x00090	Boot Control and Status
0x00094-0x03FFF	Reserved
0x4000	API2C Global Control
0x4008	API2C Interrupt Status
0x4010	API2C Interrupt Enable
0x4018	API2C Wait Timer Control
0x4020	API2C t _{TIMEOUT} Control
0x4028	API2C t _{LOW} Control
0x4030	Reserved
0x4038	API2C Timer Clock Divider Control
0x4040	API2C Monitor
0x4048	API2C Soft Reset
0x4050	API2C Master Command
0x4058	API2C Receive Transfer Length
0x4060	API2C Transmit Transfer Length
0x4068	API2C Address Register 1
0x4070	API2C Address Register 2
0x4078	API2C Data
0x4080	API2C Transmit FIFO Status
0x4088	API2C Receive FIFO Status
0x4090	API2C Master Interrupt Enable
0x4098	API2C Master Interrupt Status
0x40A0	API2C Transmit Bytes Transferred
0x40A8	API2C Receive Bytes Transferred
0x040B0-0x40FF	Reserved
0x4100	API2C SCL High Period
0x4108	API2C SCL Low Period
0x4110	API2C Spike Filter Control
0x4118	API2C SDA Setup Time
0x4120	API2C SDA Hold Time

 Table 4.2
 Configuration Manager Config Register Map (Cont.)

Offset	Register Name
0x04130-0x07FFF	Reserved
0x08000	LED Group Control
0x08004	Group 0 GPIO Control
0x08008	Group 1 GPIO Control
0x0800C	Group 2 GPIO Control
0x08010	Group 3 GPIO Control
0x08014	Group 4 GPIO Control
0x08018	Group 0 GPIO Value
0x0801C	Group 1 GPIO Value
0x08020	Group 2 GPIO Value
0x08024	Group 3 GPIO Value
0x08028	Group 4 GPIO Value
0x0802C	Reserved
0x08030	LED Blinker Definition 1
0x08034	LED Blinker Definition 2
0x08038	LED Blinker Definition 3
0x0803C	Reserved
0x08040	Group 0 Override
0x08044	Reserved
0x08048	Group 1 Override
0x0804C	Reserved
0x08050	Group 2 Override
0x08054	Reserved
0x08058	Group 3 Override
0x0805C	Reserved
0x08060	Group 4 Override
0x08064–0x0BFFF	Reserved
0x0C000	SIO Configuration
0x0C004	SIO Receive 0
0x0C008	SIO Receive 1
0x0C00C	SIO General Purpose Receive 0
0x0C010	SIO General Purpose Receive 1

 Table 4.2
 Configuration Manager Config Register Map (Cont.)

Offset	Register Name
0x0C014	SIO Output Data Control 0
0x0C018	SIO Output Data Control 1
0x0C01C	SIO Output Data Control 2
0x0C020	SIO General Purpose Output Data 0
0x0C024	SIO General Purpose Output Data 1
0x0C028-0x0C03F	Reserved
0x0C040	SIO Pattern Definition 0
0x0C044	SIO Pattern Definition 1
0x0C048	SIO Pattern Definition 2
0x0C04C	SIO Pattern Definition 3
0x0C050	Activity Stretch Control
0x0C054	SIO Adapter Control

Table 4.2 Configuration Manager Config Register Map (Cont.)

Register: 0x0000 LSISASx12 Expander SAS Address High Read/Write

WWN High

[31:0]

This field provides World Wide Name (WWN) bits [63:32]. The boot loader writes this value during initialization. The LSISASx12 copies this value to the SMP target, STP target, and each SPhynx module.

Register: 0x0004 LSISASx12 Expander SAS Address Low Read/Write

31															16	15							8	7							0
											I	LSI	SAS	5x12	2 SA	s A	٨dd	ress	s Lo	w											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

WWN Low

This field provides WWN bits [31:0]. The boot loader writes this value during initialization. The LSISASx12 copies this value to the SMP target, STP target, and each SPhynx module. Set the least significant nibble of this register to 0xF.

Any SPhynx modules attached to SATA devices and the STP target use {WWN High, WWN Low[31:4], PhyNum} as their source SAS address.

The SMP target and any Sphynx modules attached to SAS devices use {WWN High, WWN Low} as their SAS address.

Register: 0x0008 Vendor Identifier High Read/Write

31													16	15							8	7							0		
										١	/enc	dor	lder	ntifie	er H	igh	(on	LS	ISA	Sx1	2)										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

31		24 23 Ve													16	15							8	7							0
										V	end	or l	den	tifie	r Hi	gh (on	LSI	SAS	Sx12	2A)										
0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0

Vendor ID High

[31:0]

This field provides Vendor ID bits [63:32]. Bits [31:24] of this register correspond to the first byte of the vendor ID data which is typically an ASCII text string. The boot loader writes this field during initialization.

Register: 0x000C Vendor Identifier Low Read/Write

31							24	23							16	15							8	7							0
										V	end	or I	den	tifie	r Hi	gh ((on	LSI	SAS	Sx1:	2A)										
0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0

Vendor ID Low

[31:0]

This field provides Vendor ID bits [31:0]. Bits [7:0] of this register correspond to the last byte of the vendor ID data which is typically an ASCII text string. The boot loader writes this field during initialization. Set the lower nibble of this register to 0xF.

Register: 0x0010 Product Identifier 3 Read/Write

31		24 23 0 0 0 0 0 0 0 0												16	15							8	7							0	
												Pro	duc	t ID	3 (on	LSI	SAS	Sx12	2)											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

31							24	23							16	15							8	7							0
			_							V	end	or I	den	tifie	r Hi	gh ((on	LSI	SAS	Sx12	2A)										
0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0

Product ID 3

This field provides Product Identifier bits [127:96]. The boot loader writes this field during initialization.

Register: 0x0014 Product Identifier 2 Read/Write

Product ID 2

[31:0]

This field contains Product Identifier bits [95:64]. The boot loader writes this field during initialization.

Register: 0x0018 Product Identifier 1 Read/Write

31							24	23							16	15							8	7							0
												Pro	duc	t ID	1 (on	LSI	SAS	5x12	2)											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Product ID 1

[31:0]

This field contains Product Identifier [63:32]. The boot loader writes this field during initialization.

Register: 0x001C Product Identifier 0 Read/Write

Product ID 0

[31:0]

This field contains Product Identifier bits [31:0]. The boot loader writes this field during initialization.

Register: 0x0020 Product Revision Read/Write

31							24	23							16	15							8	7							0
		_						_			Pr	odu	ict F	Rev	sior	ח (o	n L	SIS	ASx	:12)											
x	x	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	0	0	1	0	0	0	0	0

Product Revision

[31:0]

Load this field with the ASCII bytes representing the revision level of the subsystem (board or enclosure) containing this expander device. The upper three bytes are loaded by the Boot Sequencer as part of the fixed record. On the LSISASx12 the lowest bytes defaults to 0x20 to indicate an ASCII space, but may also be loaded by the Boot Sequencer with an optional write. Left-align data within this field. On the LSISASx12A all bytes default to 0x20202020.

Register: 0x0024 Component Vendor ID High Read Only

31							24	23							16	15							8	7							0
												Сс	mp	one	nt \	/enc	lor	ID H	ligh	۱											
0	1	0	0	1	1	0	0	0	1	0	1	0	0	1	1	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	0

Component Vendor ID High

[31:0]

This read-only field contains the Component Vendor ID High data. This value is hardwired to indicate the ASCII for "LSI Logic".

Register: 0x0028 Component Vendor ID Low Read/Write

Component Vendor ID Low

[31:0]

This read-only field contains the Component Vendor ID Low data. This value is hardwired to 0x20202020, which is 4 ASCII spaces.

Register: 0x002C Component ID and Revision Read/Write

31							24	23							16	15							8	7							0
									Сс	omp	one	nt I	Dа	nd I	Rev	isioı	n (o	n th	ie L	SIS	AS	(12)									
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Component ID

[31:16]

This field contains Component ID. This field is hardwired to 0x0200 on the LSISASx12 and hardwired to 0x0205 on the LSISASx12A.

Revision ID

[15:8]

This field contains the revision ID. This field is hardwired to 0x01 on the LSISASx12 and to 0x00 on the LSISASx12A.

Reserved

[7:0]

Register: 0x0030 Vendor Specific Dword 1 Read/Write

31							24	23							16	15							8	7							0
												١	/enc	lor :	Spe	cific	: Dv	vord	1												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Vendor Specific Dword 1

[31:0]

This field contains Vendor Specific Dword 1. The boot loader optionally writes this field during initialization.

Register: 0x0034 Vendor Specific Dword 0 Read/Write

Vendor Specific Dword 0

This field contains Vendor Specific Dword 0. The boot loader optionally writes this field during initialization.

Register: 0x0038 Report General 1 Read/Write

31							24	23							16	15							8	7							0
													F	Rep	ort (Gen	era	1													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Expander Change Count

[31:16]

This read-only field provides the count of the BROADCAST(CHANGE) primitive sequences that this device initiated. The value in this field equals the sum of the change counts in each of the links.

Expander Route Indexes

[15:0]

The field provides the number of route indexes for this expander.

Register: 0x003C Report General 2 Read/Write

Reserved

[31:20]

NPhys

[19:16]

This read-only field provides the number of phys for this expander. When the STP target is enabled, this field is 13 (0b1101). When the STP target is disabled, this field is 12 (0b1100)

Reserved	[15:9]

Configuration Table Support

8

Setting this bit indicates that the expander supports a configurable routing table. Clearing this bit indicates that the expander does not support a configurable routing table.

[7:0]

[29:16]

[15:12]

[7:2]

[1:0]

Reserved

Register: 0x0040 **Spin-up Control Read/Write**

Reserved

Spin-up Delay

This field indicates the spin-up delay in milliseconds.

Reserved

Spin Number

[12:8] This field specifies the maximum number of phys that the LSISASx12 is permitted to concurrently spin up.

Reserved

Spin Mode

This field specifies the spin-up mode for phys that are attached to SATA devices. The encoding of this field is:

Bit Value	Definition
0b00	SATA spin mode immediate
0b01	Reserved.
0b10	SATA spin mode host-notify
0b11	SATA spin mode self-timed

Register: 0x0044 Phy Configuration Read/Write

Reserved

SMP Target Enable

Setting this bit enables the SMP Target within the expander. The boot loader writes this field during initialization. The value of this field is passed to the SMP target after the boot checksum is validated.

STP Target Enable

Setting this bit enables the STP Target and SEMB functions within the expander. The boot loader writes this field during initialization. The value of this field is passed to the STP target after the boot checksum is validated.

Phy Enables

This field contains the enable bits for each phy. The boot loader writes this field during initialization. The value of this field is passed to each phy after the boot checksum is validated. Bit [0] corresponds to Phy [0], while bit [11] corresponds to Phy [11].

Register: 0x004C Phy Transmit Polarity Read/Write

[31:14]

13

12

[11:0]

This field contains the transmit polarity bits for each phy. Setting a bit inverts transmitter polarity for the corresponding phy from the default polarity of the phy. This is done to improve routing of board designs. Bit [0] corresponds to Phy[0], while bit [11] corresponds to Phy [11].

Register: 0x0050 Phy Receiver Polarity Read/Write

Reserved

Phy Receiver Polarity

[31:12] [11:0]

This field contains receiver polarity bit for each phy. Setting a bit inverts receiver polarity for the corresponding phy from the default polarity of the phy. This is done to improve routing of board designs. Bit [0] corresponds to Phy [0], while bit [11] corresponds to Phy [11].

Register: 0x0090 Boot Control and Status Read/Write

Boot Sequencer Active

31

30

This read-only bit provides boot sequencer activity status. This bit asserts when the boot sequencer is active.

Boot OK

This read-only bit provides the boot sequencer completion status. This bit asserts if the boot operation ends normally.

Reserved

[29:18]

Configuration Manager Registers Copyright © 2004, 2005 by LSI Logic Corporation. All rights reserved.

Boot Start

Setting this write-only bit initiates a boot download operation. This bit is self-clearing.

Boot Stop

ration register.

Setting this write-only bit aborts the boot download operation. This bit is self-clearing.

Register: 0x4000 **API2C Global Control** Read/Write

31							24	23							16	15							8	7							0
													AP	I2C	Glo	obal	Co	ntrc	bl												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register independently enables the master unit and globally enables and disables the IBML time-out timers.

R	Res The	erved se bits are res	erved.	[31:3]
IE	Tim This	er Enable bit enables th	e API2Ctimers.	2
	IE	IBML Timers		
	0	Disable	-	
	1	Enable		
R	Res This	erved bit is reserve	d and is hardwired to 0x0.	1

ISTWI Address

This read-only field provides the value of the ISTWI address input pins. This is also referred to as the I²C address.

Reserved

Phy Enable Bit Enable This bit enables the Phy Enable bits in the Phy Configu-

1

2

0

[17:16]

[15:3]

ME Master Enable

0

This bit enables the API2C master state machine.

ME	API2C Master State Machine
0	Disable
1	Enable

Register: 0x4008 **API2C Interrupt Status Read/Write**

31							24	23							16	15							8	7							0
													API	2C	Inte	errup	ot S	tatu	S												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register reports the status of the master state machine interrupt sources.

R	Res The	erved se bits are reserved.	[31:1]
МІ	Mas This sour and IRQ	ter Interrupt bit reflects the logical OR of the master in rces in the API2C Master Interrupt Status r determines the master contribution to the signal.	0 egister, external
	МІ	Master Interrupt	
	0	Either disabled or none of the master interru sources are set.	pt
	1	Enabled and one or more of the master interrors sources are set.	upt

Register: 0x4010 API2C Interrupt Enable Read/Write

31							24	23							16	15							8	7							0
													API	2C	Inte	rrup	ot Ei	nab	le												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register enables the reporting of interrupt status for the master interrupt sources. The status is reported through the corresponding API2C Interrupt Status register bit and through the external interrupt signal.

R	Rese Thes	e bits are reserved.	[31:1]
MIE	Mas t This	t er Interrupt Enable bit enables the master interrupt status.	0
	MIE	Function	
	0	The reporting of the master interrupt is disabled.	
	1	The master interrupt is enabled. A master interrupt sets the master interrupt status bit and asserts the master contribution to the external IRQ signal if of or more of the master interrupt sources are true.	ıpt he one

Register: 0x4018 API2C Wait Timer Control Read/Write

31							24	23							16	15							8	7							0
												A	PI2	C W	/ait	Tim	er (Con	trol												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register controls the wait timer. The wait timer times API2C transactions and causes the appropriate state machine to take action when a time-out occurs.

R Reserved [31:16] These bits are reserved.

TE	Time This	er Enable bit enables the wait timer.	15
	TE	Function	
	0	Disables the timer and forces time-out flag to 0.	
	1	Enables the timer.	
	Whe extensignation	In the timer is enabled and the master state made nds the SCL LOW time by asserting an internal al, the Timer Load Value loads into the timer. T r then counts down at the divided clock rate.	chine- hold The
	Whe sent the r is di	In the timer reaches 0, the time-out flag is set a to the master state machine. The flag clears w naster hold signal switches to false or when the sabled.	and vhen timer
TLV	Time This enat SCL clock Follo Valu the S	er Load Value 15-bit value loads into the timer if the timer is oled, and if the master state machine extends t LOW time. The timer counts down to 0 at the div rate. If the timer reaches 0, the time-out flag is owing a time-out, the timer reloads the Timer Li e when the timer is enabled and the master ca SCL LOW time to extend.	[14:0] the vided s set. oad tuses
	The perio to:	software programs this value for a certain time od, depending on the APB clock frequency acco	eout rding

Load value = Desired Time-Out/Divided Clock Period

Register: 0x4020 API2C t_{TIMEOUT} Control Read/Write

This register controls the API2C $t_{TIMEOUT}$ timer. This timer measures the time that the SCL signal is detected LOW.

R	Rese These	rved e bits are reserved.	[31:16]
TE	Time This I	r Enable bit enables the API2C t _{TIMEOUT} timer.	15
	TE	Function	
	0	Disables timer and forces API2C $\ensuremath{t_{\text{TIMEOUT}}}$ flag	to 0.
	1	Enables the t _{TIMEOUT} timer.	
TLV	Time This v if the value divide the tin the T LOW The s period accor	r Load Value value loads into the timer if the timer is enable SCL signal is detected LOW following a HI . The timer counts down from this value at the clock rate. If the timer reaches 0, the devi me-out flag. Following a time-out, the timer imer Load Value when the SCL signal is de again following a HIGH state. tooftware programs this value for a certain time d, depending on the APB clock frequency, a ding to the following formula:	[14:0] ed, and GH the ce sets reloads tected me-out and

Load value = Desired Time-Out/Divided Clock Period

Register: 0x4028 API2C t_{LOW} Control Read/Write

31							24	23							16	15							8	7							0
													AP	12C	tLC	SW	Со	ntro	I												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register controls the API2C t_{LOW} timer. This timer measures the time that the master controller extends the SCL signal LOW during the transmission or reception of a data byte.

R	Reserved	[31:16]
	These bits are reserved.	

TE	Time This	er Enable bit enables the API2C t _{LOW} timer.	15
	TE	Function	
	0	The timer is disabled and the API2C $\ensuremath{t_{\text{LOW}}}$ flag is forced to 0.	-
	1	The t _{LOW} timer is enabled.	_
TLV	API2 This data ACK mast SCL value devic timen the r	C Timer Load Value value loads into the timer at the beginning of e byte transfer to or from the API2C interface (Sta of previous byte). When the timer is enabled an ter controller extends the SCL signal by asserting hold signal, the timer counts down from the time at the divided clock rate. If the timer reaches (ce sets the time-out flag. Following a time-out, r reloads the Timer Load Value at the beginning hext data byte transfer.	[14:0] every art or id the og the mer 0, the the ing of
	The	software programs this value for a certain time	e-out

period, depending on the APB clock frequency, and

Load value = Desired Time-Out/Divided Clock Period

Register: 0x4038 API2C Timer Clock Divider Control Read/Write

31							24	23							16	15							8	7							0
											AF	PI2C	; Tir	ner	Clo	ck I	Divi	der	Cor	ntro	I										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The following register divides the APB clock frequency to use for all of the timers. The value in the register picks a power of two value from a free running 16-bit counter that serves as an enable for the timers.

R	Reserved	[31:4]
	These bits are reserved.	

according to the following formula:

DS Divider Select [3:0] This field selects the bit position from a 16-bit counter to use as an enable for the timers. Bit 3 is the most significant bit (MSB).

Register: 0x4040 API2C Monitor Read/Write

31	24 23 16														16	15							8	7							0
														AP	I2C	Мо	nito	r													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register allows the host to manually read and control the SCL and SDA API2C interface signals.

R	Reser These	ved bits are reserved.	[31:6]
SDAE	SDA F A 1 in transiti 1 to th	Talling Edge Detect this bit indicates that at least one HIGF on has occurred on the SDA status line is bit clears it.	5 I-to-LOW . Writing a
SCLE	SCL F A 1 in transiti 1 to th	alling Edge Detect this bit indicates that at least one HIGH on has occurred on the SCL status line is bit clears it.	4 I-to-LOW . Writing a
SDAC	SDA C This b	Control it controls the SDA signal.	3
	SDAC	Function	
	0	SDA is not forced LOW.	
	1	SDA is forced LOW on the API2C interface.	

SCLC	SCL C This bi	control it controls the SCL signal.	2
	SCLC	Function	
	0	SCL is not forced LOW.	
	1	SCL is forced LOW on the API2C interface.	_
SDAS	SDA S This bi value o is read	Status it reflects the current synchronized and of the SDA signal on the API2C interfac I only.	1 filtered æ. This bit
SCLS	SCL S This bi value o is reac	itatus it reflects the current synchronized and of the SCL signal on the API2C interfac I only.	0 filtered æ. This bit
40			

Register: 0x4048 API2C Soft Reset Read/Write

This register allows the host to independently reset the API2C interface.

R	Reserved[31:1]These bits are reserved.
I2CR	API2C Reset 0 Setting this bit resets the API2C module. This bit clears automatically when the reset completes. The reset:
	Forces all master state machines to their IDLE states
	Insures that the API2C core is not driving the API2C interface
	 Clears the Master Enable bit in the API2C Global Control register
	Clears master status bits

• Flushes (reset pointers) the Transmit and Receive FIFOs

Register: 0x4050 API2C Master Command Read/Write

31	24 23														16	15							8	7							0
												А	PI2	CΝ	last	er (Corr	nma	nd												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register issues commands to the master state machine.

R Reserved [31:4] These bits are reserved. SC Send Command 3 When software sets this bit, the master state machine issues the command that the command type field specifies. After the bit is set, it remains set until the command completes, and automatically clears when the command completes. After a command is in progress, the API2C core ignores any write attempts to the command bit or to the command type field. If the software attempts to set this bit when the command type field contains a reserved command type, this bit does not set. СТ **Command Type** [2:0] There are five commands the master state machine can execute. СТ Function 000 Manual Mode Transfer 001 Automatic Mode Transfer 010 Sequence Mode Transfer 011 Issue Master Stop 100 - 110Reserved Flush Master Transmit FIFO 111

Register: 0x4058 API2C Receive Transfer Length Read/Write

31	1 24 23 16 15 API2C Receive Transfer Length																	8	7							0					
											A	API2	2C F	Rece	eive	Tra	Insf	er L	.eng	gth											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register determines the number of bytes transferred during receive transfers. The API2C core ignores writes to this register during the execution of a data transfer command.

R	Reserved[31:8]These bits are reserved.
RXTL	Receive Transfer Length[7:0]This field determines the number of bytes received duringAPI2C read transfers.
	The API2C receives this number of data bytes from a slave (the Serial EEPROM) and writes them to the Receive FIFO. When the transfer length is reached, the master state machine either issues a Stop command, or holds the SCL signal LOW and awaits another command. If the Receive FIFO becomes full before the receive transfer length is reached, the master state machine inserts wait cycles by holding the SCL signal LOW.
	A value of 0 for this field is illegal for the Automatic Trans- fer (receive) and Sequence Transfer commands. If this field is set to 0 when these commands are issued, the API2C core reports an error in the API2C Master Inter- rupt Status register.
	For a manual command, a value of 0 causes the master state machine to send only the address phase informa- tion, and then to hold the SCL signal LOW while awaiting

another command.

Register: 0x4060 API2C Transmit Transfer Length Read/Write

31	24 23 16 15 API2C Transmit Transfer Leng																	8	7							0					
											А	PI2	2C 1	ran	smit	t Tra	ansf	er L	_enç	gth											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register determines the number of data bytes sent during transmit transfers. The API2C core ignores writes to this register during the execution of a data transfer command.

R	Reserved These bits are reserved.	[31:8]
TXTL	Transmit Transfer Length This field determines the number of bytes transmit the API2C during write transfers.	[7:0] ted by
	The API2C interface writes this number of data by a slave (the Serial EEPROM) from the Transmit F When the transfer length is reached, the master s machine either issues a Stop command, or holds SCL signal LOW and awaits another command. If Transmit FIFO becomes empty and the transmit tra- length is not reached, the master state machine in wait cycles by holding the SCL signal LOW.	tes to IFO. tate the the ansfer nserts
	A value of 0 for this field is illegal for the Automatic fer (receive) and Sequence Transfer commands. If field is set to 0 when these commands are issued API2C core reports an error in the API2C Master rupt Status register.	Trans- this , the Inter-
	For a manual command, a value of 0 causes the n state machine to send only the address phase info tion, and then to hold the SCL signal LOW while av	naster orma- vaiting

another command.

Register: 0x4068 API2C Address Register 1 Read/Write

This Address Register 1 (AR1) is sent as the first byte in the address phase of an API2C transaction.

R	Rese These	rved [e bits are reserved.	31:8]
I2CA1	API20 These phase then the tw bit ad the ac The s addre	C Address 1 e bits are sent as the first seven bits of the add e in an API2C transaction. If bits [7:3] equal 11 10-bit addressing is selected and bits [2:1] bec vo most significant bits of a 10-bit address. Wit dressing, an additional address byte is sent at ccess direction bit and the first address byte A second byte is the lower eight bits of a 10-bit ess.	[7:1] ress 110, ome h 10- iter CK.
AD	Acce	ss Direction	•
	This the sent a	bit is the API2C data direction bit. It is the eight after a start or repeated start condition.	h bit
	This the sent a	bit is the API2C data direction bit. It is the eight after a start or repeated start condition.	h bit
	This b sent a <u>AD</u> 0	bit is the API2C data direction bit. It is the eight after a start or repeated start condition. Function Write Access. The data phase after the address p is taken from the Transmit FIFO and written to th addressed slave.	h bit hase
	This b sent a <u>AD</u> 0	bit is the API2C data direction bit. It is the eight after a start or repeated start condition. Function Write Access. The data phase after the address p is taken from the Transmit FIFO and written to th addressed slave. Read Access. The data after the address phase returned by the addressed slave during the data p The master state machine places the data in the Receive FIFO.	h bit phase hase.

This bit is ignored when a Sequence Transfer command is issued with the access direction automatically generated.

Register: 0x4070 API2C Address Register 2 Read/Write

If 10-bit addressing is enabled, then this field in the Address Register 2 (AR2) is sent as the second byte in the address phase of an API2C transaction.

R	Reserved These bits are reserved.	[31:8]
I2CA2	API2C Address 2 This field contains API2C address bits [7:0] API2C address. If 10-bit addressing is enable is sent as the second byte in the address pl API2C transaction 10-bit addressing is enable	[7:0] of a 10-bit ed, this field nase of an oled when

bits [7:3] of the API2C Address Register 1 equal 11110.

Register: 0x4078 API2C Data Read/Write

31		24 23														15							8	7							0
														A	PI20	C D	ata														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

A write to this register places data into the Transmit FIFO. A read to this register retrieves data from the top of the Receive FIFO.

R	Reserved[31:8]These bits are reserved.	
MDP	Master Data Port[7:0]A write to this location writes the data into the TransmiFIFO at the write pointer location and then incrementsthe write pointer. The API2C core ignores the write if theTransmit FIFO is full.	

A read to this location returns the data from the Receive FIFO at the read pointer location and then increments the read pointer. If the Receive FIFO is empty, the data pointed to by the read pointer is returned, but the read pointer is not incriminated.

Register: 0x4080 API2C Transmit FIFO Status Read Only

This register indicates the number of data bytes currently in the Transmit FIFO.

R	Reserved These bits are reserved.	[31:4]
TFD	Transmit FIFO Depth This field indicates the current number of data the Transmit FIFO. A value of 0 indicates that mit FIFO is empty, while a value of 8 indicate Transmit FIFO is full. The values of 9-15 are	[3:0] a bytes in t the Trans- es that the reserved.

Register: 0x4088 API2C Receive FIFO Status Read Only

This register indicates the number of data bytes currently in the Receive FIFO.

Re

R

Reserved

[31:4]

These bits are reserved.
RFD Receive FIFO Depth [3:0] This field indicates the current number of data bytes in the Receive FIFO. A value of 0 means the Receive FIFO is empty, while a value of 8 indicates the Receive FIFO is full. The values of 9-15 are reserved.

Register: 0x4090 API2C Master Interrupt Enable Read/Write

31		24 23													16	15							8	7							0
											/	٩PI	2C I	Mas	ter	Inte	errup	ot E	nab	le											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register enables the individual master state machine interrupts. The bits in this register correspond to the interrupt status bits in the API2C Master Interrupt Status register. When corresponding bits in both registers are set to 1, the interrupt status is reflected on the external interrupt signal and in the Master Interrupt bit in the API2C Master Interrupt Status register.

R	Reserv These	/ed bits are reserved.	[31:16]
MIE	Master These respon Master	Tinterrupt Enables bits enable the master interrup ding individual interrupt source Interrupt Status register.	[15:4] ot status for the cor- es in the API2C
	MIE	Function	
	0	Individual interrupt disabled.	
	1	Individual interrupt enabled.	
R	Reserv These	/ed bits are reserved and unused	[3:0] but are writable.

Register: 0x4098 API2C Master Interrupt Status RC/SC

31							24	23							16	15							8	7							0
												API	2C	Mas	ster	Inte	erru	pt S	Statu	IS											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register records the master interrupt status of the most recently issued command. The master interrupt status bits are cleared either when read or when a new command is issued.

Status bits [15:4] are interrupt sources for the master interrupt. If interrupts are enabled, the API2C signals an interrupt when one or more of these bits are set.

R	Reserved These bits are reserved.	[31:16]
тт	API2C T_{TIMEOUT} This bit sets to 1 if the T _{TIMEOUT} timer expire master controller is in control of the API2C in This bit clears to 0 when this register is read	15 as when the nterface. d.
TL	API2C T_{LOW} This bit sets to 1 if T _{LOW:MEXT} timer expires master controller is in control of the API2C in This bit clears to 0 when this register is read	14 when the nterface. d.
RFL	Receive FIFO High Threshold Reached This bit sets to 1 during a Manual, Automatic Sequence receive transfer when the Receive tains four bytes or more and the number of or remaining in the transfer is greater than the free locations in the FIFO.	13 c, or FIFO con- data bytes number of
	This bit clears to 0 when the above condition true or when the command completes abnor (Receive FIFO is flushed).	is no longer mally

TFL	Transmit FIFO Low Threshold Reached12During a Manual or Automatic transmit transfer, this bitsets to 1 when the Transmit FIFO contains three bytes orless, and when the number of bytes remaining in thetransfer is greater than the number of data bytes in theFIFO.
	This bit clears to 0 when the above condition is no longer true or when the command completes abnormally (Transmit FIFO is flushed).
SNS	Transfer Completed — Stop Not Sent11This bit sets to 1 after a manual transfer command completes successfully (all data bytes sent/received). This bit clears to 0 when it is read or when a new command is issued.11
SS	Transfer Completed — Stop Sent10This bit sets to 1 when an Automatic Transfer or Sequence Transfer command completes successfully. This bit clears to 0 when it is read or when a new command is issued.10
SCC	Stop Command Completed 9 This bit sets to 1 after the master controller completes a Stop command. A delay occurs between the assertion of this interrupt and the completion of the STOP on the API2C interface. This bit clears to 0 when it is read or when a new command is issued.
IP	Illegal Parameter 8 This bit sets to 1 if an Automatic Transfer or Sequence Transfer command is issued when the Master Transfer Length is set to 0. This bit clears to 0 when it is read or when a new command is issued.
TSS	 Time-Out Occurred — Stop Sent 7 This bit is set if a transfer command times out. A time-out occurs when a wait timer expires while awaiting the next command the Transmit FIFO is empty and transmit transfer length has not been met the Receive FIFO is full and receive transfer length
	has not been met

This bit clears when it is read or when a new command is issued.

AL Arbitration Lost 6 This bit sets to 1 if any data transfer command loses API2C interface arbitration. This bit clears to 0 when it is read or when a new command is issued. ND 5 NAK Received During Transmit Data Phase This bit sets to 1 if any data transfer command receives a NAK during the transmit data phase of an API2C interface transaction. This bit clears to 0 when it is read or when a new command is issued. NA NAK Received During Address Phase 4 This bit sets to 1 if any data transfer command receives a NAK during the address phase of an API2C interface transaction. This bit clears to 0 when it is read or when a new command is issued. TS Transfer Stopped 3 This bit indicates that a Stop command terminated the transfer. This bit is the logical OR of bits 15, 14, and [10:4] of this register and is read only.

STP Sequence Transfer in Process This bit indicates that a Sequence Transfer command data sequence (Write/Read) is in process.

This bit sets to 1 at the start of the transmit portion of a sequence command. This bit clears to 0 when the receive portion of a sequence command completes and this register is read.

2

TTPTransmit Transfer in Process1This bit indicates that the master state machine is processing the transmit (write) part of a data transfer.

This bit sets to 1 at the start of the transmit transfer. The bit clears to 0 when either the transmit transfer completes and this register is read, or when a Sequence Transfer command switches to the receive part of the transfer.

<u>Note:</u> After an API2C timer time-out during a master read operation, this bit sets when the Stop condition appears on the interface.

RTP Receive Transfer in Process 0 When this bit is set, it indicates that the master state machine is processing the receive (read) part of a data transfer.

This bit sets to 1 at the start of the receive transfer. The bit clears to 0 when the receive transfer completes and this register is read.

Register: 0x40A0 API2C Transmit Bytes Transferred Read Only

31							24	23							16	15							8	7							0
											A	9120	C Tr	ans	mit	Byte	es 1	Fran	sfer	red											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register tracks the number of successfully transmitted (acknowledged) data bytes.

R	Reserved	[31:8]
	These bits are reserved.	

NBT Number of Bytes Transmitted [7:0] This field counts the number of acknowledged data bytes that are transferred in the transmit direction. The register clears each time a start or repeated start occurs, and counts the data bytes that are transferred after the address phase of an API2C transaction. If a data transfer stops due to an abnormal termination, the software can use the value in this register to determine how to complete the transfer.

Register: 0x40A8 API2C Receive Bytes Transferred Read Only

This register keeps track of the number of successfully received (acknowledged) data bytes.

R	Reserved	[31:8]
	These bits are reserved.	

NBR Number of Bytes Received [7:0] This field counts the number of acknowledged data bytes that are transferred in the receive direction. The register clears each time a start or repeated start occurs, and counts the data bytes that are transferred after the address phase of an API2C transaction. If a data transfer stops due to an abnormal termination, the software can use the value in this register to determine how to complete the transfer.

Register: 0x4100 API2C SCL High Period Read/Write

This register sets up the clock based on the 75 MHz PCLK frequency. It is configured automatically during system initialization. It is not necessary to program this register.

This register determines the high period for the SCL clock generated by API2C master state machine. The value specifies the number of PCLK cycles that the SCL clock is HIGH.

The programmed High Clock Count value loads into a 16-bit counter at the start of the master HIGH state. The counter decrements on each PCLK cycle. When the counter reaches 0, the SCL state machine transitions to the master LOW state.

R Reserved [31:16]

These bits are reserved.

SHCCSCL High Clock Count[15:0]This value loads in the 16-bit SCL timer.

Program an appropriate value for the desired speed mode. The available modes are the standard mode or the fast mode. Derive the appropriate value by using the following equation.

(Desired_SCL_High_Time/PCLK_period) - 1

Register: 0x4108 API2C SCL Low Period Read/Write

31	1 24 23														16	15							8	7							0
												,	٩PI	2C \$	SCL	. Lo	w F	Perio	bd												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register sets up the clock based on the 75 MHz PCLK frequency. It is configured automatically during system initialization. It is not necessary to program this register.

This register determines the low period for the SCL clock that the API2C master state machine generates. The value specifies the number of PCLK cycles that the SCL clock is LOW.

The programmed Low Clock Count value loads into a 16-bit counter at the start of the master LOW state. The counter decrements on each PCLK cycle. When the counter reaches 0, the SCL state machine transitions to the master wait state and releases the SCL signal.

RReserved[31:16]These bits are reserved.

SLCC SCL Low Clock Count

[15:0]

This is the value loads in the 16-bit SCL timer.

Program an appropriate value for the desired speed mode. The available modes are the standard mode or the fast mode. Derive the appropriate value by using the following equation.

(Desired_SCL_Low_Time/PCLK_period) - 1

Register: 0x4110 API2C Spike Filter Control Read/Write

31							24	23							16	15							8	7							0
												A	PI20	C SI	oike	Filt	ter	Con	trol												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register sets up the clock based on the 75 MHz PCLK frequency. It is configured automatically during system initialization. It is not necessary to program this register.

This register controls the spike filter for SCL and SDA. The filter stages determine the maximum size of the spike that the filter suppresses. The number of stages is expressed by the number of PCLK cycles.

R	Reserved These bits are reserved.	[31:5]
FS	Filter Stages This five-bit value determines the number of spike stages. This is the size of the maximum spike sup pressed. The value is in units of PCLK cycles. The imum number of allowable stages is 16. Programm value greater than 16 disables the filter, and no fil occurs.	[4:0] e filter o- e max- ning a tering

Register: 0x4118 API2C SDA Setup Time Read/Write

31	31 24 23														16	15							8	7							0
													A	PI2	c s	etup	o Ti	me													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register sets up the clock based on the 75 MHz PCLK frequency. It is configured automatically during system initialization. It is not necessary to program this register.

This register controls the data setup time when the master is driving SCL and SDA. The programmed value specifies the length of time that SDA is stable prior to a rising edge on SCL. This value is in units of PCLK cycles.

R	Reserved[31:16]These bits are reserved.
SDASC	SDA Setup Count [15:0] This 16-bit programmed value loads into the counter
	• Following an extension of the SCL LOW period by the master state machine to hold the interface in a Wait state (when SDA might change with new data)
	 When the master state machine is about to generate a Stop condition (when both SCL and SDA might change state)
	The 16-bit counter begins counting down on each PCLK cycle. SCL is held LOW until the counter reaches 0.
	Program an appropriate value for the desired speed mode. The available modes are the standard mode or the fast mode.

Register: 0x4120 API2C SDA Hold Time Read/Write

31	1 24 23														16	15							8	7							0
													API	2C	SD/	٩H	old	Tim	е												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register sets up the clock based on the 75 MHz PCLK frequency. It is configured automatically during system initialization. It is not necessary to program this register.

This register controls the data hold time when the API2C core controls the SDA signal. The programmed value specifies the length of time that the SDA signal is stable following a falling edge on SCL. This value is in units of PCLK cycles.

Note: This register provides the t_{HD:DAT} timing parameter for the API2C interface.

R	Reserved	[31:16]
	These bits are reserved.	
SDAHC	SDA Hold Count	[15:0]
	Whenever SDA transitions (from driven to	not driven, or
	from not driven to driven), this value loads	s into a 16-bit
	counter that begins counting down on eac	h PCLK cycle.
	The transition is delayed until the counter	reaches 0.
	Program an appropriate value for the desi mode. The available modes are the standa	ired speed rd mode or the

Register Descriptions Copyright © 2004, 2005 by LSI Logic Corporation. All rights reserved.

fast mode.

Register: 0x8000 LED Group Control Read/Write

31		24 23 16 15																			8	7							0		
													LE	ED (Gro	up (Con	trol													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

These configuration bits select the default mode of the pin group according to Table 4.3. Settings other than those defined in this table disable the pin group. The bit overrides in the Group Override registers supersede the settings in this register.

Table 4.3 LED Group Configuration Settings

Value	Setting	Description
0x0	GPIO	The associated Group GPIO Control registers and Group GPIO Value registers control the pin state.
0x1	Activity	The Activity setting turns an LED off if a SATA HOLD condition exists. Otherwise, the LED is on for the longer of either 32 ms or the duration from a SOF to the EOF, when a frame traverses through the link.
0x2	Fault	 The Fault setting turns an LED on for any of the following conditions: medium blink rate when waiting for permission to spin up fast blink rate between OOB and first FIS continuously on when the phy is not READY This output is off when the phy is connected and ready.
0x3	Combo	The Combo setting is the Exclusive-OR of the inverted Fault condition and the Activity condition.
0x4	Inverted Activity	The Inverted Activity setting asserts the LED in the same manner as the Activity setting case, except that the polarity is inverted.

Reserved	[31:20]
Group 4 Configuration This field provides configuration for the LED_STATUS[11:0]/ signals.	[19:15]
Group 3 Configuration This field provides configuration for the LED_FAULT[11:0]/ signals.	[15:12]
Group 2 Configuration	[11:8]

This field provides configuration for the LED_ACTIVE[11:0]/ signals.

Group 1 Configuration [7:4]

This field provides configuration for the CBL_DET[11:0]/ signals.

Group 0 Configuration

[3:0]

This field provides configuration for the GPIO[3:0] signals. The only value valid for this group is 0x0, which indicates a GPIO setting.

Register: 0x8004 Group 0 GPIO Control Read/Write

Reserved

[31:4]

GPIO Direction

[3:0]

If the Group 0 configuration is set to GPIO, then this field controls the direction of the pin in the Group 0 pinset. Setting the associated bit configures the pin as an output. Clearing the associated bit configures the pin as an input. The Group 0 GPIO Value register controls the value of the output GPIO signal, and allows observation of the input GPIO signal.

Register: 0x8008 Group 1 GPIO Control Read/Write

Reserved

[31:12]

GPIO Direction

[11:0]

If the Group 1 configuration is set to GPIO, then this field controls the direction of the pin in the Group 1 pinset. Setting the associated bit configures the pin as an output. Clearing the associated bit configures the pin as an input. The Group 1 GPIO Value register controls the value of the output GPIO signal, and allows observation of the input GPIO signal.

Register: 0x800C Group 2 GPIO Control Read/Write

31		24 23													16	15							8	7							0
													Gro	up	2 G	PIC) Co	ontro	ol												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reserved

[31:12]

GPIO Direction[11:0]If the Group 2 configuration is set to GPIO, then this field
controls the direction of the pin in the Group 2 pinset.Setting the associated bit configures the pin as an output.Clearing the associated bit configures the pin as an input.The Group 2 GPIO Value register controls the value of
the output GPIO signal, and allows observation of the
input GPIO signal.

Register: 0x8010 Group 3 GPIO Control Read/Write

Reserved

[31:12]

GPIO Direction

[11:0]

If the Group 3 configuration is set to GPIO, then this field controls the direction of the pin in the Group 3 pinset. Setting the associated bit configures the pin as an output. Clearing the associated bit configures the pin as an input. The Group 3 GPIO Value register controls the value of the output GPIO signal, and allows observation of the input GPIO signal.

Register: 0x8014 Group 4 GPIO Control Read/Write

31	24 23														16	15							8	7							0
													Gro	up	4 G	PIC) Co	ontro	ol												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reserved

GPIO Direction

[31:12]

[11:0] If the Group 4 configuration is set to GPIO, then this field controls the direction of the pin in the Group 4 pinset. Setting the associated bit configures the pin as an output. Clearing the associated bit configures the pin as an input. The Group 4 GPIO Value register controls the value of the output GPIO signal, and allows observation of the input GPIO signal.

Register: 0x8018 Group 0 GPIO Value Read/Write

Reserved

[31:12]

GPIO Value

[11:0]

If the Group 0 configuration is set to GPIO, then these bits control or observe the state of the associated pin. A write of this register sets the output value, and a read of this register returns the input value. If the pin is configured as an input then there is no method to determine to the most recent output value.

Register: 0x801C Group 1 GPIO Value Read/Write

Reserved

[31:12]

GPIO Value

[11:0]

If the Group 1 configuration is set to GPIO, then these bits control or observe the state of the associated pin. A write of this register sets the output value, and a read of this register returns the input value. If the pin is configured as an input then there is no method to determine to the most recent output value.

Register: 0x8020 Group 2 GPIO Value Read/Write

31:12]

GPIO Value

[11:0]

If the Group 2 configuration is set to GPIO, then these bits control or observe the state of the associated pin. A write of this register sets the output value, and a read of this register returns the input value. If the pin is configured as an input then there is no method to determine to the most recent output value.

Register: 0x8024 Group 3 GPIO Value Read/Write

Reserved

[31:12]

GPIO Value

[11:0]

If the Group 3 configuration is set to GPIO, then these bits control or observe the state of the associated pin. A write of this register sets the output value, and a read of this register returns the input value. If the pin is configured as an input then there is no method to determine to the most recent output value.

Register: 0x8028 Group 4 GPIO Value Read/Write

bits control or observe the state of the associated pin. A write of this register sets the output value, and a read of this register returns the input value. If the pin is configured as an input then there is no method to determine to the most recent output value.

Register: 0x8030 LED Blinker Definition 1 Read/Write

31							24	23							16	15							8	7							0
												L	.ED	Bli	nke	r De	efini	tion	1												
1	0	0	0	1	1	1	0	0	0	1	1	0	0	1	1	1	0	0	0	1	1	0	0	1	1	1	0	0	0	1	1

This register defines the operation of the Blinker Control 1. This generic blinker definition can drive any pin in a group. The Group Override registers can associate this register with a specific pin when the Group Configuration is not set to GPIO. The default for this register is approximately a 1/3 s pulse.

Time Base

This field selects the time base for the blink generator rotater. Setting this bit programs the time base to 64 ms, for a total period of 1.92 s. Clearing this bit programs the time base to 16 ms, for a total period of 0.48 s.

Use LEDSYNC_OUT Pin

Blink Pattern

31

30

[29:0]

This field rotates to the right at the rate selected by the Time Base bit. Bit 0 of the shifted pattern to the pin determines the LED state.

Register: 0x8034 LED Blinker Definition 2 Read/Write

This register defines the operation of the Blinker Control 2. This generic blinker definition can drive any pin in a group. The Group Override registers can associate this register with a specific pin when the Group Configuration is not set to GPIO. The default for this register is approximately a 1 s pulse.

Time Base

This field selects the time base for the blink generator rotater. Setting this bit programs the time base to 64 ms, for a total period of 1.92 s. Clearing this bit programs the time base to 16 ms, for a total period of 0.48 s.

Use LEDSYNC_OUT Pin

Setting this bit causes the blink generator to ignore the Time Base and Pattern fields, and to source its output from the LEDSYNC_OUT pin.

Blink Pattern

This field rotates to the right at the rate selected by the Time Base bit. Bit 0 of the shifted pattern to the pin determines the LED state.

Register Descriptions Copyright © 2004, 2005 by LSI Logic Corporation. All rights reserved.

^[29:0]

Register: 0x8038 LED Blinker Definition 3 Read/Write

This register defines the operation of the blinker control 3. This generic blinker definition can drive any pin in a group. The Group Override registers can associate this register with a specific pin when the Group Configuration is not set to GPIO. The default for this register is intermittent blinking, approximately 1/5 s every 2 s.

Time Base

This field selects the time base for the blink generator rotater. Setting this bit programs the time base to 64 ms, for a total period of 1.92 s. Clearing this bit programs the time base to 16 ms, for a total period of 0.48 s.

Use LEDSYNC_OUT Pin

Setting this bit causes the blink generator to ignore the Time Base and Pattern fields, and to source its output from the LEDSYNC_OUT pin.

Blink Pattern

This field rotates to the right at the rate selected by the Time Base bit. Bit 0 of the shifted pattern to the pin determines the LED state.

[29:0]

31

Register: 0x8040 Group 0 Override Read/Write

If the Group Configuration field is not set to GPIO, then this field affects the pin operation according to Table 4.4. Note the transition to or from a custom blinker setting is immediate. The pattern is not completed when transitioning out. The pattern starts where it last was in its rotation when transitioning in.

Table 4.4 Group Override Pin Operation

Value	Function
0x00	No override. The pin functions according to their group configuration.
0x01	LED Blinker Definition 1 is used.
0x02	LED Blinker Definition 2 is used.
0x03	LED Blinker Definition 3 is used.

Reserved	[31:8]
Bit 3 Override	[7:6]
Bit 2 Override	[5:4]
Bit 1 Override	[3:2]
Bit 0 Override	[1:0]

Register: 0x8048 Group 1 Override Read/Write

31	31 24 23 10														16	15							8	7							0
													Ċ	Grou	ıp 1	Ov	erri	de													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reserved	[31:24]
Bit 11 Override	[23:22]
Bit 10 Override	[21:20]
Bit 9 Override	[19:18]
Bit 8 Override	[17:16]
Bit 7 Override	[15:14]
Bit 6 Override	[13:12]
Bit 5 Override	[11:10]
Bit 4 Override	[9:8]
Bit 3 Override	[7:6]
Bit 2 Override	[5:4]
Bit 1 Override	[3:2]
Bit 0 Override	[1:0]

Register: 0x8050 Group 2 Override Read/Write

31		24 23 16 15												15							8	7							0		
													Ģ	Grou	ıp 2	Ov	erri	de													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reserved	[31:24]
Bit 11 Override	[23:22]
Bit 10 Override	[21:20]
Bit 9 Override	[19:18]
Bit 8 Override	[17:16]
Bit 7 Override	[15:14]
Bit 6 Override	[13:12]
Bit 5 Override	[11:10]
Bit 4 Override	[9:8]
Bit 3 Override	[7:6]
Bit 2 Override	[5:4]
Bit 1 Override	[3:2]
Bit 0 Override	[1:0]

Register: 0x8058 Group 3 Override Read/Write

31			24 23 1												16	6 15 8							8	7				0			
													(Grou	up 3	30v	errio	de													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reserved	[31:24]
Bit 11 Override	[23:22]
Bit 10 Override	[21:20]
Bit 9 Override	[19:18]
Bit 8 Override	[17:16]
Bit 7 Override	[15:14]
Bit 6 Override	[13:12]
Bit 5 Override	[11:10]
Bit 4 Override	[9:8]
Bit 3 Override	[7:6]
Bit 2 Override	[5:4]
Bit 1 Override	[3:2]
Bit 0 Override	[1:0]

Register: 0x8060 Group 4 Override Read/Write

31							24	23							16	15							8	7							0
													Ċ	Grou	ıp 4	Ov	erri	de													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reserved	[31:24]
Bit 11 Override	[23:22]
Bit 10 Override	[21:20]
Bit 9 Override	[19:18]
Bit 8 Override	[17:16]
Bit 7 Override	[15:14]
Bit 6 Override	[13:12]
Bit 5 Override	[11:10]
Bit 4 Override	[9:8]
Bit 3 Override	[7:6]
Bit 2 Override	[5:4]
Bit 1 Override	[3:2]
Bit 0 Override	[1:0]

Register: 0xC000 SIO Configuration Read/Write

This SIO module participates in the generation of an SIO output data stream as an originator.

Mux Control Code

[31:28]

27

When bit 0 of this register is set, the value in this field is the mux control code that is transmitted on the SioEnd line after setting the Transmit Mux Control bit. Encodings for the value in this register are receiver defined except for bit 28 (MX0), which determines whether the cycle transmits and receives device data or general purpose data. Bit 28 (MX0) is transmitted first.

Transmit Mux Control

When bit 0 of this register is set, setting this bit causes the SIO to transmit the value in Mux Control Code in the next available transmit cycle. The SIO transmits the Mux Control Code one time only. When bit 0 of this is register cleared, the SIO ignores writes to this field.

Setting this bit may produce unexpected results when the SIO Mode bit is cleared and SIO Device Count is set to 0b0001.

SIO Device Count

[26:23]

This field provides the number of devices that require LED output bits and input bits. The number of bits to be output on the SioDout line and the number of bits to be input on the SioDin line is 3 times the SIO Device Count ($3 \times$ (SIO Device Count)). Valid values are 1 to 12, which provide for 3 to 36 output bits and 3 to 36 input bits. Bit 0 is always transmitted first.

To send out the minimum number of bits and to eliminate the requirement that receivers skip over unused output bits, attach devices to consecutive phys, starting with Phy 0. The first input bit of the receive cycle must be ignored.

Do not set this field to a value less than 2 when SIO Mode is set to a 1.

SIO Run Enable

This bit enables transmit and receive operations on the SIO interface. Resets disable transmit and receive operations on the SIO interface until this bit is set. Once enabled, transmit and receive operations continue until this bit is cleared. Any transmit and receive operation in progress when this bit is cleared continue to completion.

Clock Divide

This field sets the clock divide value for the SioClk clock generation logic. Equation 4.1 provides the frequency of SioClk.

Equation 4.1 Frequency = 75 MHz $2((Clock Divide \times 8) + 1)$

> The lowest frequency available is approximately 143 Hz. The highest operational frequency is 200 KHz.

SIO Control ODEn

Setting this bit drives SioClk and SioEnd LOW, but permits them to float HIGH. Clearing this bit drives SioClk and SioEnd to both the HIGH and the LOW states.

SIO Clock Filter Enable

5 Setting this bit causes clock filtering of the selected Sio-Clk.

Jog Activity

Setting this bit causes bits representing the Activity signal in the serial bit stream to deassert for 256 ms after they assert for 4 seconds. Clearing this bit allows these bits to stay asserted for as long as the Active input remains in the asserted state.

Clock Enable

Setting this bit configures the SioClk and BlinkClk internal signals as inputs. Clearing this bit configures these signals as outputs.

Register Descriptions Copyright © 2004, 2005 by LSI Logic Corporation. All rights reserved.

[21:7]

22

4

6

SIO Enable

Setting this bit selects SIO functionality for the SIO pins.

SIO Mode

This bit indicates the SIO mode. Clearing this bit configures the SIO for a single participant. Setting this bit configures the SIO for multiple participants.

First SIO Device

This bit is set to indicate that the device is the first SIO data transmitter (First Originator), and can append mux control codes to the SioEnd signal. When this bit is cleared, the device can not append mux control codes to the SioEnd signal, but must pass on any codes it receives.

Register: 0xC004 SIO Receive 0 Read/Write

SIO Receive 0

The SIO receive registers (SIO_RCV0 and SIO_RCV1) receive data directly from the serial SIO at the end of each normal serial input/output cycle. The number of bits shifted in (and therefore the number of valid inputs bits) is 3 times the SIO Device Count. The SIO Device Count is located in the SIO Configuration register.

Bits [(((SioDeviceCnt) * 3) – 1):0] of this register contain the data shifted in during the most recent serial input/output cycle. When the SIO Device Count is set to 10 or 11, bits [31:0] of this register contain the data from bits [31:0] of the input shift register, and the rest of the bits are available in the SIO Receive 1 register.

2

1

0

[31:0]

Configuration Manager Registers Copyright © 2004, 2005 by LSI Logic Corporation. All rights reserved.

Register: 0xC008 SIO Receive 1 Read/Write

Reserved

[31:4]

[3:0]

SIO Receive 1

When the SIO Device Count is set to 10 or 11, bit 0 of this register contains bit 32 from the SioDin line and bits [3:1] of this register are reserved. When SIO Device Count is set to 11, bits [3:0] of this register contain bits [35:32] from the SioDin line.

Register: 0xC00C SIO General Purpose Receive 0 Read/Write

SIO General Purpose Receive 0

[31:0]

The SIO receive registers (SIO_RCV0 and SIO_RCV1) receive data directly from the serial SIO at the end of each normal serial input/output cycle. The number of bits shifted in (and therefore the number of valid inputs bits) is 3 times the SIO Device Count. The SIO Device Count is located in the SIO Configuration register.

Bits [(((SioDeviceCnt) * 3) – 1):0] of this register contain the data shifted in during the most recent serial input/output cycle. When the SIO Device Count is set to 10 or 11, bits [31:0] of this register contain the data from bits [31:0] of the input shift register, and the rest of the bits are available in the SIO General Purpose Receive 1 register.

Register: 0xC010 SIO General Purpose Receive 1 Read/Write

When the SIO Device Count is set to 10 or 11, bit 0 of this register contains bit 32 from the SioDin line and bits [3:1] of this register are reserved. When SIO Device Count is set to 11, bits [3:0] of this register contain bits [35:32] from the SioDin line.

Register: 0xC014 SIO Output Data Control 0 Read/Write

31			24 23 16 15 8 7															0													
												SI	00	Dutp	out [Data	a Co	ontro	ol 0												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The SIO Output Data Control registers provide data output control for PHY[11:0]. Each SIO Output Data register uses one of two possible bit field definitions. One bit field definition provides the bit definitions for the standard SGPIO mode; the other bit field definition provides the bit definitions for the enhanced SGPIO mode only available on the LSISASx12A.

Each byte of this register generates 3 serialized I/O bits on the SioDout line. This register controls SIO bits [11:0], which are for devices 3 through 0.

The following are the bit definitions for standard SIO mode:

SIO bit 11: Error Device 3 [31:29]

SIO bit 10: Locate Device 3	[28:27]
SIO bit 9: Active Device 3	[26:24]
SIO bit 8: Error Device 2	[23:21]
SIO bit 7: Locate Device 2	[20:19]
SIO bit 6: Active Device 2	[18:16]
SIO bit 5: Error Device 1	[15:13]
SIO bit 4: Locate Device 1	[12:11]
SIO bit 3: Active Device 1	[10:8]
SIO bit 2: Error Device 0	[7:5]
SIO bit 1: Locate Device 0	[4:3]
SIO bit 0: Active Device 0	[2:0]

The following are the bit definitions for enhanced SIO mode:

SIO bit 11: Error Device 3	[31:29]
SIO bit 10: Locate Device 3	[28:26]
SIO bit 9: Active Device 3	[25:24]
SIO bit 8: Error Device 2	[23:21]
SIO bit 7: Locate Device 2	[20:18]
SIO bit 6: Active Device 2	[17:16]
SIO bit 5: Error Device 1	[15:13]
SIO bit 4: Locate Device 1	[12:10]
SIO bit 3: Active Device 1	[9:8]
SIO bit 2: Error Device 0	[7:5]
SIO bit 1: Locate Device 0	[4:2]
SIO bit 0: Active Device 0	[1:0]

When the SIO Control Select bit in the SIO Adapter Control register 0xC054 is cleared, the standard SGPIO mode is enabled and the bit encodings are.

Active Field Encoding	Definition
0b000	OFF
ob001	Activity
0b010	Blink at 1 Hz (500 ms ON, 500 ms OFF)
0b011	Blink at Hz (250 ms ON, 250 ms OFF)
0b100	ON
0b101	Inverted Activity
0b110	Inverted Blink at 1 Hz (500 ms OFF, 500 ms ON)
0b111	Inverted Blink at Hz (250 ms OFF, 250 ms ON)

Locate Field Encoding	Definition
0b00	OFF
ob01	ON
0b10	Blink at 1 Hz (500 ms ON, 500 ms OFF)
0b11	Blink at Hz (250 ms ON, 250 ms OFF)

Error Field Encoding	Definition
0b000	OFF
0b001	ON
0b010	Blink at 1 Hz (500 ms ON, 500 ms OFF)
0b011	Blink at Hz (250 ms ON, 250 ms OFF)
0b100	ON
0b101	OFF
0b110	Inverted Blink at 1 Hz (500 ms OFF, 500 ms ON)
0b111	Inverted Blink at Hz (250 ms OFF, 250 ms ON)

When the SIO Control Select bit in the SIO Adapter Control register 0xC054 is set, the enhanced SGPIO mode is enabled and the bit encodings are:

Active Field Encoding	Definition
0b00	OFF
ob01	ON
0b10	Activity
0b11	Inverted Activity

Locate Field Encoding Definition

Encounty	Deminition
0b000	OFF
0b001	ON
0b010	Pattern 0 (see SIO Pattern Definition 0 register)
0b011	Pattern 1 (see SIO Pattern Definition 1 register)
0b100	Pattern 2 (see SIO Pattern Definition 2 register)
0b101	Pattern 3 (see SIO Pattern Definition 3 register)
0b110	Pattern 3 with a 90 phase difference (see SIO Pattern Definition 3 register)
0b111	Pattern 3 with a 180 phase difference (see SIO Pattern Definition 3 register)

Error Field

Encoding	Definition
0b000	OFF
0b001	ON
0b010	Pattern 0 (see SIO Pattern Definition 0 register)
0b011	Pattern 1 (see SIO Pattern Definition 1 register)
0b100	Pattern 2 (see SIO Pattern Definition 2 register)
0b101	Pattern 3 (see SIO Pattern Definition 3 register)
0b110	Pattern 3 with a 90 phase difference (see SIO Pat- tern Definition 3 register)
0b111	Pattern 3 with a 180 phase difference (see SIO Pattern Definition 3 register)

Register: 0xC018 SIO Output Data Control 1 Read/Write

31	31 24 23										16 15											8	7			0					
	SIO Output Data Control 1																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The SIO Output Data Control registers provide data output control for PHY[11:0]. Each SIO Output Data register uses one of two possible bit field definitions. One bit field definition provides the bit definitions for the standard SGPIO mode; the other bit field definition provides the bit definitions for the enhanced SGPIO mode only available on the LSISASx12A.

Each byte of this register generates 3 serialized I/O bits on the SioDout line. This register controls SIO bits [23:12], which are for devices 7 through 4.

See the encoding for Error, Active, and Locate bits above as defined in register 0xC014.

The following are the bit definitions for standard SIO mode:

SIO bit 23: Error Device 7	[31:29]
SIO bit 22: Locate Device 7	[28:27]
SIO bit 21: Active Device 7	[26:24]
SIO bit 20: Error Device 6	[23:21]
SIO bit 19: Locate Device 6	[20:19]
SIO bit 18: Active Device 6	[18:16]
SIO bit 17: Error Device 5	[15:13]
SIO bit 16: Locate Device 5	[12:11]
SIO bit 15: Active Device 5	[10:8]
SIO bit 14: Error Device 4	[7:5]
SIO bit 13: Locate Device 4	[4:3]

The following are the bit definitions for enhanced SIO mode:

[31:29]
[28:26]
[25:24]
[23:21]
[20:18]
[17:16]
[15:13]
[12:10]
[9:8]
[7:5]
[4:2]
[1:0]

Register: 0xC01C SIO Output Data Control 2 Read/Write

31	31 24 23											16 15											8	7			C				
	SIO Output Data Control 2																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The SIO Output Data Control registers provide data output control for PHY[11:0]. Each SIO Output Data register uses one of two possible bit field definitions. One bit field definition provides the bit definitions for the standard SGPIO mode; the other bit field definition provides the bit definitions for the enhanced SGPIO mode only available on the LSISASx12A.

Each byte of this register generates 3 serialized I/O bits on the SioDout line. This register controls SIO bits [35:24], which are for devices 11 through 8.

See the encoding for Error, Active, and Locate bits above as defined in register 0xC014.

The following are the bit definitions for standard SIO mode:

SIO	bit 35: Error Device 11	[31:29]
SIO	bit 34: Locate Device 11	[28:27]
SIO	bit 33: Active Device 11	[26:24]
SIO	bit 32: Error Device 10	[23:21]
SIO	bit 31: Locate Device 10	[20:19]
SIO	bit 30: Active Device 10	[18:16]
SIO	bit 29: Error Device 9	[15:13]
SIO	bit 28: Locate Device 9	[12:11]
SIO	bit 27: Active Device 9	[10:8]
SIO	bit 26: Error Device 8	[7:5]
SIO	bit 25: Locate Device 8	[4:3]
SIO	bit 24: Active Device 8	[2:0]

The following are the bit definitions for enhanced SIO mode:

SIO bit 11: Error Device 11	[31:29]
SIO bit 10: Locate Device 11	[28:26]
SIO bit 9: Active Device 11	[25:24]
SIO bit 8: Error Device 10	[23:21]
SIO bit 7: Locate Device 10	[20:18]
SIO bit 6: Active Device 10	[17:16]
SIO bit 5: Error Device 9	[15:13]

SIO bit 4: Locate Device 9	[12:10]
SIO bit 3: Active Device 9	[9:8]
SIO bit 2: Error Device 8	[7:5]
SIO bit 1: Locate Device 8	[4:2]
SIO bit 0: Active Device 8	[1:0]

Register: 0xC020 SIO General Purpose Output Data 0 Read/Write

General Purpose Output Data [31:0] [31:0]

These bits are transmitted bit for bit.

Register: 0xC024 SIO General Purpose Output Data 1 Read/Write

31		24 23													16	15							8	7	0						
	SIO General Purpose Output Data 1																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Reserved																				[31	:4]									

General Purpose Output Data [35:32]	[3:0]
These bits are transmitted bit for bit.	
Register: 0xC040 SIO Pattern Definition 0 Read/Write

<u>31 24 23 16 15</u>												8	7							0											
												ç	SIO	Pat	terr	n De	efini	tion	0												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register controls the enhanced SGPIO pattern definition on the LSISASx12A expander. This register is not present on the LSISASx12 expander.

R/W	Timebase 0 Clearing this bit causes the pattern to which provides an interval of 25 ms b shift. Setting this bit causes the pattern which provides an interval of 100 ms shift.	31 rotate at 40 Hz, etween each bit to rotate at 10 Hz, between each bit
	Reserved	[30:20]
R/W	Pattern 0	[19:0]

This field contains pattern 0. This pattern is sampled at bit 0.

Register: 0xC044 SIO Pattern Definition 1 Read/Write

31							24	23							16	15							8	7							0
												ŝ	SIO	Pat	terr	n De	efini	tion	1												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register controls the enhanced SGPIO pattern definition on the LSISASx12A expander. This register is not present on the LSISASx12 expander.

Timebase 1

31

Clearing this bit causes the pattern to rotate at 40 Hz, which provides an interval of 25 ms between each bit

shift. Setting this bit causes the pattern to rotate at 10 Hz, which provides an interval of 100 ms between each bit shift.

Reserved

[30:20]

Pattern 1

[19:0]

This field contains pattern 1. This pattern is sampled at bit 0.

Register: 0xC048 SIO Pattern Definition 2 Read/Write

This register controls the enhanced SGPIO pattern definition on the LSISASx12A expander. This register is not present on the LSISASx12 expander.

Timebase 2

31

Clearing this bit causes the pattern to rotate at 40 Hz, which provides an interval of 25 ms between each bit shift. Setting this bit causes the pattern to rotate at 10 Hz, which provides an interval of 100 ms between each bit shift.

Reserved

Pattern 2

[30:20] [19:0]

This field contains pattern 2. This pattern is sampled at bit 0.

Register: 0xC04C SIO Pattern Definition 3 Read/Write

This register controls the enhanced SGPIO pattern definition on the LSISASx12A expander. This register is not present on the LSISASx12 expander.

Timebase 3

Clearing this bit causes the pattern to rotate at 40 Hz, which provides an interval of 25 ms between each bit shift. Setting this bit causes the pattern to rotate at 10 Hz, which provides an interval of 100 ms between each bit shift.

Reserved

Pattern 3

[30:20] [19:0]

31

This field contains pattern 3. This pattern is sampled at bits 0, 5, and 10 to allow for 0/90/180 phase shifts in the output pattern.

Register: 0xC050 Activity Stretch Control Read/Write

This register controls the enhanced SGPIO pattern definition on the LSISASx12A expander. This register is not present on the LSISASx12 expander.

Minimum Deassert Time

[15:12]

This field provides the minimum amount of time to deassert a Link Active signal. The default setting of this field is 0b0000, indicating 1/64 seconds. The encoding for this field follows.

Setting	Definition
0b0000	1/64 s
0b0001	2/64 s
0b0010	3/64 s
0b1110	15/64 s
0b1111	16/64 s

Minimum Assert

[11:8]

This field provides the minimum amount of time to assert a Link Active signal. The default value of this field is 0b0011, indicating 4/64 seconds.The encoding for this field follows.

Setting	Definition
0b0000	1/64 s
0b0001	2/64 s
0b0010	3/64 s
0b0011	4/64 s
0b1110	15/64 s
0b1111	16/64 s

Maximum Assert

[7:4]

Maximum amount of time to assert a Link Active signal in units of 1/4 seconds. The default value of this field is 0b1000, indicating 8/4 seconds (2 seconds). The encoding for this field follows.

Setting	Definition
0b0000	No Maximum
0b0001	1/4 s
0b0010	2/4 s
0b0011	3/4 s
0b1110	14/4 s
0b1111	15/4 s

Force Off

Amount of time to deassert a Link Active signal in units of 1/8 seconds following a maximum assertion time. This field is ignored if Maximum Assert field is set to 0b0000. The default value of this field is 0b0100, indicating 4/8 seconds (1/2 seconds). The encoding for this field follows.

Setting	Definition
0b0000	_
0b0001	1/8 s
0b0010	2/8 s
0b0011	3/8 s
0b1110	14/8 s
0b1111	15/8 s

Register: 0xC054 SIO Adapter Control **Read/Write**

31							24	23							16	15							8	7							0
													SI	O A	dap	ter	Cor	ntrol	I												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register controls the enhanced SGPIO pattern definition on the LSISASx12A expander. This register is not present on the LSISASx12 expander.

Reserved

[31:2]

Select C

0

1 When clear, Link Activity data is provided unconditioned to SGPIO. When set, Link Activity data is adjusted according to controls in Activity Stretch Control register.

SIO Control Select

This bit determines if the LSISASx12A uses the standard SGPIO mode that the LSISASx12 uses, or if the LSISASx12A uses the enhanced SPGIO mode that is described in this document.

Clearing this bit enables the standard SGPIO mode. Setting this bit enables the enhanced SGPIO mode.

[3:0]

4.3 SMP Target Registers

Table 4.5 provides the SMP target register map. Detailed register descriptions follow the register map.

Offset	Register Name
0x00000	LSISASx12 Expander SAS Address High
0x00004	LSISASx12 Expander SAS Address Low
0x00008-0x0001C	Reserved
0x00020	Remote Routing Table Configuration 00
0x00024	Remote Routing Table Configuration 01
0x00028	Remote Routing Table Configuration 02
0x0002C	Remote Routing Table Configuration 03
0x00030	Remote Routing Table Configuration 04
0x00034	Remote Routing Table Configuration 05
0x00038	Remote Routing Table Configuration 06
0x0003C	Remote Routing Table Configuration 07
0x00040	Remote Routing Table Configuration 08
0x00044	Remote Routing Table Configuration 09
0x00048	Remote Routing Table Configuration 10
0x0004C	Remote Routing Table Configuration 11
0x00050-0x1FFFC	Reserved

 Table 4.5
 SMP Target Register Map

Register: 0x00000 LSISASx12 Expander SAS Address High Read/Write

Expander SAS Address High [31:0] This register provides the upper 32 bits of the 64-bit value that is used in the LoadID request from the SMP Target to the Expander Connection Manager.

Register: 0x00004 LSISASx12 Expander SAS Address Low Read/Write

31							24	23							16	15							8	7							0
										L	SISA	٩Sx	12 I	Exp	and	er S	SAS	Ad	dre	ss L	_ow										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Expander SAS Address Low

[31:0]

This register provides the lower 32 bits of the 64-bit value that is used in the LoadID request from the SMP Target to the Expander Connection Manager. Write the lower nibble of this register to 0xF.

Register: 0x00020-0x0004C

Remote Routing Table Configuration Read/Write

These registers establish the number of routing entries for each phy. There are 12 Remote Routing Table Configuration registers; one for each phy. Table 4.5 provides the address offset for each of these registers. The SMP Target uses these registers to convert a phy identifier and route index from the SMP REPORT ROUTE INFORMATION and CONFIGURE ROUTE INFORMATION commands into a local LSISASx12 address corresponding to a specific location within the remote route table.

Each of these registers generates an output that informs each of the 12 Sphynx modules if the routing attribute of their associated phy is set to Table Route. If any of the Route Table Size[7:0] bits are set for a phy, then the TableRoute[PhyID] is also set.

Reserved	[31:24]
Route Table Offset NN	[23:16]
This field specifies the route table offset for Physical Structure Physical Structure (Structure) and Structure (Structure) and Structure) and Structure (Structure) and Structure) and Structure (Structure) and Structure (Structure) and Structure) and Structure (Structure) and Structure) and Structure (Structure) and Structure (Struc	y[NN].
Reserved	[15:8]
Route Table Size NN	[7:0]
This field specifies the route table size for Phy[NN].

4.4 SPhynx Registers

This section describes the registers for each Sphynx module. Each SPhynx module consists of Link Registers and Phy Registers.

4.4.1 Link Registers

Table 4.6 provides the register map for the SPhynx Link registers.

Offset	Register Name
0x00	Reserved
0x04	Identify Address Information
0x08–0x0C	Reserved
0x10	Identify SAS Address High
0x14	Identify SAS Address Low
0x18–0x40	Reserved
0x44	Discover Information 1
0x48	Discover Information 2 – SAS Address High
0x4C	Discover Information 3 – SAS Address Low
0x50	Discover Information 4 – Attached SAS Address High
0x54	Discover Information 5 – Attached SAS Address Low
0x58	Discover Information 6 – Attached Phy Identifier
0x5C	Discover Information 7 – Reserved
0x60	Discover Information 8 – Link Rates
0x64	Discover Information 9 – Routing Attributes
0x68	Discover Information 10 – Vendor Specific
0x6C	Reserved
0x70	Report SATA Phy ID
0x74	Reserved
0x78	SATA Target Address High
0x7C	SATA Target Address Low
0x80	SATA Dev2Host FIS0
0x84	SATA Dev2Host FIS1
0x88	SATA Dev2Host FIS2

Table 4.6 Sphynx Link Register Map

Offset	Register Name
0x8C	SATA Dev2Host FIS3
0x90–0x94	Reserved
0x98	Affiliated STP Initiator Address High
0x9C	Affiliated STP Initiator Address Low
0xA0	Phy Control Link Rates
0xA4	Phy Control PPTOV
0xA8	Reserved
0xAC	Connection Information
0xB0–0xBC	Reserved
0xC0	Broadcast Change High
0xC4	Broadcast Change Low
0xC8	Broadcast SES High
0xCC	Broadcast SES Low
0xD0-0x104	Reserved
0x108	SATA Nexus Loss Timeout
0x10C-0x11C	Reserved
0x120	SATA Connection Mode
0x124–0x140	Reserved

 Table 4.6
 Sphynx Link Register Map (Cont.)

The following provides detailed bit definitions for the Link registers.

Register: 0x0004 Identify Address Information Read/Write

Device Type

[30:28]

This field must be set to 0b010 to indicate an edge expander device.

Address Frame Type

This field is set to 0b000 to indicate the Identify Frame Type.

Reserved

SSP Initiator

Setting this bit configures the device as an SSP initiator. For normal operation, leave this bit at its default setting.

STP Initiator

Setting this bit configures the device as an STP initiator. For normal operation, leave this bit at its default setting.

SMP Initiator

Setting this bit configures the device as an SMP initiator. For normal operation, leave this bit at its default setting.

Reserved

SSP Target

Setting this bit configures the device as an SSP Target. For normal operation, leave this bit at its default setting.

STP Target

Setting this bit configures the device as an STP Target. For normal operation, leave this bit at its default setting.

SMP Target

Setting this bit configures the device as an SMP Target. For normal operation, leave this bit at its default setting.

Reserved

4-77

2

1

0

[23:12] 11

10

9

[8:4]

3

[27:24]

Register: 0x0010 Identify SAS Address High Read/Write

SAS Address High

[31:0]

This field provides bits [63:32] of the LSISASx12 64-bit SAS address.

Register: 0x0014 Identify SAS Address Low Read/Write

31							24	23							16	15							8	7							0
												ld	enti	fy S	SAS	Ad	dres	ss L	.ow												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SAS Address Low

[31:0]

This field provides bits [31:0] of the LSISASx12 64-bit SAS address. Set the lower nibble of this register to 0xF.

Register: 0x0044 Discover Information 1 Read/Write

Attached Device Type

[31:28]

This read-only field provides the attached device type. The encoding of this field is

Encoding	Definition
0b000	No Device Attached
0b001	End Device Only
0b010	Edge Expander Device
0b011	Fanout Expander Device

All other encodings are reserved.

Reserved

[27:20]

Negotiated Link Rate

[19:16]

This read-only field provides the negotiated link rate. The encoding of this field is

Encoding	Definition
0b0000	Phy enabled with an unknown link rate.
0b0001	Phy disabled.
0b0010	Phy enabled. The speed negotiation failed.
0b0011	Phy enabled. Entered SATA spin-up hold state.
0b0100	Phy enabled. Detected SATA port selector.
0b1000	Phy enabled. 1.5 Gbits/s negotiated.
0b1001	Phy enabled. 3.0 Gbits/s negotiated.

All other encodings are reserved.

Reserved

[15:12]

Attached SSP Initiator 11 When set, this read-only bit indicates that the attached device is an SSP initiator.

Attached STP Initiator 10 When set, this read-only bit indicates that the attached device is an STP initiator.

Attached SMP Initiator

When set, this read-only bit indicates that the attached device is an SMP initiator.

Reserved

[8:4]

9

Attached SSP Target

3

When set, this read-only bit indicates that the attached device is an SSP target.

Attached STP Target

2

When set, this read-only bit indicates that the attached device is an STP target.

Attached SMP Target

1

When set, this read-only bit indicates that the attached device is an SMP target.

Attached SATA Target

0 When set, this read-only bit indicates that the attached device is a SATA target.

Register: 0x0048 **Discover Information 2 – SAS Address High** Read/Write

SAS Address High

[31:0]

This read-only field provides bits [63:32] of the LSISASx12 SAS address.

Register: 0x004C

Discover Information 3 – SAS Address Low Read/Write

SAS Address Low

[31:0]

This read-only field provides bits [31:0] of the LSISASx12 SAS address.

Register: 0x0050 Discover Information 4 – Attached SAS Address High Read/Write

Attached SAS Address High[31:0]This read-only field provides bits [63:32] of the attachedSAS address.

Register: 0x0054 Discover Information 5 – Attached SAS Address Low Read/Write

31							24	23							16	15							8	7							0
													Dis	cov	ər Ir	nfor	mat	ion	5												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Attached SAS Address Low

[31:0]

This read-only field provides bits [31:0] of the attached SAS address.

Register: 0x0058 Discover Information 6 – Attached Phy Identifier Read/Write

Attached Phy Identifier

[31:24]

This read-only field provides the attached phy identifier from the identify frame.

Reserved

[23:0]

Register: 0x005C Discover Information 7 – Reserved Read/Write

Register: 0x0060 Discover Information 8 – Link Rates Read/Write

31							24	23							16	15							8	7							0
													Dis	cov	er I	nfor	mat	ion8	8												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																	J N/	1::			וח				inle					24.4	

This field is read-only.	[31:28]
Hardware Minimum Physical Link Rate This field is read-only.	[27:24]
Programmed Maximum Physical Link Rate This field is read-only.	[23:20]
Hardware Maximum Physical Link Rate This field is read-only.	[19:16]
Phy Change Count This read-only field indicates the number of times SPhynx module has requested a BROAD- CAST(CHANGE) to the broadcast processor. The counter wraps to 0x00 when it reaches the max value of 0xFF.	[15:8] that the nis imum
Internal Phy Bit	. 7

When set, this read-only bit indicates that the phy is an internal port.

Reserved

PPTOV

[3:0] This read-only field provides the partial pathway timeout value (PPTOV).

Register: 0x0064 **Discover Information 9 – Routing Attributes** Read/Write

Register: 0x0068 **Discover Information 10 – Vendor Specific Read/Write**

[6:4]

Register: 0x0070 Report SATA Phy ID Read Only

Register: 0x0078 SATA Target Address High Read Only

SATA Target Address High [31:0] This read-only field provides bits [63:32] of the SATA target address.

Register: 0x007C SATA Target Address Low Read Only

SATA Target Address Low

[31:0]

This read-only field provides bits [31:0] of the SATA target address.

Register: 0x0080 SATA Dev2Host FIS0 Read Only

31							24	23							16	15							8	7							0
													SA	TA	Dev	2Hc	ost I	FISC)												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FIS Type

This field provides the FIS type. If the FIS type is 0x34, all Device-to-Host FISes are valid. If the FIS type is 0x00, all Dev-to-Host FISes are invalid.

Reserved

Interrupt

This read-only bit reflects the status of the interrupt line of the device.

Reserved

Status

This read-only field contains the value of the Status register in the shadow register block.

Error

This read-only field contains the value of the Error register in the shadow register block.

4-85

[31:24]

23

22

[21:16]

[15:8]

[7:0]

Register: 0x0084 SATA Dev2Host FIS1 Read Only

Sector Number

[31:24]

This read-only field provides the value of the sector number register in the shadow register block.

Cyl Low

[23:16]

This read-only field provides the value of the cylinder low register in the shadow register block.

Cyl High

[15:8]

This read-only field provides the value of the cylinder high register in the shadow register block.

Dev/Head

[7:0]

This read-only field provides the values of the device register and head register in the shadow register block.

Register: 0x0088 SATA Dev2Host FIS2 Read Only

Sector Number (exp)

[31:24]

This read-only field provides the value of the expanded sector number register in the shadow register block.

Cyl Low (exp)

[23:16]

This read-only field provides the value of the expanded cylinder low register in the shadow register block.

Cyl High (exp)

[15:8] This read-only field provides the value of the expanded cylinder high register in the shadow register block.

Reserved

[7:0]

Register: 0x008C SATA Dev2Host FIS3 Read Only

Sector Count

[31:24]

This read-only field provides the value of the sector count register of the shadow register block.

Sector Count (exp)

[23:16]

This read-only field provides the value of the expanded sector count register in the shadow register block.

Reserved

[15:0]

Register: 0x0098 Affiliated STP Initiator Address High **Read/Write**

31							24	23							16	15							8	7							0
											Affi	liate	ed S	STP	Init	iato	r Ao	ddre	ss	Higl	h										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Affiliated STP Initiator Address High [31:0]

This read-only field provides bits [63:32] of the affiliated STP initiator address.

Register: 0x009C Affiliated STP Initiator Address Low Read/Write

Affiliated STP Initiator Address Low[31:0]This read-only field provides bits [31:0] of the affiliatedSTP initiator address.

Register: 0x00A0 Phy Control Link Rates Read/Write

31							24	23							16	15							8	7							0
													Phy	Co	ntro	l Li	nk F	Rate	es												
1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Programmed Minimum Physical Link Rate [31:28] This field programs the minimum physical link rate. The default value for this field is 0b1000, which indicates a minimum physical link rate of 1.5 Gbits/s.

Reserved [28:24]

Programmed Maximum Physical Link Rate [23:20]

This field programs the maximum physical link rate. The default value for this field is 0b1001, which indicates a minimum physical link rate of 3.0 Gbits/s.

Reserved

[19:0]

Register: 0x00A4 Phy Control PPTOV Read/Write

Reserved

Align Count

This read-only field provides the count of dwords since last ALIGN insertion.

Reserved

Function Result

[19:16]

[30:20]

31

[15:8] This read-only field indicates the phy currently supports SATA. The phy currently supports SATA if a SATA device is attached. The encoding of this field is

Encoding Definition

0x00	Phy currently supports SATA.
0x12	Phy does not currently support SATA.

All other encodings of this field are reserved.

[7:5]	Reserved
4	Connection Open
et if a connection is open.	This read-only bit indicates
[3:2]	Reserved
e 1	Transmitter Scramble Ov
smitter to not scramble	Setting this bit causes the
the transmitter to scram-	dwords. Clearing this bit ca
SATA rules.	ble dwords according the
0	Receiver Descramble Co
iver to not descramble	Setting this bit causes the
the receiver to descram-	dwords. Clearing this bit ca
SATA rules.	ble dwords according the

Register: 0x00C0 Broadcast Change High Read/Write

Broadcast Change High Address

[31:0]

This field provides upper 32 bits of the 64-bit SAS address of the most recent Broadcast Change register written.

Register: 0x00C4 Broadcast Change Low Read/Write

Writes to the Broadcast Change Low register cause the associated link to transmit the broadcast type. To generate a broadcast primitive, write the attached address of the phy that originates a broadcast request to the Broadcast Change registers. If the attached address of a link matches the address written the Broadcast Change registers, no broadcast primitive is transmitted on that link.

Broadcast Change Low Address [31:0] This field provides lower 32 bits of the 64-bit SAS address of the most recent Broadcast Change register written.

Register: 0x00C8 Broadcast SES High Read/Write

Broadcast SES High Address

[31:0]

This field provides upper 32 bits of the 64-bit SAS address of the most recent Broadcast SES register written.

Register: 0x00CC Broadcast SES Low Read/Write

31	31 24 23							16 15							8 7					0				0							
													Br	oad	cas	t SE	ES I	_ow													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Writes to the Broadcast SES Low register cause the associated link to transmit the broadcast type. To generate a broadcast primitive, write the attached address of the phy that originates a broadcast request to the Broadcast SES registers. If the attached address of a link matches the address written the Broadcast SES registers, no broadcast primitive is transmitted on that link.

Broadcast SES Low

[31:0]

This field provides lower 32 bits of the 64-bit SAS address of the most recent Broadcast SES register written.

Register: 0x0108 SATA Nexus Loss Timeout Read/Write

31	31 24 23								16 15							8 7						0									
												S	ATA	Ne	xus	Los	ss T	ïme	out												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	1	1	1	1

Reserved

[31:12]

[11:0]

Nexus Loss Timeout Value (ms)

This field sets the nexus loss timeout value in milliseconds. When the nexus loss timer reaches the value in this field, and when the next reject or OpenTimeout occurs, the STP/SATA bridge requests a new reset sequence. The default value for this field is 0x7CF, which provides a 2-second Nexus Loss Timeout value. Possible encodings of this field are:

Encoding	Definition
0x000	No Retries Permitted
0x001–0xFFE	Permits retries until the Nexus Loss Timer reaches this value.
0xFFF	Disables Nexus Loss Timeouts

The Nexus Loss Timer starts counting when the STP/SATA bridge receives one of the following OPEN_REJECTS:

- Pathway Blocked
- Stop_0
- Stop_1
- No Destination

It also starts counting in the event of an OpenTimeout. Receipt of an OPEN_REJECT(RETRY/CONTINUE_/CONTINUE_1)

frame resets and disables the nexus timer.

Register: 0x0120 SATA Connection Mode Read/Write

31 24 23 16								16	15							8	7							0							
												;	SAT	A C	onn	ecti	on	Mod	de												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0

Reserved

FIS Close

Setting this bit causes SATA connections to close after every FIS. Clearing bit causes SATA connections to not close after every instruction.

SATA Close Timeout

[9:0]

[31:11]

10

This register provides the timeout value in milliseconds for closing a dormant SATA connection. The default SATA close timeout value is 500 ms.

4.4.2 Phy Registers

Table 4.7 provides the SAS phy register map. Detailed register descriptions follow the register map.

Table 4.7 SAS Phy Register Map

Offset	Register Name
0x00-0x0C	Reserved
0x10	SMP Command
0x14	Reserved
0x18	Error Log Invalid Word
0x1C	Error Log Display Error
0x20	Error Log Loss of Sync
0x24	Error Log Reset Sequence Fail

Offset	Register Name
0x28	Test Register
0x2C-0x30	Reserved
0x34	Custom Jitter
0x38–0xFF	Reserved

Table 4.7 SAS Phy Register Map (Cont.)

Register: 0x0010 SMP Command Read/Write

Reserved

PhySMPOp

[31:8]

[7:0]

Writing to this field initiates commands as outlined in Table 4.8. The LSISASx12 clears this bit field when the respective command completes. If the current command does not complete before writing a new command to this field, then the old command aborts and the new command initiates.

Table 4.8 Phy Operations Encodings

Phy Op	Operation
0x00	No Operation.
0x01	Perform a phy reset sequence.
0x02	Perform a phy reset sequence and send a HARD_RESET primitive.
0x03	Power down the GigaBlaze transceivers and reset the phy.
0x04	Reserved.
0x05	Clear all error log registers.
0x06	Clear active affiliation.
0x07	Send port selector sequence
0x08–0xFF	Reserved.

Register: 0x0018 Error Log Invalid Word Read/Write

Error Log Invalid Word

[31:0]

This register indicates the number of invalid words received. This register increments when an invalid word is received while the PhyReady signal is asserted.

This register no longer increments after reaching the maximum value of 0xFFFFFFF. Writing 0x05 to the PhySMPOp field of the SMP Command register clears this register.

Register: 0x001C Error Log Display Error Read/Write

Error Log Disparity Error

[31:0]

This register indicates the number of disparity error occurrences. This register increments when a word tagged with a disparity error is received while the PhyReady signal is asserted.

This register no longer increments after reaching the maximum value of 0xFFFFFFF. Writing 0x05 to the PhySMPOp field of the SMP Command register clears this register.

Register: 0x0020 Error Log Loss of Sync Read/Write

Error Log Loss of Synchronization

[31:0]

This register indicates the number of loss-of-synchronization occurrences. This register increments when a loss of synchronization condition is reported outside of a reset sequence and following word synchronization.

This register no longer increments after reaching the maximum value of 0xFFFFFFF. Writing 0x05 to the PhySMPOp field of the SMP Command register clears this register.

Register: 0x0024 Error Log Reset Sequence Fail Read/Write

Error Log Reset Sequence Failure

[31:0]

This register indicates the number of reset sequences failures. This register increments every time a reset sequence does not complete successfully. A reset sequence fails when speed negotiation fails.

This register no longer increments after reaching the maximum value of 0xFFFFFFF. Writing 0x05 to the PhySMPOp field of the SMP Command register clears this register.

Register: 0x0028 Test Register Read/Write

This register provides test control signals. These controls are not used during normal operation.

Reserved	[31:13]
RX Jitter Enable Setting this bit enables receive jitter pattern ch	12 necking.
TX Jitter Enable Setting this bit enables transmit jitter pattern g	11 eneration.
JPAT Select This field specifies the jitter pattern for transm tion and receive checking. Table 4.9 provides ting for this field.	[10:8] it genera- the encod-

Table 4.9 Jitter Pattern Selection

Select	Pattern	Description
0,7	ALIGN	Transmit 6 ALIGN0 frames for synchronization before the jitter test
1	CJTPAT	Jitter patter from SAS Annex A
2	LTDP	SATA Low Transaction Density Pattern
3	HRQR	SATA Half-rate/Quarter-rate High Transaction Density Pattern
4	LFSC	SATA Low Frequency Spectral Content Pattern
5	SSOP	SATA Simultaneous Switching Outputs Pattern
6	COMP	SATA Composite of patterns 2–5

Force Data Rate

[7:4]

3

2

1

0

When set, this field overrides the minimum and maximum data rate settings for the phy layer. The data rate selected in this field applies to both the receivers and transmitters. The encodings of this field are

Encoding	Definition
0b1000	1.5 Gbits/s
0b1001	3.0 Gbits/s

All others encodings of this field are reserved.

Force SATA

Setting this bit causes the LSISASx12 to report as a SATA device. Use this bit in conjunction with the Bypass Reset Sequence bit.

Select Starting Disparity

This bit selects the starting disparity to be transmitted in the encoder when the LSISASx12 transitions from IDLE. Clearing this bit indicates negative disparity. Setting this bit indicates positive disparity.

Bypass Reset Sequence

Setting this bit causes the LSISASx12 to bypass the normal OOB reset sequence, and to use the rate set in the Force Data Rate field as the negotiated rate.

Reserved

Register: 0x0034 Custom Jitter Read/Write

This register provides status signals to observe during testing. It is not for use during normal operation.

Reserved

[31:20]

JitterReg

[19:0]

When set to pattern 7, the jitter engine uses this value. Use this field to generate a "clock" pattern of various frequencies to assist in jitter measurements. The upper and lower halves of this register are flipped prior to serialization, i.e. TxDataOut = {JitterReg[9:0],JitterReg[19:10]}.

4.5 STP Target Registers

Table 4.10 provides the register map for the STP target portion of the EMB. Detailed bit descriptions follow the register map.

Offset	Register Name
0x000–0x00C	Reserved
0x010	Expander SAS Address High
0x014	Expander SAS Address Low
0x018–0x40	Reserved
0x044	Discover Information
0x048	Discover Information 2 – SAS Address High
0x04C	Discover Information 3 – SAS Address Low
0x050	Discover Information 4 – Attached SAS Address High
0x054	Discover Information 5 – Attached SAS Address Low
0x058	Discover Information 6 – Attached Phy Identifier
0x05C	Discover Information 7 – Reserved
0x060	Discover Information 8 – Link Rates
0x064	Discover Information 9 – Routing Attributes
0x068	Discover Information 10 – Vendor Specific
0x06C	Reserved
0x070	Phy SATA Phy ID
0x074	Reserved
0x078	STP Target SAS Address High
0x07C	STP Target SAS Address Low
0x080	SATA Dev2Host Reset FIS0
0x084	SATA Dev2Host Reset FIS1
0x088	SATA Dev2Host Reset FIS2

 Table 4.10
 STP Target Register Map

Offset	Register Name
0x08C	SATA Dev2Host Reset FIS3
0x090–0x94	Reserved
0x098	Affiliated STP Initiator Address High
0x09C	Affiliated STP Initiator Address Low
0x0A0	Phy Control Link Rates
0x0A4	Phy Control PPTOV
0x0A8	Reserved
0x0AC	Connection Information
0x0B0-0x107	Reserved
0x108	SATA Nexus Loss Timeout
0x10C-0x1FC	Reserved
0x200	Last H2D Register FIS Received Dword 0
0x204	Last H2D Register FIS Received Dword 1
0x208	Last H2D Register FIS Received Dword 2
0x20C	Last H2D Register FIS Received Dword 3
0x210-0x21C	Reserved
0x220	STP Connection Control
0x224-0x30C	Reserved
0x310	SMP Phy Operation
0x314	Reserved
0x318	Error Log – Invalid DWord
0x31C	Error Log – I ² C CRC Error Count
0x320	Error Log – Unexpected SYNC Count
0x324	Error Log – R_ERR Transmitted/Received Count
0x328	Reserved
0x32C	STP Error Status
0x330-0x3FF	Reserved

Table 4.10 STP Target Register Map (Cont.)

The STP Target registers base address is 0x43000. The STP Target registers can also be written via a broadcast write, using the Broadcast Base Address of 0x18000. However, only use this mechanism to write to the SATA Nexus Loss Timeout registers.

Register: 0x0010 Expander SAS Address High Read/Write

Expander SAS Address High

[31:0]

This field is written with the same value as Configuration Manager LSISASx12 Expander SAS Address High register.

Register: 0x0014 Expander SAS Address Low Read/Write

31 24 23									16 15						8 7					0											
												Ex	pan	der	SA	S A	ddre	ess	Lov	v											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Expander SAS Address Low

[31:0]

This field is written with the same value as Configuration Manager LSISASx12 Expander SAS Address High register.

Register: 0x0044 Discover Information

Read/Write

Attached Device Type

[31:28]

This read-only field provides the attached device type. The encoding of this field is

Encoding	Definition
0b000	No Device Attached
0b001	End Device Only
0b010	Edge Expander Device
0b011	Fanout Expander Device

All other encodings are reserved.

Reserved

[27:20]

Negotiated Link Rate

[19:16]

This read-only field provides the negotiated link rate. The encoding of this field is

Encoding	Definition							
0b0001	Phy disabled, if the STP Target is disabled through the SMP.							
0b1001	Phy enabled at 3.0 Gbits/s, if the STP Target is not disabled through SMP.							

All other encodings of this field are reserved.

Reserved [15:12]

Attached SSP Initiator	11
When set, this read-only bit indicates that the atta	ached
device is an SSP initiator.	

Attached STP Initiator 10

When set, this read-only bit indicates that the attached device is an STP initiator.

Attached SMP Initiator 9

When set, this read-only bit indicates that the attached device is an SMP initiator.

Reserved	[8:5]
Reserved	[8:5
Attached SATA Port Selector

4

3

When set, this read-only bit indicates that the attached device is a SATA port selector.

Attached SSP Target

When set, this read-only bit indicates that the attached device is an SSP target.

Attached STP Target

2

When set, this read-only bit indicates that the attached device is an STP target.

Attached SMP Target

When set, this read-only bit indicates that the attached device is an SMP target.

Attached SATA Target

0

1

When set, this read-only bit indicates that the attached device is a SATA target.

Register: 0x0048 Discover Information 2 – SAS Address High Read/Write

SAS Address High

[31:0]

This read-only field provides bits [63:32] of the SAS address.

Register: 0x004C Discover Information 3 – SAS Address Low Read/Write

SAS Address Low [31:0] This read-only field provides bits [31:0] of the SAS address.

Register: 0x0050 Discover Information 4 – Attached SAS Address High Read/Write

31							24	23							16	15							8	7							0
													Dis	COV	er Ir	for	mat	ion	4												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Attached SAS Address High

[31:0]

This read-only field provides bits [63:32] of the attached SAS address.

Register: 0x0054 Discover Information 5 – Attached SAS Address Low Read/Write

Attached SAS Address Low

[31:0]

This read-only field provides bits [31:0] of the attached SAS address.

Register: 0x0058 Discover Information 6 – Attached Phy Identifier Read/Write

Attached Phy Identifier

[31:24]

This read-only field provides the attached phy identifier.

Reserved

[23:0]

[31:0]

Register: 0x005C Discover Information 7 – Reserved Read/Write

Reserved

Register: 0x0060 Discover Information 8 – Link Rates Read/Write

Programmed Maximum Physical Link Rate [23:20] This field is read-only.

Hardware Maximum Physical Link Rate This field is read-only.	[19:16]
Phy Change Count This read-only field indicates the number of times STP Target has requested a BROADCAST(CHA the broadcast processor. This counter wraps to when it reaches the maximum value of 0xFF.	[15:8] that the NGE) to 0x00
Virtual Phy Bit When set, this read-only bit indicates that the pl internal port.	7 ny is an
Reserved	[6:4]

PPTOV [3:0]

This field is read-only.

Register: 0x0064 Discover Information 9 – Routing Attributes Read/Write

Routing Attribute [27:24] Clearing this field to 0b0000 indicates direct routing.

Reserved

[23:0]

Register: 0x0068 Discover Information 10 – Vendor Specific Read/Write

Register: 0x0078 STP Target SAS Address High Read/Write

STP Target SAS Address High[31:0]This read-only field provides bits [63:32] of the STP targetSAS address.

Register: 0x007C STP Target SAS Address Low Read/Write

31							24	23							16	15							8	7							0
											:	STF	P Ta	rge	t SA	NS A	٨dd	ress	s Lo	w											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

STP Target SAS Address Low

[31:0]

This read-only field provides bits [31:0] of the STP target SAS address.

Register: 0x0080 SATA Dev2Host Reset FIS0 Read/Write

During reset, SATA devices transmit an unsolicited D2H Register FIS to an attached SATA host device to provide a signature value contained within the Sector Count, Sector Number, Cylinder Low, and Cylinder High registers. If the signature value in these registers is set to 0x010114EB, the host recognizes that the device supports the ATAPI PACKET Feature Set. Otherwise, the host assumes the device does not support the ATAPI PACKET feature set.

This register contains the reset signature for an STP host to read in order for it to determine that the STP Target is a PACKET device. STP hosts have read access to the contents of these registers through the SMP REPORT PHY SATA function.

Error This field is set to 0x01 if the device passes b nostics.	[31:24] oot diag-
Status This field is set to 0x00 if there is not an error	[23:16]
Reserved	15
Interrupt This bit reflects the status of the interrupt bit li	14 ne.
Reserved	[13:8]
FIS Type This field provides the FIS type.	[7:0]

Register: 0x0084 SATA Dev2Host Reset FIS1 Read/Write

Dev/Head

This read-only field provides the values of the device register and head register.

Cyl High

[23:16]

[31:24]

This read-only field provides signature byte 3. This field is set to 0xEB, indicating that this is a PACKET device.

Cyl Low

[15:8]

This read-only field provides signature byte 2. This field is set to 0x14, indicating that this is a PACKET device.

Sector Number

[7:0]

This read-only field provides signature byte 1. This field is set to 0x01, indicating that this is a PACKET device.

Register: 0x0088 SATA Dev2Host Reset FIS2 Read/Write

31							24	23							16	15							8	7							0
												SA	λTA	Dev	/2H	ost	Res	et F	FIS2	2											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Reserved																		[:	31:	24]									
												С	yl	Hię	gh	(ex	p)													[23	8:0]
												С	yl	Lo	w (ex	p)													[15	5:8]
												S	ect	tor	Νι	ım	ber	[.] (e	xp)										[7	':0]

Register: 0x008C SATA Dev2Host Reset FIS3 Read/Write

Sector Count [7:0] This read-only field provides signature byte 0. It is set to 0x01, indicating that this is a PACKET device.

Register: 0x0098 Affiliated STP Initiator Address High Read/Write

Affiliated STP Initiator Address High[31:0]This read-only field provides bits [63:32] of the affiliatedSTP initiator address.

Register: 0x009C Affiliated STP Initiator Address Low Read/Write

31							24	23							16	15							8	7							0
								_			Aff	iliate	ed S	STP	Init	tiato	r A	ddre	ess	Lov	v						_				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Affiliated STP Initiator Address Low [31:0]

This read-only field provides bits [31:0] of the affiliated STP initiator address.

Register: 0x00A0 Phy Control Link Rates Read/Write

Programmed Minimum Physical Link Rate [31:28] This read-only field programs the minimum physical link rate. The default value for this field is 0b1001, which indicates a minimum physical link rate of 3.0 Gbits/s.

Reserved

Programmed Maximum Physical Link Rate [23:20] This read-only field programs the maximum physical link rate. The default value for this field is 0b1001, which indicates a maximum physical link rate of 3.0 Gbits/s.

Reserved

[19:0]

Register: 0x00A4 Phy Control PPTOV Read/Write

Function Result

[15:8]

This read-only field indicates that the phy supports SATA. The encoding of this field is

oports SATA.

All other encoding of this field are reserved.

Reserved	[7:5]
Connection Open This read-only bit is set if a connection is open	4).
Reserved	[3:2]
Transmit Scramble Override Setting this bit causes the transmitter to not sc dwords. Clearing this bit causes the transmitter ble dwords according the SAS/SATA rules.	1 ramble to scram-

Receive Descramble Control 0

Setting this bit causes the receiver to not descramble dwords. Clearing this bit causes the receiver to descramble dwords according the SAS/SATA rules.

Register: 0x0108 SATA Nexus Loss Timeout Read/Write

Nexus Loss Timeout Value (ms) [11:0]

This field sets the nexus loss timeout value in milliseconds. When the nexus loss timer reaches the value in this field and when the next reject or OpenTimeout occurs, the STP/SATA bridge requests a new reset sequence. The default value for this field is 0x7CF, which provides a 2-second Nexus Loss Timeout. The encoding of this field is:

Encoding	Definition
0x000	No Retries Permitted
0x001–0xFFE	Permits retries until the Nexus Loss Timer reaches this value.
0xFFF	Disables Nexus Loss Timeouts

The Nexus Loss Timer starts counting when the STP/SATA bridge receives one of the following OPEN_REJECTS:

- Pathway Blocked
- Stop_0
- Stop_1
- No Destination
- Initialize_0
- Initialize_1

It also starts counting in the event of an OpenTimeout. Receipt of an

OPEN_REJECT(RETRY/CONTINUE_/CONTINUE_1) frame resets and disables the nexus timer.

Register: 0x0200 Last H2D Register FIS Received Dword 0 Read/Write

31	0 0 0 0 0 0 0 0 0 0													16	15							8	7							0	
										La	st ⊦	l2D	Re	gist	er F	IS I	Rec	eive	ed D	Dwo	rd C)									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register contains the first dword of a non-Data FIS that is received from an STP initiator. The fields displayed here are for FIS Type field 0x27.

Features[31:2]This read-only field displays the ATAPI Features regist	2 4] :er.
Command[23:1]This read-only field displays the ATAPI command.	6]
C If this read-only bit is cleared, an update to the ATAPI command register has been done.	15
Reserved [14	:8]
FIS Type [7 In this example, this field is set to 0x27, indicating a Host-to-Device Register FIS.	:0]

Register: 0x0204 Last H2D Register FIS Received Dword 1 Read/Write

31							24	23							16	15							8	7							0
										La	st H	I2D	Re	gist	er F	IS I	Rec	eive	ed D	Dwo	rd 1										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register contains the contents of the second dword of a non-Data FIS that was received from an STP Initiator. The fields displayed here are for FIS Type field 0x27.

Dev/Head	[31:24]
Cyl High	[23:16]
Cyl Low	[15:8]
Sector Number	[7:0]

Register: 0x0208 Last H2D Register FIS Received Dword 2 Read/Write

31	31 24 23													16 15									8	7							0
	Last H2D Register FIS Received Dword 2																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register contains the contents of the third dword of a non-Data FIS that was received from an STP Initiator. The fields displayed here are for FIS Type field 0x27.

Features (exp)	[31:24]
Cyl High (exp)	[23:16]
Cyl Low (exp)	[15:8]
Sector Number (exp)	[7:0]

Register: 0x020C Last H2D Register FIS Received Dword 3 Read/Write

31	1 24 23											16 15											8	7							0
	Last H2D Register FIS Received Dword 3																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register contains the contents of the fourth dword of a non-Data FIS that was received from an STP Initiator. The fields displayed here are for FIS Type field 0x27.

Reserved	[23:16]
Sector Count (exp)	[15:8]
Sector Count	[7:0]

Register: 0x0220 STP Connection Control Read/Write

Disable STP

When set, this read-only bit indicates that a SMP PHY CONTROL(DISABLE) command has disabled the STP Target. When cleared, this bit indicates the STP Target is not disabled.

SmpPhyOp

[7:0]

This bit field initiates the commands in Table 4.11. The LSISASx12 clears this field one clock after the associated control signal asserts.

Table 4.11 SmpPhyOp Commands

Phy Op	Operation
0x00	No Operation.
0x01	This command clears the Disable STP bit and resets the LSISASx12 STP target.
0x02	This command clears the Affiliation Valid and Disable STP bits, and resets the LSISASx12 STP target.
0x03	This command causes any Inbound Open Address Frames targeting the STP Target to receive OPEN_REJECT (NO DESTINATION). It also prevents transmission of any Outbound Open Address Frames.
0x04	Reserved.
0x05	This command clears all the STP Error Status register and all of the error count registers.
0x06	This command clears the Affiliation Valid bit.
0x07	Activate Port Selector. No operation is performed.
0x08–0xFF	Reserved.

Register: 0x0318 Error Log – Invalid DWord Read Only

31	31 24 23											16 15										8 7								0				
	Error Log Invalid DWord																																	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

Error Log Invalid Dword Count

[31:0]

This read-only field indicates the number of invalid dwords received by the STP Target. The value increments every time the STP Target receives an invalid dword between a pair of SATA_SOF and SATA_EOF primitives.

This count does not increment when an ERROR primitive is detected because a different phy in the expander chain increments its Invalid Dword count. This register does not increment after reaching the maximum value of 0xFFFFFFF. Writing 0x05 to the SmpPhyOp field in the SMP Phy Operation register clears this register. Bytes 12–15 of the SMP REPORT PHY ERROR LOG Response Frame report the contents of this register.

Register: 0x031C Error Log – I²C CRC Error Count Read Only

Reserved

[31:16]

Error Log I²C Error Count

[15:0]

This read-only field indicates the number of times the SEMB detects a CRC error in write data that is transmitted by the SEP I^2C master, or when the SEMB determines that the SEP has detected a CRC error during a read operation.

This register does not increment after reaching the maximum value of 0xFFFF. Writing 0x05 to the SmpPhyOp field in the SMP Phy Operation register clears this register. Bytes 16–19 of the SMP REPORT PHY ERROR LOG Response Frame report the contents of this register.

Register: 0x0320 Error Log – Unexpected SYNC Count Read Only

Error Log Unexpected SATA Sync Count [31:0] This read-only field indicates the number of disparity error occurrences. This field increments when a SATA_SYNC primitive is detected while the STP Target is expecting a different primitive.

This register does not increment after reaching the maximum value of 0xFFFFFFF. Writing 0x05 to the SmpPhyOp field in the SMP Phy Operation register clears this register. Bytes 20–23 of the SMP REPORT PHY ERROR LOG Response Frame report the contents of this register.

Register: 0x0324 Error Log – R_ERR Transmitted/Received Count Read Only

R_ERRs Transmitted Count

31:16

This read-only field indicates the number of times the STP Target has asserted R_ERR. The value increments when the STP Target transmits an R_ERR primitive.

This register does not increment after reaching the maximum value of 0xFFFF. Writing 0x05 to the SmpPhyOp field in the SMP Phy Operation register clears this register. Bytes 24–25 of the SMP REPORT PHY ERROR LOG Response Frame report the contents of this register.

R ERRs Received Count

This read-only field indicates the number of times the STP Target has received an R ERR in response to a transmitted FIS. The value increments when the STP Target detects an R ERR primitive.

This register does not increment after reaching the maximum value of 0xFFFF. Writing 0x05 to the SmpPhyOp field in the SMP Phy Operation register clears this register. Bytes 26–27 of the SMP REPORT PHY ERROR LOG Response Frame report the contents of this register.

Register: 0x032C STP Error Status **Read/Write**

All bits in this register are persistent, and remain set until an SMP PHY CONTROL (CLEAR ERROR LOG), (HARD RESET), (LINK RESET) function is issued to Virtual Phy 12.

Reserved

[31:16]

15:0

15

14

13

Unrecovered I²C CRC Error The LSISASx12 sets this read-only bit when an I²C CRC error occurs, the SEP I²C master has reached its retry limit, and the I²C master has aborted the command.

I²C CRC Error

The LSISASx12 sets this read-only bit when an I²C CRC error occurs. The SEP I²C master may retry the transfer.

Unrecovered Data FIS

The LSISASx12 sets this read-only bit when the STP Target receives an R_ERR primitive in response to a Data FIS transmission attempt. If this occurs, the STP Target transmits a CLOSE sequence to close the connection if the command was not a PACKET command. If the failed Data FIS is part of a PACKET command sequence, the STP Target transmits a D2H

STP Target Registers Copyright © 2004, 2005 by LSI Logic Corporation. All rights reserved.

4-122

Register FIS with Status[BSY]=0 and Error[ABRT] = 1 prior to transmitting a CLOSE sequence.

Unrecovered D2H Reg FIS

The LSISASx12 sets this read-only bit when the STP Target receives an R_ERR in response to a second attempt to transmit a D2H Register FIS. If this occurs, the STP Target transmits a CLOSE sequence to close the connection.

Unrecovered PIO Setup FIS

The LSISASx12 sets this read-only bit when the STP Target receives an R_ERR in response to a second attempt to transmit a PIO Setup FIS. If this occurs, the STP Target transmits a CLOSE sequence to close the connection.

Unsupported FIS Received

The LSISASx12 sets this read-only bit when the STP Target receives one of the following FIS Types:

- D2H Register FIS
- DMA Activate FIS
- DMA Setup FIS
- PIO Setup FIS
- Set Device Bits FIS
- BIST Activate FIS

If the STP Target receives one of these FIS types, the STP Target transmits an R_ERR, followed by a CLOSE sequence to close the connection.

Payload/Transfer-Count Mismatch

9

12

11

10

The LSISASx12 sets this read-only bit when the number of dwords received in a Host-to-Device DATA FIS does not match the Transfer Count that was placed in the previously sent PIO Setup FIS. If this occurs, the Application Layer notifies the Link Layer to send an R_ERR, and a D2H Register FIS is transmitted to the host with a SCSI Sense Key of ILLEGAL REQUEST (0x5) placed in the Error register.

CRC Error Detected

The LSISASx12 sets this read-only bit when it detects a bad CRC dword in a received FIS. The STP Target transmits an R_ERR and leaves the connection open. The Initiator decides if to retransmit the failed FIS.

PMREQ Received

The LSISASx12 sets this read-only bit when it receives either a PMREQ_P or PMREQ_S primitive. If this occurs, the STP Target transmits PMNAK, and then transmits a CLOSE sequence to close the connection.

R_RDY Timeout

The LSISASx12 sets this read-only bit if the STP Target does not receive an R_RDY primitive within 1 ms after transmitting X_RDY primitives. If this occurs, the STP Target transmits a CLOSE sequence to close the connection.

R_OK/R_ERR Timeout

The LSISASx12 sets this read-only bit if the STP Target does not receive either an R_OK or R_ERR primitive within 1 ms after transmitting an EOF/WTRM sequence. If this occurs, the STP Target transmits a CLOSE sequence to close the connection.

Unexpected SYNC

The LSISASx12 sets this read-only bit when the Link Layer receives an unexpected SATA_SYNC primitive. The Error Log – Unexpected SYNC Count provides a cumulative count of received unexpected SYNC primitives.

R_ERR Received

The LSISASx12 sets this read-only bit when it receives an R_ERR in response to a DATA FIS, PIO Setup FIS, or D2H Register FIS. The Error Log – R_ERR Transmitted/Received Count provides a cumulative count of R_ERR primitives that have been sent or received.

R_ERR Transmitted

The LSISASx12 sets this read-only bit when either the Link Layer or Transport Layer detect a problem with a received FIS that caused the Link Layer to assert R_ERR. Bits [8:10] of this register provide the cause of the error. The Error Log – R_ERR Transmitted/Received

7 3

6

8

5

3

2

4

Count register provides a cumulative count of R_ERR primitives that have been sent or received.

ERROR Primitive Received

The LSISASx12 sets this read-only bit when it detects an ERROR primitive between a SATA_SOF and SATA_EOF pair.

Bad Dword Received

0

1

The LSISASx12 sets this read-only bit when it detects an invalid dword between a SATA_SOF and SATA_EOF pair. The invalid dword is caused by either an 8b/10b encoding violation or a running disparity error. The Error Log – Invalid DWord register provides a cumulative count of invalid dword errors.

4.6 Expander Connection Manager Registers

The connection manager register space consists of phy configuration registers, a global configuration register, and remote bank configuration registers. Section 4.6.1, "Phy Configuration Registers," describes the phy configuration registers and global configuration register. Section 4.6.1, "Phy Configuration Registers," describes the remote bank configuration registers.

4.6.1 Phy Configuration Registers

Table 4.12 provides the offsets and register locations for each phy in the expander connection manager register map.

Offset	Register Name
0x00000	Phy 0 ECM Config Register
0x00004	Phy 0 Remote Bank Enable
0x00008-0x0000C	Reserved
0x00010	Phy 1 ECM Config Register
0x00014	Phy 1 Remote Bank Enable
0x00018-0x0001C	Reserved
0x00020	Phy 2 ECM Config Register

Table 4.12 Connection Manager Phy Offsets

Offset	Register Name
0x00024	Phy 2 Remote Bank Enable
0x00028-0x0002C	Reserved
0x00030	Phy 3 ECM Config Register
0x00034	Phy 3 Remote Bank Enable
0x00038-0x0003C	Reserved
0x00040	Phy 4 ECM Config Register
0x00044	Phy 4 Remote Bank Enable
0x00048-0x0004C	Reserved
0x00050	Phy 5 ECM Config Register
0x00054	Phy 5 Remote Bank Enable
0x00058-0x0005C	Reserved
0x00060	Phy 6 ECM Config Register
0x00064	Phy 6 Remote Bank Enable
0x00068-0x0006C	Reserved
0x00070	Phy 7 ECM Config Register
0x00074	Phy 7 Remote Bank Enable
0x00078-0x0007C	Reserved
0x00080	Phy 8 ECM Config Register
0x00084	Phy 8 Remote Bank Enable
0x00088-0x0008C	Reserved
0x00090	Phy 9 ECM Config Register
0x00094	Phy 9 Remote Bank Enable
0x00098-0x0009C	Reserved
0x000A0	Phy 10 ECM Config Register
0x000A4	Phy 10 Remote Bank Enable
0x000A8-0x000AC	Reserved
0x000B0	Phy 11 ECM Config Register
0x000B4	Phy 11 Remote Bank Enable
0x000B8-0x000BC	Reserved
0x000C0	STP Target ECM Config Register
0x000C4	STP Target Remote Bank Enable
0x000C8-0x000CC	Reserved

Table 4.12 Connection Manager Phy Offsets (Cont.)

Offset	Register Name
0x00024	Phy 2 Remote Bank Enable
0x00028-0x0002C	Reserved
0x00030	Phy 3 ECM Config Register
0x00034	Phy 3 Remote Bank Enable
0x00038-0x0003C	Reserved
0x00040	Phy 4 ECM Config Register
0x00044	Phy 4 Remote Bank Enable
0x00048-0x0004C	Reserved
0x00050	Phy 5 ECM Config Register
0x00054	Phy 5 Remote Bank Enable
0x00058-0x0005C	Reserved
0x00060	Phy 6 ECM Config Register
0x00064	Phy 6 Remote Bank Enable
0x00068-0x0006C	Reserved
0x00070	Phy 7 ECM Config Register
0x00074	Phy 7 Remote Bank Enable
0x00078-0x0007C	Reserved
0x00080	Phy 8 ECM Config Register
0x00084	Phy 8 Remote Bank Enable
0x00088–0x0008C	Reserved
0x00090	Phy 9 ECM Config Register
0x00094	Phy 9 Remote Bank Enable
0x00098-0x0009C	Reserved
0x000A0	Phy 10 ECM Config Register
0x000A4	Phy 10 Remote Bank Enable
0x000A8-0x000AC	Reserved
0x000B0	Phy 11 ECM Config Register
0x000B4	Phy 11 Remote Bank Enable
0x000B8-0x000BC	Reserved
0x000C0	STP Target ECM Config Register
0x000C4	STP Target Remote Bank Enable
0x000C8-0x000CC	Reserved

Table 4.12 Connection Manager Phy Offsets (Cont.)

Offset	Register Name
0x000D0	SMP Target ECM Config Register
0x000D4	SMP Target Remote Bank Enable
0x000D8-0x01FFF	Reserved
0x02000	Global Config

Table 4.12 **Connection Manager Phy Offsets (Cont.)**

The following provides descriptions of the phy configuration registers, and the Global Configuration register.

Register: 0xn0 ECM Config **Read/Write**

This register provides per-phy configuration of arbitration and routing attributes.

Reserved

Reserved

This bit is reserved for LSI Logic use. Clear this bit to 0b0 for normal operation.

Reserved

This bit is reserved for LSI Logic use. Clear this bit to 0b0 for normal operation.

Connect Wait

If the Partial Wait bit (bit 1 of this register) is set, then this bit determines the action taken by the Connection Manager when

- at least one destination matches the requested destination
- no destinations that match are available, and
- at least one of the destinations is connected.

[31:5]

4

2

3

Clearing this bit causes the Connection Manager to stop arbitration and to report OPEN REJECT(PathwayBlocked).

Setting this bit causes the Connection Manager to continue arbitration to complete the requested connection, and to report Wait On Connect to the requester.

Partial Wait

1

This bit determines the operation of the Connection Manager when

- at least one destination matches the requested destination,
- no destinations that match are available, and
- all of the matching links have a link status of either Blocked or Partial.

Clearing this bit causes the Connection Manager stop arbitration and report OPEN REJECT(PathwayBlocked). Setting this bit causes the Connection Manager to continue arbitration to complete the requested connection, and to report WaitOnPartial or BlockedPartial to the requester.

Subtractive Decode Enable

0

Setting this bit causes this phy to utilize subtractive routing.

Register: 0xn4 Remote Bank Enable Read/Write

31	1 24 23												16 15										8	7			0				
	Phy NN Remote Bank Enable																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register specifies the remote routing banks that Phy [NN] uses.

Reserved

[31:12]

Phy NN Remote Bank Enables

[11:0]

This field contains a bit vector specifying which remote routing banks Phy NN uses. A set bit indicates that the LSISASx12 utilizes remote route entries within the corresponding bank during routing comparisons for this phy.

Register: 0x2000 Global Config Read/Write

Remote Disable Under Control of Link Ready31Setting this bit sets all of the Remote Entry Disable bits

in a remote entry bank to the disabled state when Link Ready goes to inactive. This setting affects all links that are mapped to the bank. Clearing this bit allows individual control of the Remote Entry Disable bits.

Round Robin Disable

Setting this bit causes the Request state machine to use a priority encoder to determine which grant to accept when it receives multiple grants, as is the case with wide ports. As a result, if the same grants are always received, then the same port is always accepted.

Clearing this bit causes the Request state machine to use a round-robin arbitration scheme to accept a different port each time.

Reserved

[29:0]

30

4.6.2 Remote Bank Configuration Registers

Table 4.13 provides the offsets of each remote bank in the expander connection manager register map. The register space for each Remote Bank [NN] Config is a 96 byte space with the format defined in Table 4.14. The format and register definitions for each remote bank are identical with the exception of a differing offset.

Offset	Register Name
0x10000	Remote Bank 00 Config
0x100C0	Remote Bank 01 Config
0x10180	Remote Bank 02 Config
0x10240	Remote Bank 03 Config
0x10300	Remote Bank 04 Config
0x103C0	Remote Bank 05 Config
0x10480	Remote Bank 06 Config
0x10540	Remote Bank 07 Config
0x10600	Remote Bank 08 Config
0x106C0	Remote Bank 09 Config
0x10780	Remote Bank 10 Config
0x10840	Remote Bank 11 Config
0x10900-0x1FFFF	Reserved

 Table 4.13
 Connection Manager Remote Bank Offsets

Table 4.14 Connection Manager Remote Dank Register Ma	Table 4.14	Connection	Manager	Remote	Bank	Register	Ma
---	------------	------------	---------	--------	------	----------	----

Offset from Remote Bank	Register Name
0x00	Remote Bank NN SAS Address High 0
0x04	Remote Bank NN SAS Address Low 0
0x08	Remote Bank NN Config 0
0x0C	Reserved
0x10	Remote Bank NN SAS Address High 1
0x14	Remote Bank NN SAS Address Low 1
0x18	Remote Bank NN Config 1
0x1C	Reserved
0x20	Remote Bank NN SAS Address High 2
0x24	Remote Bank NN SAS Address Low 2
0x28	Remote Bank NN Config 2
0x2C	Reserved
0x030	Remote Bank NN SAS Address High 3
0x34	Remote Bank NN SAS Address Low 3

Offset from Remote Bank	Register Name
0x38	Remote Bank NN Config 3
0x3C	Reserved
0x40	Remote Bank NN SAS Address High 4
0x44	Remote Bank NN SAS Address Low 4
0x048	Remote Bank NN Config 4
0x4C	Reserved
0x50	Remote Bank NN SAS Address High 5
0x54	Remote Bank NN SAS Address Low 5
0x58	Remote Bank NN Config 5
0x5C	Reserved
0x60	Remote Bank NN SAS Address High 6
0x64	Remote Bank NN SAS Address Low 6
0x68	Remote Bank NN Config 6
0x6C	Reserved
0x70	Remote Bank NN SAS Address High 7
0x74	Remote Bank NN SAS Address Low 7
0x78	Remote Bank NN Config 7
0x7C	Reserved
0x80	Remote Bank NN SAS Address High 8
0x84	Remote Bank NN SAS Address Low 8
0x88	Remote Bank NN Config 8
0x8C	Reserved
0x90	Remote Bank NN SAS Address High 9
0x94	Remote Bank NN SAS Address Low 9
0x98	Remote Bank NN Config 9
0x9C	Reserved
0xA0	Remote Bank NN SAS Address High 10
0xA4	Remote Bank NN SAS Address Low 10
0xA8	Remote Bank NN Config 10
0xAC	Reserved
0xB0	Remote Bank NN SAS Address High 11

Table 4.14 Connection Manager Remote Bank Register Map (Cont.)

Offset from Remote Bank	Register Name
0xB4	Remote Bank NN SAS Address Low 11
0xB8	Remote Bank NN Config 11
0xBC	Reserved

Table 4.14 Connection Manager Remote Bank Register Map (Cont.)

The following provides descriptions of the Remote Bank registers.

Register: 0x00 Remote Bank NN SAS Address High Read/Write

31							24	23							16	15							8	7	7						0
										Re	emo	te E	Bank	(NI	N S	AS	Add	lres	s H	igh	MM	I									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Remote Bank NN SAS Address High MM [31:0] This register specifies the Remote SAS Address [63:32] present in entry MM of bank NN of the remote routing table.

Register: 0x04 Remote Bank NN SAS Address Low Read/Write

31							24	23							16	15							8	7	0 0 0						0
										Re	emo	te E	Ban	k N	N S	AS	Ado	dres	s L	ow	MM										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Remote Bank NN SAS Address Low MM[31:0]This register specifies the Remote SAS Address[31:0]present in entry MM of bank NN of the remote routing
table.

Register: 0x08 Remote Bank NN Config Read/Write

Setting this bit disables the routing entry MM of bank NN of the remote routing table.

Reserved

[30:0]

4.7 EMB Slave Registers

The EMB slave register space is separate from the primary internal register space, and can only be accessed through the EMB. Table 4.15 provides the EMB slave register map. Detailed register descriptions follow the register map.

 Table 4.15
 I²C Slave Register Map

Address	Register
0x000-0x003	Reserved
0x004–0x41F	Data FIS RAM
0x420-0x4FF	Reserved
0x500	STP - SEP Doorbell
0x501	SEP - STP Doorbell
0x502	STP - SEP Transfer Length
0x503	SEP - STP Transfer Length
0x504	Transfer Attributes
0x505	Command Status
0x506	Error Detection Control
0x507	Error Status
0x508-0x5FF	Reserved
0x600–0x603	RR_Command0 - RR_Command3

Address	Register
0x604–0x60B	RR_Data0 - RR_Data7
0x60C	RR_Control
0x60D-0xFFF	Reserved

Table 4.15 I²C Slave Register Map (Cont.)

Register: 0x500 STP - SEP Doorbell Read/Write

7							0
			STP - SEI	P Doorbell			
0	0	0	0	0	0	0	0

Execute Device Diagnostics Received

7

This read-only bit indicates that the LSISASx12 received an Execute Device Diagnostics command. The SEP can perform diagnostic tests and write the Command Status register with 0x01 if the tests pass, or 0x00 if the tests fail. Write a 1 to this bit to clear it.

Abort Command

6

Write this bit once to clear it. This bit causes the SEP to abort the current command for one of the following reasons:

- The STP Target was DISABLED by an SMP PHY CONTROL Request
- An R_ERR primitive was received in response to a transmitted DataFIS
- An R_ERR primitive was transmitted in response to a received DataFIS
- A BREAK sequence was detected
- An Unexpected SYNC primitive was detected during the transmission or reception of a Data FIS
- The STP Target detects that the host reconnected to the target after the connection was previously closed. This indicates that the host is probably aborting the

command and reconnected to send a Device Reset command.

 The STP Target tried to re-establish a connection by sending an OAF, and either received an OPEN Timeout or a fatal OPEN_REJECT primitive, such as NO DESTINATION and WRONG DESTINATION.

Link/Device Reset Received

This bit indicates that the LSISASx12 detected either a link reset from an SMP PHY CONTROL (Link/Hard Reset) Request Frame or received a DEVICE RESET command. The SEP aborts the current operation and sets a flag to indicate a UNIT ATTENTION condition. Write this bit once to clear it. The SEP also sets the SEP Aborted Command bit in the SEP - STP Doorbell register.

Read Data Transmitted

This bit is an acknowledgement to the Read Data Ready bit of the SEP-STP Doorbell register. It indicates that the STP Target has transferred the data from the Data FIS RAM to the host. Write this bit once to clear it.

Write Data Ready

This bit indicates that there is valid write data in the Data FIS RAM to transfer to the SEP. Write this bit once to clear it.

Soft Reset Sequence Received

This bit indicates that the LSISASx12 detected a soft reset sequence. The SEP must abort any command under execution and runs diagnostic tests. Upon completion of the diagnostic tests, the SEP must write the results to the Command Status register. A value of 0x00 indicates that the diagnostics tests failed. A value of 0x01 indicates that the diagnostics tests passed. The SEP also must set a UNIT ATTENTION flag when this bit is set.

Identify Packet Device Command Received

This bit indicates that an Identify Packet Device Command was received. The SEP transfers the 512 bytes of response data to the Data FIS RAM and sets the Read Data Ready bit of the SEP-STP Doorbell register. Write this bit once to clear it.

5

4

3

2

1

Packet Command Received

This bit indicates that an ATA Packet command was received. The Data FIS RAM contains the CDB for the Packet command.

The STP-SEP Transfer Length register contains the Byte Count Limit parameter of the Packet command. A non-zero value indicates the number of dwords that can be transferred in each Data FIS required to complete the Packet command. A value of 0x00 indicates that up to 256 dwords (1 Kbyte) can be transferred at a time.

If the CDB indicates a data-out operation the SEP sets the SEP-STP Transfer Length Register with the value of the Byte Count Limit. The SEP-STP Transfer Attributes register indicates the data direction and whether or not the next data transfer is the last transfer for the Packet command. The SEP sets the Packet Command Acknowledge bit of the SEP-STP Doorbell register.

If the CDB indicates a data-in operation the SEP sets the SEP-STP Transfer Attributes register to indicate the data direction and whether or not the next data transfer is the last transfer for the Packet command. After transferring the appropriate data to the Data FIS RAM, the SEP sets the Read Data Ready bit of the SEP-STP Doorbell Register. The Packet Command Acknowledge bit is not set for write operations.

If the CDB has an unsupported command or invalid parameters, the SEP writes the Command Status register with a Sense Key of "ILLEGAL REQUEST" (0x05) and sets the Command Status Ready bit of the SEP-STP Doorbell Register.

Register: 0x501 SEP - STP Doorbell Read/Write

Reserved

SEP Aborted Command

This bit is set when an I^2C CRC error occurs while the SEP is transferring data to or from the I^2C Slave.

Command Status Ready

The SEP sets this bit to indicate that the Command Status register has valid status information.

Read Data Ready

The SEP sets this bit to indicate that the Data FIS RAM contains valid data for the STP target to transfer to the host.

Write Data Acknowledge

The SEP sets this bit to indicate that the SEP has transferred the write data from the Data FIS RAM.

Reserved [2:1]

PACKET Command ACK

This bit is set after a Packet data-in command is parsed successfully. The Read Data Ready bit is used when a Packet data-out command is received.

7

6

5

4

3

0

Register: 0x502 STP - SEP Transfer Length Read/Write

7							0
		ST	P - SEP Tr	ansfer Len	gth		
0	0	0	0	0	0	0	0

Transfer Length

[7:0]

This register contains the dword value indicating the maximum length of each Data FIS to be transferred from the host to the SEP. A value of 0x00 indicates a transfer length of 256 dwords.

Register: 0x503 SEP - STP Transfer Length Read/Write

7							0
		SE	P - STP Tr	ansfer Len	gth		
0	0	0	0	0	0	0	0

Transfer Length

[7:0]

This register contains the dword value indicating the maximum length of each Data FIS to be transferred from the SEP to the host.
Register: 0x504 Transfer Attributes Read/Write

Reserved

Last Transfer

[7:2]

1

0

For data-in packet commands such as Receive Diagnostics, a value of 1 indicates that the current data in the Data FIS buffer that is to be transmitted to the host is the last data transfer required to complete the Packet command. For data-out packet commands such as Send Diagnostics, a value of 1 indicates that the last block of data read from the Data FIS buffer by the SEP is the last data transfer required to complete the packet command.

Data Direction

A value of 0b0 indicates a data-out packet command (host to device). A value of 0b1 indicates a data-in packet command (device to host).

Register: 0x505 Command Status Read/Write

7							0
			Comman	d Status			
0	0	0	0	0	0	0	0

Command Status

[7:0]

This register contains the status of the current packet command.

Register: 0x506 Error Detection Control Read/Write

Reserved

Payload CRC Error

When CRC checking is enabled, the LSISASx12 sets this bit when it detects a CRC error in the payload bytes of a write transfer. The LSISASx12 asserts an interrupt to the SEP to alert the SEP of the CRC error condition. Write a 1 to this bit to clear it.

The Transfer Type bits of the Error Status register indicate the type of I^2C write transaction (byte or block) that contain the CRC error. The Actual CRC and Expected CRC registers indicate the actual CRC that was received and the CRC value that was expected.

Header CRC Error

When CRC checking is enabled, the LSISASx12 sets this bit when it detects a CRC error in the header bytes of a write or read transfer. The LSISASx12 asserts an interrupt to the SEP to alert the SEP of the CRC error condition. Write a 1 to this bit to clear it.

The Transfer Type bits of the Error Status register indicate the type of I^2C write transaction (byte or block) that contain the CRC error. The Actual CRC and Expected CRC registers indicate the actual CRC that was received and the CRC value that was expected.

Enable CRC

Setting this bit enables CRC error detection for I²C transfers. Clearing this bit disables error detection. Error detection is enabled after a reset.

[7:3]

2

1

0

Register: 0x507 Error Status Read/Write

Transaction Type

7

This bit indicates the type of transaction in progress when a CRC error or transfer length error occurred. The value of this register bit remains latched until another error is detected.

If a transfer length error occurred:

- A value of 1 indicates a READ transaction had a transfer length error.
- A value of 0 indicates a WRITE transaction had a transfer length error.

If a payload CRC error occurred, a value of 0 indicates a WRITE transaction had a payload CRC error. (A payload CRC error cannot be detected by the SEMB for a READ transaction because the SEMB transmits the payload CRC for READ transactions).

If a header CRC error occurred, this bit indicates the value of the least-significant bit of the Control Byte for the transfer that had the header CRC error.

Transfer Type

6

This bit indicates the type of transfer in progress when a CRC error or Transfer Length error occurred. The value remains latched until another error is detected.

If a payload CRC error or transfer length error occurred:

- A value of 1 indicates a BLOCK transaction had the error.
- A value of 0 indicates a BYTE transaction had the error.

If a header CRC error occurred, this bit indicates the value of the most-significant bit (BLK) of the Address

Pointer Hi byte for the transfer that had the header CRC error.

Reserved [5:2]

Boot Error Doorbell Interrupt

1

This LSISASx12 sets this bit when the boot sequencer indicates that a boot up did not occur properly. Setting this bit generates an interrupt to the SEP. Write a 1 to this bit to clear it.

Transfer Length Error Doorbell Interrupt 0

The LSISASx12 sets this bit when the SEP transfers an incorrect number of bytes during an I^2C write or read transaction. Setting this bit generates an interrupt to the SEP. Write a 1 to this bit to clear it.

Register: 0x508 Actual CRC Read/Write

7							0
			Actua	I CRC			
0	0	0	0	0	0	0	0

Actual CRC

[7:0]

When CRC checking is enabled and the LSISASx12 detects a CRC error, this register contains the value of the header or payload CRC that contains the error. The Expected CRC register contains the expected CRC value. This register value remains latched until the CRC error is cleared in the Error Detection Control register.

Register: 0x509 Expected CRC Read/Write

Expected CRC

[7:0]

When CRC checking is enabled and the LSISASx12 detects a CRC error, this register contains the value of the header or payload CRC was expected. The Actual CRC register contains the CRC value that was received. This register value remains latched until the CRC error is cleared in the Error Detection Control register.

Register: 0x600 - 0x603 RR_Command0 - RR_Command3 Read/Write

7							0
		RR_Co	ommand0 ·	RR_Com	mand3		
0	0	0	0	0	0	0	0

RR_Command

[7:0]

These four registers contain the value to be presented during the Command/Address phase on the register bus interface. RR_Command0 contains the least-significant byte of the command. RR_Command3 contains the most-significant byte of the command.

Register: 0x604 - 0x60B RR_Data0 - RR_Data7 Read/Write

RR_Data

[7:0]

These eight registers contain the value presented during the data phases of a write operation on the register bus interface. On read operations these registers contain the data returned from the register bus. RR_Data0 contains the least-significant byte of the data. RR_Data7 contains the most-significant byte of the data.

Register: 0x60C RR_Control Read/Write

Reserved

RR_Request

Setting this bit initiates the register bus operation described in the RR_Command–RR_Command3 registers. This bit must be cleared following the completion of each operation on the register bus interface.

[7:1]

0

Chapter 5 Specifications

This chapter specifies the LSISASx12 electrical and mechanical characteristics. It is divided into the following sections:

- Section 5.1, "DC Characteristics"
- Section 5.2, "AC Characteristics"
- Section 5.3, "Pinout"
- Section 5.4, "Package Diagram"

Refer the Serial Attached SCSI Standard for timing information. The LSISASx12 timings conform to the information that these specifications provide.

5.1 DC Characteristics

This section of the manual describes the LSISASx12 DC characteristics. Tables 5.1 through 5.18 give environmental, current, voltage, and capacitance specifications.

Table 5.1 Absolute Maximum Stress Ratings¹

Symbol	Parameter	Min	Max	Unit	Test Conditions
T _{STG}	Storage Temperature	-65	150	°C	_
V _{DD-Core}	Supply Voltage	-0.3	2.0	V	-
V _{DD-IO}	I/O Supply Voltage	-0.3	3.96	V	-
I _{LP}	Latch-up Current	150	-	mA	EIA/JESD78
ESD _{HBM}	Electrostatic Discharge - Human Body Model (HBM)	_	2000	V	JESD-A114-B

1. Stresses beyond those listed above can damage the device. These are stress ratings only; functional operation of the device at or beyond these values is not implied.

Table 5.2 Operating Conditions¹

Symbol	Parameter	Min	Nominal	Max	Unit	Test Conditions
V _{DD-Core}	Core and Analog Supply Voltage	1.14	1.2	1.26	V	_
V _{DD-IO}	I/O Supply Voltage	2.97	3.3	3.63	V	-
I _{DD-Core}	Core and Analog Supply Current (dynamic) ²	_	-	2	A	_
I _{DD-I/O}	I/O Supply Current (dynamic) ³	-	-	90	mA	FAULT_LED[11:0]/ signals asserted
Тj	Junction Temperature	-	-	115	°C	-
T _A	Operating Free Air	_	-	70	°C	-
θ_{JA}	Thermal Resistance (junction to ambient air)	_	17.8	_	°C/W	0 Linear Feet/Minute

1. Conditions that exceed the operating limits can cause the device to function incorrectly.

2. Core and analog supply only.

3. These numbers are specified for the design of the I/O power network. Not all of the I_{DD-I/O} supplied to the LSISASx12 dissipates on-chip.

There are no power sequencing requirements for the LSISASx12 expander.

Speed and Technology	Parameter	Min V _{p-p} Inside EYE	Max V _{p-p} Outside EYE	Unit
SAS - 1.5 Gbit/s	Peak-to-Peak Voltage (V _{p-p})	1050	1180	mV
SAS - 3.0 Gbit/s	V _{p-p}	1658	1780	mV
SATA - 1.5 Gbit/s	V _{p-p}	476	620	mV
SATA - 3.0 Gbit/s	V _{p-p}	505	694	mV

 Table 5.3
 GigaBlaze Transmitter Voltage Characteristics — TX[11:0]

Table 5.4 GigaBlaze Receiver Voltage Characteristics — RX[11:0]

Parameter	Min	Max	Unit	Condition
V _{p-p-OOB}	150	_	mV	inside the EYE
V _{p-p-normal operation}	275	_	mV	inside the EYE

Table 5.5 GigaBlaze Transceiver Rise/Fall Characteristics — TX[11:0] ,RX[11:0]

Speed and Technology	Nominal Rise Time	Nominal Fall Time	Specified Range	Unit
SAS - 1.5 Gbit/s	141	153	67 - 273	psec
SAS - 3.0 Gbit/s	129	125	67 - 137	psec
SATA - 1.5 Gbit/s	141	141	100 - 273	psec
SATA - 3.0 Gbit/s	112	112	66.6 - 136.6	psec

Table 5.6 5 mA Bi-directional Signals — BSL_SCL, BSL_SD, EMB_SCL, EMB_SD, GPI0[3:0], LED_ACTIVE[11:0]/, LED_FAULT[11:0]/, LED_STATUS[11:0]/

Symbol	Parameters	Min	Max	Unit
V _{IL}	Input low voltage	VSS - 0.5	0.8	V
V _{IH}	Input high voltage	2	VDD + 0.3	V
V _{OL}	Output low voltage	_	0.4	V
V _{OH}	Output high voltage	2.4	_	V
I _{OZ}	3-state leakage	-10	10	μA
I _{PULL-UP}	Pull current	70	200	μA

	Table 5.7	5 mA Bi-directional Signals — CABLE_DET[11:0]/
--	-----------	--

Symbol	Parameters	Min	Мах	Unit
V _{IL}	Input low voltage	VSS - 0.5	0.8	V
V _{IH}	Input high voltage	2	VDD + 0.3	V
V _{OL}	Output low voltage	-	0.4	V
V _{OH}	Output high voltage	2.4	_	V
I _{OZ}	3-state leakage	-10	10	μA
I _{PULL-DOWN}	Pull current	70	350	μA

Table 5.8 10 mA, 3-state Outputs Signals — EMB_CRC_INT, EMB_DB_INT

Symbol	Parameters	Min	Max	Unit
V _{OL}	Output low voltage	_	0.4	V
V _{OH}	Output high voltage	2.4	_	V
I _{OZ}	3-state leakage	-10	10	μA

Table 5.9 5 mA, 3-state Outputs — TDO

Symbol	Parameters	Min	Max	Unit
V _{OL}	Output low voltage	_	0.4	V
V _{OH}	Output high voltage	2.4	_	V
I _{OZ}	3-state leakage	-10	10	μA

Table 5.10 5 mA Outputs — UART_TX, LEDSYNCOUT

Symbol	Parameters	Min	Мах	Unit
V _{OL}	Output low voltage	_	0.4	V
V _{OH}	Output high voltage	2.4	_	V
I _{OZ}	3-state leakage	-10	10	μA

Table 5.11	4 mA	Outputs —	PROCMON

Symbol	Parameters	Min	Мах	Unit
V _{OL}	Output low voltage	_	0.4	V
V _{OH}	Output high voltage	2.4	-	V
I _{OZ}	3-state leakage	-10	10	μA

Table 5.12 Inputs — ISTWI_ADDR[1:0], IDDT

Symbol	Parameters	Min	Max	Unit
V _{IL}	Input low voltage	VSS - 0.5	0.8	V
V _{IH}	Input high voltage	2	VDD + 0.3	V
I _{OZ}	3-state leakage	-10	10	μA

Table 5.13 Inputs — UART_RX, LEDSYNCIN, TN

Symbol	Parameters	Min	Max	Unit
V _{IL}	Input low voltage	VSS - 0.5	0.8	V
V _{IH}	Input high voltage	2	VDD + 0.3	V
I _{OZ}	3-state leakage	-10	10	μA
I _{PULL-UP}	Pull current	70	200	μA

Table 5.14 Inputs — MODE[3:0], SCAN_ENABLE, SCAN_MODE

Symbol	Parameters	Min	Мах	Unit
V _{IL}	Input low voltage	VSS - 0.5	0.8	V
V _{IH}	Input high voltage	2	VDD + 0.3	V
I _{OZ}	3-state leakage	-10	10	μA
I _{PULL-DOWN}	Pull current	70	350	μA

Symbol	Min	Nominal	Max	Unit
VT+	—	1.6	2	V
VT-	1	1.2	—	V
Hysteresis	0.3	0.4	-	V
I _{IN}	-10	_	10	μA

Table 5.15 Schmitt Trigger Inputs — CLK

Table 5.16 Schmitt Trigger Inputs — RESET/, SCANCLK1, SCANCLK2, SCANCLK3, TCK, TDI, TMS, TRST/

Symbol	Min	Nominal	Max	Unit
VT+	_	1.6	2	V
VT-	1	1.2	-	V
Hysteresis	0.3	0.4	-	V
I _{IN}	-10	-	10	μA
I _{PULL-UP}	70	105	200	μΑ

Table 5.17 PECL Buffer — REFCLK+, REFCLK-

Symbol	Min	Nominal	Max	Unit
V _{IN_CM}	1.6	2	2.4	V
VT _{IN_DIFF_PP}	600	-	2000	mV
V _{IL}	0.6	-	2.1	V
V _{IH}	1.9	-	3.4	V
I _{IN}	-10	-	10	μA

Table 5.18 Capacitance¹

Symbol	Parameters	Nominal	Unit
C _{IN}	Input Capacitance	3.5	pF
C _{OUT}	Output Capacitance	3.5	pF
C _{IN-PECL}	PECL Input Capacitance	1.0	pF

1. Capacitance values do not include package capacitance.

5.2 AC Characteristics

The AC characteristics described in this section apply over the entire range of operating conditions (refer to Section 5.1, "DC Characteristics.") Chip timing is based on simulation at worst case voltage, temperature, and processing. Timing was developed with a load capacitance of 50 pF.

The LSISASx12 requires a 75MHz input clock having an accuracy of at least 50ppm on both the REFCLK and CLK pins. The duty cycle required is 40-60% worst case. Refer to SEN S11054: LSISASx12 Design Considerations (Document Number: DB05-000116-xx) for information concerning using a single oscillator to drive both input clocks.

Table 5.19 and Figure 5.1 provide reset input timing data.

Table 5.19 Reset Input

Symbol	Parameter	Min	Max	Units
t ₁	Reset pulse width	10	—	ns
t ₂	Reset deasserted setup to CLK HIGH	0	—	ns

5.3 Pinout

Table 5.20 provides the signal listing by signal name. Table 5.21 provides the signal listing by BGA position. Figure 5.2 provides a BGA diagram.

Table 5.20 Listing by Signal Name^{1, 2}

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
Signal BSL_SCL BSL_SD CBL_DET[0]/ CBL_DET[1]/ CBL_DET[2]/ CBL_DET[3]/ CBL_DET[3]/ CBL_DET[4]/ CBL_DET[5]/ CBL_DET[5]/ CBL_DET[6]/ CBL_DET[6]/ CBL_DET[6]/ CBL_DET[6]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ CBL_DET[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_ACT[1]/ LED_FAULT[1]/ LED_FAULT[1]/ LED_FAULT[1]/ LED_FAULT[1]/ LED_FAULT[1]/ LED_FAULT[1]/ LED_FAULT[1]/ LED_FAULT[1]/ LED_FAULT[1]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[2]/ LED_FAULT[3]/ LED_FAULT[3]/ LED_STATUS[2]/ LED_STATUS[3]/ LED_STATUS	AE3 AD4 E115 C16 B14 A16 A16 A16 A16 A16 A16 A16 A16 A16 A16	Signal LED_STATUS[11]/ LEDSYNCOUT MODE[0] MODE[1] MODE[2] MODE[3] NC NC	AF9 AF9 AF15 AE17 B4 A4 C5 B5 A3 A10 A11 A12 A13 A14 A13 A14 A15 A17 A18 A20 A21 A22 A23 A24 B9 B13 B17 B18 B21 B22 B23 B24 C9 C14 C15 C17 C18 C21 C23 D26 D7 B9 D12 D13 D25 E4 E9 E10 E12 E12 E12 E12 E12 E12 E12 E12	Signal NC NC <	Fin E13 E13 E14 E15 E22 E26 F1 F7 F8 F9 F20 F21 F22 F24 G3 G19 G20 G24 H3 H24 J26 K5 L1 L4 L5 M3 M4 N26 P23 P24 R24 T1 T22 F23 V3 W24 R22 V3 W24 W26 Y11 Y8 Y24 AA7 AA9 AA19 AA25 AB3 AB7 AB12 AB14 AB19 AB20 AB23 AC6 AC8	Signal NC NC	$\begin{array}{c} FIII \\ AC14 \\ AC15 \\ AC18 \\ AC19 \\ AC20 \\ AC21 \\ AC26 \\ AD3 \\ AD11 \\ AD17 \\ AD19 \\ AD25 \\ AE1 \\ AE10 \\ AE10 \\ AE11 \\ AF13 \\ AF11 \\ AF12 \\ AF13 \\ AF11 \\ AF12 \\ AF13 \\ AF11 \\ AF12 \\ AF13 \\ AF14 \\ B10 \\ C10 \\ D20 \\ AB13 \\ AF14 \\ B10 \\ C10 \\ D20 \\ AB13 \\ AF14 \\ AF24 \\ AF25 \\ V24 \\ V25 \\ N24 \\ J25 \\ J24 \\ E25 \\ E24 \\ C25 \\ C24 \\ C2 \\ C2 \\ F2 \\ F2 \\ F3 \\ L2 \\ AC13 \\ W22 \\ AC2 \\ AC1 \\ AC23 \\ W23 \\ W23 \\ W22 \\ AC2 \\ AC1 \\ A223 \\ W23 \\ W22 \\ AC2 \\ AC1 \\ A223 \\ W23 \\ W26 \\ K25 \\ J22 \\ G22 \\ H7 \\ H5 \\ K3 \end{array}$

1. NC pins are not connected inside of the package.

 Boot load options configure the polarity of the RX+/RX- signals and TX+/TX- signals for each phy through the Phy Transmit Polarity and Phy Receiver Polarity registers.

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
RXBVDD[9] RXBVDD[10] RXBVVD[11] RXBVVD[11] RXBVSS[1] RXBVSS[2] RXBVSS[2] RXBVSS[2] RXBVSS[3] RXBVSS[4] RXBVSS[5] RXBVSS[6] RXBVSS[6] RXBVSS[6] RXBVSS[6] RXBVSS[6] RXBVSS[7] RXBVSS[6] RXBVSS[6] RXBVSS[6] RXVDD[10] RXVDD[1] RXVDD[2] RXVDD[3] RXVDD[4] RXVDD[6] RXVDD[7] RXVDD[10] RXVSS[1] RXVSS[1]	$\begin{array}{c} R4 \\ V4 \\ Y4 \\ Y4 \\ Y23 \\ V23 \\ R26 \\ K24 \\ J21 \\ G21 \\ G5 \\ J2 \\ P4 \\ U5 \\ W6 \\ AD26 \\ Y26 \\ P22 \\ K26 \\ P22 \\ R5 \\ W4 \\ A01 \\ W1 \\ W1 \\ AD1 \\ W21 \\ V22 \\ U26 \\ M23 \\ F23 \\ G6 \\ K2 \\ R5 \\ W4 \\ AA4 \\ D21 \\ F19 \\ D4 \\ F6 \\ C3 \\ E20 \\ D19 \\ P4 \\ F6 \\ C3 \\ E20 \\ D19 \\ P4 \\ F6 \\ C3 \\ E20 \\ D19 \\ P4 \\ F6 \\ C3 \\ E19 \\ AC2 \\ AA26 \\ AB26 \\ T25 \\ \end{array}$	TX[2]- TX[3]+ TX[3]- TX[4]+ TX[5]- TX[5]- TX[6]+ TX[6]- TX[7]- TX[8]+ TX[9]- TX[9]- TX[10]- TX[10]- TX[10]- TX[11]- TX[10]- TX[11]- TXBVDD[0] TXBVDD[3] TXBVDD[3] TXBVDD[4] TXBVDD[6] TXBVDD[6] TXBVDD[9] TXBVDD[9] TXBVSS[1] TXBVSS[6] TXBVSS[9] TXBVSS[9] TXBVSS[9] TXBVSS[1] TXVDD[4] TXVDD[4] TXVDD[4] TXVDD[4] TXVDD[4] TXVDD[5] TXVDD[6] TXVDD[6] TXVDD[7] TXDD[6] TXVDD[7]	$\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$	TXVSS[2] TXVSS[3] TXVSS[4] TXVSS[5] TXVSS[6] TXVSS[7] TXVSS[9] TXVSS[9] TXVSS[11] UART_RX UART_RX UART_TX VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDD	$\begin{array}{c} U24\\ N22\\ L22\\ H22\\ G4\\ J4\\ M1\\ T5\\ W5\\ AA5\\ E18\\ F18\\ K23\\ L24\\ M13\\ M15\\ M24\\ N12\\ N14\\ P13\\ P13\\ P13\\ P13\\ R12\\ R14\\ T3\\ AB5\\ C6\\ C7\\ C11\\ C12\\ C19\\ C20\\ D10\\ D22\\ E5\\ AC11\\ AL7\\ AD7\\ AD8\\ AD15\\ AD16\\ AD21\\ AD15\\ AD16\\ AD21\\ AD21\\ AD15\\ B16\\ B7\\ B11\\ B12\\ B14\\ \end{array}$	VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS	B15 B19 B20 D5 D11 D17 E23 F5 F25 G2 G2 G25 H2 H20 K4 L23 L25 M12 M14 M25 N2 M12 M14 P25 R2 R13 R15 P12 P14 P25 R2 R13 R25 Y2 Y19 Y25 AA2 AE12 AE12 AE12 AE12 AE12 AE12 AE12

Table 5.20 Listing by Signal Name^{1, 2} (Cont.)

^{1.} NC pins are not connected inside of the package.

Boot load options configure the polarity of the RX+/RX- signals and TX+/TX- signals for each phy through the Phy Transmit Polarity and Phy Receiver Polarity registers.

Table 5.21	Listing	by	Pin	Number ^{1, 2}
------------	---------	----	-----	------------------------

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
A2	IDDT	C12	VDDIO33	E21	VSS	J22	RXBVDD[4]
A3	NC	C13	NC	E22	NC	J23	TXBVDD[4]
A4 Δ5		C14	NC	E23 F24	V35 RX[4]_	J24 125	RX[3]-
A6	CBL DET[10]/	C16	CBL DETI21/	E25	RX[4]+	J26	NC
A7	CBL DET[9]/	C17	NC	E26	NC	K1	TXBVSS[8]
A8	CBL_DET[8]/	C18	NC	F1	NC	K2	RXVSS[8]
A9	NC	C19	VDDIO33	F2	RX[7]+	K3	RXBVDD[8]
A10	NC	C20	VDDIO33	F3		K4	VSS
A11 A12	NC			F4 F5	1 //20	K22	
A12	NC	C23	NC	F6	SCANCI K2	K23	VDD2
A14	NČ	Č24	RX[5]-	F7	NC	K24	RXBVSS[3]
A15	NC	C25	RX[5]+	F8	NC	K25	RXBVDD[3]
A16	CBL_DET[5]/	C26	TX[5]-	F9		K26	RXVDD[3]
A17	NC	D1	I X[6]-	F18		L1	
Δ1Q	NC			F19	SCAN_WODE		
A20	NČ	D4	SCANCLK1	F21	NČ	L4	NC
A21	NC	D5	VSS	F22	NČ	L5	NČ
A22	NC	D6	NC	F23	RXVSS[5]	L22	TXVSS[4]
A23	NC	D7	NC	F24	NC	L23	VSS
A24				F25 F26		L24	VDD2 VSS
A25 B1	VSS	D9 D10		G1		126	TX[3]+
B2	RX[6]-	D11	VSS	G2	VSS	M1	TXVSSI81
B3	NC	D12	NC	G3	NC	M2	VSS
B4	MODE[0]	D13	NC	G4	TXVSS[6]	M3	NC
B5	MODE[3]	D14	CBL_DET[4]/	G5	RXBVSS[7]	M4	NC
B0 B7	V 3 3 V 3 3	D15		G6 G7	RXRVSS[6]	M12	
B8	CBI DETI61/	D17	VSS	G8	VSS	M13	VDD2
B9	NC	D18	TDO	Ğ19	NC	M14	VSS
B10	PLLVDD	D19	TDI	G20	NC	M15	VDD2
B11	VSS	D20	PROCMON	G21	RXBVSS[5]	M22	RXVSS[3]
B12	VSS	D21	SCAN_ENABLE	G22		M23	I XBVDD[3]
B13	VSS	D22	VDDI033	G23	NC	M25	VDD2
B15	VSS	D24	RXVDD[5]	G25	VSS	M26	TX[3]-
B16	CBL_DET[3]/	D25	ŃĊ	G26	TX[4]+	N1	RX[9]–
B17	ŃČ	D26	TXVDD[5]	H1	TX[7]–	N2	VSS
B18	NC	E1	RXVDD[7]	H2	VSS	N3	NC
B20	V33 V29			ПЗ Н4		N4 N5	
B21	NC	F4	NC	H5	RXBVDD[7]	N12	VDD2
B22	NČ	Ē5	VDDIO33	H6	TXBVDD[6]	N13	VSS
B23	NC	E6	TN	H7	RXBVDD[6]	N14	VDD2
B24	NC	E7	NC	H20	VSS	N15	VSS
B25 B26					TXV22[5]	N22	
C1	TX[6]+	E3	NC	H23	RXVSS[3]	N24	RX[2]_
Č2	RXI61+	Ē11	NČ	H24	NC	N25	RX[2]+
C3	SCANCLK3	E12	NC	H25	TXVDD[4]	N26	ŇĊ
C4	NC	E13	NC	H26	TX[4]-	P1	RX[9]+
05	MODE[2]		NC			P2 D2	X[8]+
C7		E 15 E 16		JZ 13			
Č8	CBL DET[7]/	E17	TMS	J4	TXVSSI71	P5	TXVDDI81
C9	ŇĊ	E18	UART_RX	J5	TXBVDD[7]	P12	VSS
C10	PLLVSS	E19	TRST/	J6	RXVSS[7]	P13	VDD2
C11	VDDIO33	E20	TCK	J21	RXBVSS[4]	P14	VSS

1. NC pins are not connected inside of the package.

 Boot load options configure the polarity of the RX+/RX- signals and TX+/TX- signals for each phy through the Phy Transmit Polarity and Phy Receiver Polarity registers.

Signal	Pin	Signal	Pin	Signa	l Pin	Signal	Pin
P15	VDD2	W6	RXBVSS[11]	AB15	LED_STATUS[7]/	AD20	VDDIO33
P22	RXVDD[2]	W7	VSS	AB16	NC	AD21	VDDIO33
P23	NC	W20	TXBVSS[0]	AB17	LED_STATUS[3]/	AD22	LED_ACT[1]/
P24	NC	VV21	RXVSS[0]	AB18	LED_STATUS[0]/	AD23	LED_FAULT[0]/
P25	VSS	VV22		AB19	NC	AD24	GPIO[0]
P20		VV23	RXBVDD[1]	AB20		AD25	
	KXVDD[9]	VV24 W25					
R3	V33 VD2	W26	NC.	AB22	VDDI033		
R4		Y1	NC	AB24	RX[0]+	AE3	BSI SCI
R5	RXVSSI91	Ý2	VSS	AB25	RX[0]-	AE4	EMB_SCL
R12	VDD2	Y3	VDD2	AB26	TX[1]-	AE5	ISTWI ADDR[0]
R13	VSS	Y4	RXBVDD[11]	AC1	RX[11]–	AE6	LED_ACT[9]/
R14	VDD2	Y5	TXBVDD[11]	AC2	RX[11]+	AE7	VŠŠ
R15	VSS	Y6	TXBVSS[11]	AC3	TX[11]+	AE8	VSS
R22	NC	Y7	TDIODE_N	AC4	TX[11]-	AE9	LED_FAULT[9]/
R23	TXVDD[2]	Y8	NC	AC5	VDDIO33	AE10	NC
RZ4	NC	¥19		AC6		AE11	
R20 P26		Y21					V 33 V 99
T1	NC	V22					V 33
T2	VSS	Y23	RXBVSS[0]	AC10	VSS	AE15	VSS
Ť3	VDD2	Y24	NC	AC11	VDDI033	AE16	VSS
T4	VSS	Y25	VSS	AC12	LED FAULTI61/	AE17	LEDSYNCOUT
T5	TXVSS[9]	Y26	RXVDD[1]	AC13	REFCLK-	AE18	LED_STATUS[6]/
T22	ŇĆ	AA1	TX[10]+	AC14	NC	AE19	LED_STATUS[4]/
T23	NC	AA2	VSS	AC15	NC	AE20	VSS
T24	<u>TX[2]</u> -	AA3	VDD2	AC16	VSS	AE21	VSS
125	I X[2]+	AA4	RXVSS[11]	AC17	VDDIO33	AE22	LED_ACT[2]/
126	RXBVDD[2]	AA5		AC18	NC	AE23	LED_FAULI[5]/
	ו אן אן ד דצאיעם ד			AC19	NC		
113	TXBVSSIQ			AC21	NC	AE26	VSS
Ú4	VDD2	AA9	NC	AC22	VSS	AF2	VSS
Ŭ5	RXBVSS[10]	AA18	LED ACT[4]/	AC23	GPIO[3]	AF3	EMB SD
U22	ŇĊ	AA19	ŇĊ	AC24	TX[0]-	AF4	EMB_DB_INT
U23	VSS	AA20	LED_FAULT[3]/	AC25	TX[0]+	AF5	LED_ACT[8]/
U24	TXVSS[2]	AA21	GPIO[1]	AC26	NC	AF6	LED_ACT[7]/
U25	TXBVSS[2]	AA22	VSS	AD1	RXVDD[11]	AF7	LED_ACT[6]/
U26	RXVSS[2]	AA23	RXBVDD[0]	AD2		AF8	
V I V2	ראַן דע נטוסטעעד	AA24 AA25					
V2 V3	NC	AA25 AA26			EMB_CRC_INT		NC
V4	RXBVDD[10]	AB1	TX[10]-	AD6	I FD ACTI11/	AF12	NC
V5	TXBVDD[10]	AB2	TXVDD[10]	AD7	VDDIO33	AF13	NC
V6	TXBVSS[10]	AB3	NC	AD8	VDDIO33	AF14	NC
V21	TXBVDD[1]	AB4	VSS	AD9	LED_FAULT[10]/	AF15	LEDSYNCIN
V22	RXVSS[1]	AB5	VDD2	AD10	LED_FAULT[7]/	AF16	LED_STATUS[10]/
V23	RXBVSS[1]	AB6	VSS	AD11	NC	AF17	LED_STATUS[9]/
V24	RX[1]+	AB7	NC	AD12	VDDIO33	AF18	LED_STATUS[8]/
V25		AB8	NC	AD13	VDDIO33	AF19	
V∠0 \//1		AB9 4B10					
W2	RX[10]	AB11	I ED FAULTIRI/	AD15	VDD033	AF22	
W3	RX[10]+	AB12		AD17	NC	AF23	
W4	RXVSS[10]	AB13	REFCLK+	AD18	LED_STATUS	AF24	LED_FAULTI41/
W5	TXVSS[10]	AB14	NC	AD19	ŇĆ	AF25	LED_FAULT[2]/
				1		1	

Table 5.21 Listing by Pin Number^{1, 2} (Cont.)

^{1.} NC pins are not connected inside of the package.

Boot load options configure the polarity of the RX+/RX- signals and TX+/TX- signals for each phy through the Phy Transmit Polarity and Phy Receiver Polarity registers.

	A2	Δ3	Δ4	45	46	Δ7	48	49	A10	Δ11	A12	Δ13
	IDDT	NC	MODE[1]	CBL_ DET[11]/	CBL_ DET[10]/	CBL_ DET[9]/	CBL_ DET[8]/	NC	NC	NC	NC	NC
B1 VSS	^{B2} RX[6]-	B3 NC	B4 MODE[0]	B5 MODE[3]	B6 VSS	B7 VSS	B8 CBL_ DET[6]/	B9 NC	PLLVDD	B11 VSS	B12 VSS	B13 NC
C1	C2	C3	C4	C5	C6	C7	C8 CBL_	C9	C10	C11	C12	C13
TX[6]+	RX[6]+	SCANCLK3 D3	NC D4	MODE[2]	VDDIO33	VDDIO33	DET[7]/	NC D9	PLLVSS D10	VDDIO33 D11	VDDIO33 D12	NC D13
TX[6]-	NC	RXVDD[6]	SCANCLK1	VSS	NC	NC	NC	NC	VDDIO33	VSS	NC	NC
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13
RXVDD[7]	NC	TXVDD[6]	NC	VDDIO33	TN	NC	NC	NC	NC	NC	NC	NC
F1	F2	F3	⊧4	F5	F6	F7	-8	F9				
NC G1	RX[7]+ G2	RX[7]- G3	TXBVSS[6] G4	VSS G5	SCANCLK2 G6	NC G7	NC G8	NC	J			
TX[7]+	VSS	NC	TXVSS[6]	RXBVSS[7]	RXVSS[6]	RXBVSS[6]	VSS					
H1	H2	H3	H4	H5 RYB-	H6	H7		1				
TX[7]-	VSS	NC	TXBVSS[7]	VDD[7]	TXBVDD[6]	RXBVDD[6]						
J1 TXB-	J2	J3	J4	J5	J6							
VDD[8] K1	RXBVSS[8] K2	TXVDD[7] K3	TXVSS[7] K4	TXBVDD[7]	RXVSS[7]	ļ						
TXBVSS[8]	RXVSS[8]	RXBVDD[8]	VSS	NC								
L1	L2	L3	L4	L5								
NC M1	RX[8]+	RX[8]-	NC M4	NC M5							M12	M13
TXVSS[8]	VSS	NC	NC	NC							VSS	VDD2
RX[9]-	VSS	NC	NC	RXVDD[8]							VDD2	VSS
P1 RX[9]+	P2 TX[8]+	P3 TX[8]–	P4 RXBVSS[9]	P5 TXVDD[8]							VSS	P13 VDD2
R1 RXVDD[9]	R2 VSS	R3 VDD2	R4 RXBVDD[9]	R5 RXVSS[9]							R12 VDD2	R13 VSS
T1	T2	ТЗ	T4	Т5								
NC	VSS	VDD2	VSS	TXVSS[9]								
TY[0]				DVDVCC(101								
V1	1XBVDD[9]	1XBA22[a]	VDD2 V4	V5	V6	1						
TX[9]-	TXVDD[9]	NC	RXB- VDD[10]	TXB- VDD[10]	TXB- VSS[10]							
W1 RX-	W2	W3	W4	W5	W6 RXB-	W7						
VDD[10]	RX[10]-	RX[10]+	RXVSS[10]	TXVSS[10]	VSS[11]	VSS	Ve	1				
NC	Vee	10	RXB-	TXB-	TXB-		NC					
AA1	AA2	AA3	AA4	AA5	AA6	AA7	AA8	AA9	1			
TX[10]+	VSS	VDD2	RXVSS[11]	TXVSS[11]	RTRIM	NC	ISTWI_ ADDR[1]	NC				
AB1	AB2	AB3	AB4	AB5	AB6	AB7	AB8	AB9	AB10	AB11 LED	AB12	AB13 REF-
TX[10]-	TXVDD[10]	NC	VSS	VDD2	VSS	NC	NC	NC	NC	FAULT[8]/	NC AC12	CLK+
ACT .	ACZ	A03			A00	LED_	AC0	LED_	ACTU NOO	NERIOSS	LED_	REF-
AD1	AD2	I X[11]+ AD3	I X[11]- AD4	AD5	AD6	ACT[10]/	AD8	AD9	VSS AD10	AD11	AD12	AD13
RXVDD[11]	TXVDD[11]	NC	BSL_SD	EMB_ CRC_INT	LED_ ACT[11]/	VDDIO33	VDDIO33	LED_ FAULT[10]/	LED_ FAULT[7]/	NC	VDDIO33	VDDIO33
AE1	AE2	AE3	AE4	AE5 ISTWI	AE6 LED	AE7	AE8	AE9 LED	AE10	AE11	AE12	AE13
NC	TDIODE_P	BSL_SCL	EMB_SCL	ADDR[0]	ACT[9]/	VSS	VSS	FAULT[9]/	NC	CLK	VSS	VSS
	AF2	AF3	EMB_	LED_	LED_	LED_	AH8	LED_	AF10	AF11	AF12	AF13
	VSS	EMB_SD	DB_INT	ACT[8]/	ACT[7]/	ACT[6]/	NC	STATUS[11]/	NC	NC	NC	NC

Figure 5.2 LSISASx12 472–Pin BGA Top View¹

1. Boot load options configure the polarity of the RX+/RX- signals and TX+/TX- signals for each phy.

Figure 5.2	LSISASx12	472–Pin	BGA	Тор	View ¹	(Cont.))
------------	-----------	---------	-----	-----	-------------------	---------	---

NC NC DET[5]/ DET[5]/ NC VSS TDO TDI PROCMON ENABLE VDI033 NC RXI4]- E14 E15 E16 E17 E18 E19 E20 E21 E22 E2	NC VSS B25 B26 NC NC TX[5]+ C25 C26 RX[5]- RX[5]+ TX[5]- D25 D26 (VDD[5] NC TXVDD[5] E25 E26 RX[4]- RX[4]+ NC F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC VSS TX[4]+ H25 H26 NC VSS TX[4]+ H25 H26 NC J25 J26 X[3]- RX[3]+ NC K25 K26 K26	NC B24 NC C24 RX[5] D24 RXVDD[5] E24 RX[4] F24 NC G24 NC H24 NC J24	NC B23 NC D23 NC E23 VSS F23 RXVSS[5] G23 TXB- VD[5] H23	NC B22 NC C22 VDDIO33 E22 NC F22 NC G22 RXBVDD[5]	NC B21 NC C21 NC D21 SCAN_ ENABLE E21 VSS F21 NC G21	NC B20 VSS C20 VDDIO33 D20 PROCMON E20 TCK F20	NC B19 VSS C19 VDDIO33 D19 TDI E19 TRST/	NC B18 NC C18 NC D18 TDO E18	NC B17 NC C17 NC D17 VSS	CBL_ DET[5]/ ^{B16} CBL_DET[3]/ C16 CBL_DET[2]/ D16	NC B15 VSS C15 NC D15 CBI	NC B14 VSS C14 NC D14
B14 B15 B16 B17 B18 B18 B19 B20 B21 B23 B24 VSS VSS CBL_DET[3]/ NC NC NC VSS VSS NC RXJVD[5] D24 D23 D24 D24 D23 D24 D24 D23 D24 D24 D24 D24 D24 D24 D24 D24 D21 D23 NC RXVDD[5] NC NC NC NC	NC NC NC TX[5]+ B28 NC NC TX[5]+ C25 C26 RX[5]- RX[5]+ TX[5]- D26 D25 D26 D26 (VDD[5] NC TXVDD[5] E25 E26 RX[4]- RX[4]+ NC F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC VSS TX[4]+ H25 H26 NC J25 J26 X[3]- RX[3]+ NC K25 K26 K26	B24 NC C24 RX[5]- D24 RXVDD[5] E24 RX[4]- F24 NC G24 NC H24 NC H24 NC	NC C23 NC D23 NC E23 VSS F23 RXVSS[5] G23 TXB- VD[5] H23	NC B22 NC D22 VDDIO33 E22 NC F22 NC F22 RC RXBVDD[5]	NC B21 NC C21 SCAN_ ENABLE E21 VSS F21 NC 621	B20 VSS C20 VDDIO33 D20 PROCMON E20 TCK F20 UC	NC B19 VSS C19 VDDIO33 D19 TDI E19 TRST/	D18 TDO E18	NC B17 NC C17 NC D17 VSS	DET[3]/ B16 CBL_DET[3]/ C16 CBL_DET[2]/ D16	B15 VSS C15 NC D15 CBI	B14 VSS C14 NC
VSS VSS CBL_DET[3/ (14) NC NC VSS VSS NC NC <td>NC NC TX[5]+ C25 C26 RX[5]- RX[5]+ TX[5]- D25 D26 (VDD[5] NC TXVDD[5] E25 E26 RX[4]- RX[4]+ NC F25 G26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26</td> <td>NC C24 RX[5]- D24 RXVDD[5] E24 RX[4]- F24 NC G24 NC H24 NC J24</td> <td>NC C23 NC D23 NC E23 VSS F23 RXVSS[5] G23 TXB- VDD[5] H23</td> <td>NC C22 NC D22 VDDIO33 E22 NC F22 NC G22 RXBVDD[5]</td> <td>NC C21 NC D21 SCAN_ ENABLE E21 VSS F21 NC 621</td> <td>VSS C20 VDDIO33 D20 PROCMON E20 TCK F20</td> <td>VSS C19 VDDIO33 D19 TDI E19 TRST/</td> <td>NC C18 NC D18 TDO E18</td> <td>NC C17 NC D17 VSS</td> <td>CBL_DET[3]/ ^{C16} CBL_DET[2]/ ^{D16}</td> <td>VSS C15 NC D15 CBI</td> <td>VSS C14 NC</td>	NC NC TX[5]+ C25 C26 RX[5]- RX[5]+ TX[5]- D25 D26 (VDD[5] NC TXVDD[5] E25 E26 RX[4]- RX[4]+ NC F25 G26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26	NC C24 RX[5]- D24 RXVDD[5] E24 RX[4]- F24 NC G24 NC H24 NC J24	NC C23 NC D23 NC E23 VSS F23 RXVSS[5] G23 TXB- VDD[5] H23	NC C22 NC D22 VDDIO33 E22 NC F22 NC G22 RXBVDD[5]	NC C21 NC D21 SCAN_ ENABLE E21 VSS F21 NC 621	VSS C20 VDDIO33 D20 PROCMON E20 TCK F20	VSS C19 VDDIO33 D19 TDI E19 TRST/	NC C18 NC D18 TDO E18	NC C17 NC D17 VSS	CBL_DET[3]/ ^{C16} CBL_DET[2]/ ^{D16}	VSS C15 NC D15 CBI	VSS C14 NC
C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 NC NC CBL_DET[2J) NC NC VDDI033 VDDI033 NC NC NC RX[5]- D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 DET[4J) DET[1J) NC VSS TDO TDI PROCMON ENABLE VDDI033 NC RXVDD[5] E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 NC NC CBL_DET[0J) TMS UART_RX TRST/ TCK VSS NC VSS RX[4]- VD NC NC CBL_DET[0J) TMS UART_RX TRST/ TCK VSS NC VSS RX[4]- VDD SCAN NC NC NC NC RXBVDS[5] TXB- RX[4]-	C25 C26 RX[5]- RX[5]+ TX[5]- D25 D26 VDD[5] NC TXVDD[5] E25 E26 RX[4]- RX[4]+ NC F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC VSS TX[4]+ H25 H26 NC VSS TX[4]+ H25 H26 H26 NC TXVDD[4] TX[4]- J25 J26 K25 K25 K26 K26	C24 RX[5]- D24 RXVDD[5] E24 RX[4]- F24 NC G24 NC H24 NC J24	C23 NC D23 NC E23 VSS F23 RXVSS[5] G23 TXB- VDD[5] H23	C22 NC VDDIO33 E22 NC F22 NC G22 RXBVDD[5]	C21 NC D21 SCAN_ ENABLE E21 VSS F21 NC G21	C20 VDDIO33 D20 PROCMON E20 TCK F20	C19 VDDIO33 D19 TDI E19 TRST/	C18 NC D18 TDO E18	C17 NC D17 VSS	C16 CBL_DET[2]/ D16	C15 NC D15	C14 NC
NC NC CBL_DET[2/ NC NC VDDI033 VDDI033 NC NC NC RX[5] D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D24 DET[4// DET[1// NC VSS TDO TDI PROCMON ENABLE VDDI033 NC RXVDD[5] E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 NC NC CBL_DET[0// TMS UART_RX TRST/ TCK VSS NC VSS RX[4]- NC NC CBL_DET[0// TMS UART_RX TRST/ TCK VSS NC VSS RX[4]- VDC NC CBL_DET[0// TMS UART_TX TRST/ TCK VSS NC NC NC NC RX RX[4]- NC NC NC NC NC NC RX	RX[5]- RX[5]+ TX[5]- D25 D26 KVDD[5] NC TXVDD[5] E25 E26 RX[4]- RX[4]+ NC F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 X[3]- RX[3]+ NC K25 K26	RX[5]- D24 RXVDD[5] E24 RX[4]- F24 NC G24 NC H24 NC J24	NC D23 NC E23 VSS F23 RXVSS[5] G23 TXB- VDD[5] H23	NC VDDIO33 E22 NC F22 NC G22 RXBVDD[5]	NC 5CAN_ ENABLE E21 VSS F21 NC 621	VDDIO33 D20 PROCMON E20 TCK F20	VDDIO33 D19 TDI E19 TRST/	NC D18 TDO E18	NC D17 VSS	CBL_DET[2]/ D16	NC D15	NC
D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 CBL_ DET[4]/ CBL_ DET[1]/ NC VSS TDO TDI PROCMON ENABLE VDDI033 NC RXVDD[5] E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 NC NC CBL_DET[0)/ TMS UART_TX TRST/ TCK VSS NC VSS RX[4] VD0 OS CBL_DET[0)/ TMS UART_TX TRST/ TCK VSS NC VSS RX[4] VD0 CBL_DET[0)/ TMS UART_TX MODE NC NC NC RX RX[5] NC VD10 G19 G20 G21 G22 F23 F24 TXB TXB NC	D25 D26 KVDD[5] NC TXVDD[5] E25 E26 RX[4]+ NC F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]+ H25 H26 J26 X[3]- RX[3]+ NC K25 K26 K26	D24 RXVDD[5] E24 RX[4] F24 NC G24 NC H24 NC J24	D23 NC E23 VSS F23 RXVSS[5] G23 TXB- VDD[5] H23	D22 VDDIO33 E22 NC F22 NC G22 RXBVDD[5]	D21 SCAN_ ENABLE E21 VSS F21 NC G21	PROCMON E20 TCK F20	D19 TDI E19 TRST/	D18 TDO E18	D17 VSS	D16	D15	D14
UBL_ DET[4]// E14 UBL_ DET[1]// E15 VC VSS TDO TDI PROCMON SUANL ENABLE VDDI033 NC RXVDD[5] E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 NC NC CBL_DET[0// CBL_DET[0// NC TMS UART_RX TRST/ F18 TCK VSS NC VSS RX[4]- VIART_TX MODE NC NC NC NC RXVSS[5] NC G19 G20 G21 G22 G23 TXB- VDD[5] NC NC NC NC NC NC RXVSS[5] RXVSS[5] NC NC NC RXBVSS[5] RXVSS[5] RXVSS[4] NC VSS TXBVSS[5] TXBVSS[5] RXVSS[4] NC I24 I24 I24 VSS TXBVSS[4] VDD2 RX3 R44 IX4 IX4 IX4 IX4 IX4 IX4 IX4 IX4	KVDD[5] NC TXVDD[5] E25 E26 RX[4]- RX[4]+ NC F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]+ H25 H26 J25 J26 RX[3]- RX[3]+ NC K25 K26	RXVDD[5] E24 RX[4]- F24 NC G24 NC H24 NC J24	NC E23 VSS F23 RXVSS[5] G23 TXB- VDD[5] H23	VDDIO33 E22 NC F22 NC G22 RXBVDD[5]	SCAN_ ENABLE E21 VSS F21 NC G21	PROCMON E20 TCK F20	TDI E19 TRST/	TDO E18	VSS			CPI
E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 NC NC CBL_DET[0J/ TMS UART_RX TRST/ TCK VSS NC VSS RX[4]- VIART_RX TRST/ TCK VSS NC VSS RX[4]- VIART_TX MODE NC NC NC RX RXVSS[5] NC VIART_TX MODE NC NC NC NC RXVSS[5] NC VSS TXB- RXBVDD[5] VDD[5] NC RXVSS[5] NC RXVSS[5] NC H20 H21 H22 H23 H24 NC IXI IXII IXII IXII IXIII IXIIIII IXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	E25 E26 RX[4]- RX[4]+ NC F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26	E24 RX[4] F24 NC G24 NC H24 NC J24	E23 VSS F23 RXVSS[5] G23 TXB- VDD[5] H23	E22 NC F22 NC G22 RXBVDD[5]	E21 VSS F21 NC G21	E20 TCK F20	E19 TRST/	E18		NC	DET[1]/	DET[4]/
NC NC CBL_DET[0]/ TMS UART_RX TRST/ TCK VSS NC VSS RX[4] F18 F19 F20 F21 F22 F23 F24 UART_TX MODE NC NC NC RXVSS[5] NC UART_TX MODE C0 NC NC RXVSS[5] NC NC NC NC NC NC RXBVSD[5] VDD[5] NC NC NC NC RXBVSS[5] TXVSS[5] RXVSS[4] NC VSS TXBVSS[5] TXVSS[5] RXVSS[4] NC 124 TXB- VSS TXBVSS[5] TXVSS[5] RXVSS[4] NC 124 TXB- VSS TXBVSS[4] VDD2 RXBVSS[4] NDE 124 TXVSS[4] VD2 VSS VDD2 K24 TXVSS[4] VD2 RXBVSS[3] 124 TXVSS[3] TXVSS[3] TXVSS[4] VD2 RX24 TXVSS[4] <td>RX[4]- RX[4]+ NC F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26</td> <td>RX[4]- F24 NC G24 NC H24 NC J24</td> <td>VSS F23 RXVSS[5] G23 TXB- VDD[5] H23</td> <td>NC F22 NC G22 RXBVDD[5]</td> <td>VSS F21 NC G21</td> <td>TCK</td> <td>TRST/</td> <td></td> <td>E17</td> <td>E16</td> <td>E15</td> <td>E14</td>	RX[4]- RX[4]+ NC F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26	RX[4]- F24 NC G24 NC H24 NC J24	VSS F23 RXVSS[5] G23 TXB- VDD[5] H23	NC F22 NC G22 RXBVDD[5]	VSS F21 NC G21	TCK	TRST/		E17	E16	E15	E14
F18 F19 F20 F21 F22 F23 F24 UART_TX MODE NC NC NC RXVSS[5] NC G19 G20 G21 G22 G23 TXB- TXB- NC NC RXBVSS[5] RXBVD[5] VDD[5] NC H20 H21 H22 H23 H24 VSS TXBSS[5] TXVSS[5] RXVSS[4] NC H20 H21 H22 H23 H24 VSS TXBVSS[5] TXVSS[5] RXVSS[4] NC H20 H21 H22 H23 H24 VSS TXBVSS[5] TXVSS[5] RXVSS[4] NC H21 H22 H23 H24 VC H24 VSS TXBVSS[4] NC NC RX[2]- K24 RX9 K24 VDD2 RX84 VDD2 L24 VDD2 RX84 VSS VDD2 VSS VDD2 <td< td=""><td>F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26</td><td>F24 NC G24 H24 NC J24</td><td>F23 RXVSS[5] G23 TXB- VDD[5] H23</td><td>F22 NC G22 RXBVDD[5]</td><td>F21 NC G21</td><td>F20</td><td></td><td>UART_RX</td><td>TMS</td><td>CBL_DET[0]/</td><td>NC</td><td>NC</td></td<>	F25 F26 NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26	F24 NC G24 H24 NC J24	F23 RXVSS[5] G23 TXB- VDD[5] H23	F22 NC G22 RXBVDD[5]	F21 NC G21	F20		UART_RX	TMS	CBL_DET[0]/	NC	NC
UART_TX MODE NC NC NC RXVSS[5] NC G19 G20 G21 G22 G23 G24 TXB- NC NC RXBVSS[5] RXBVDD[5] VDD[5] NC H20 H21 H22 H23 H24 VSS TXBVSS[5] TXVSS[5] RXVSS[4] NC J21 J22 J23 J24 TXB- RXBVSS[4] RXBVDD[4] VDD1[4] RX[3]- K24 VSS TXBVSS[4] VDD2 RX84 K24 RXBVSS[4] VDD2 K24 VD2 RX84 VDD2 VSS VDD2 K24 VD2 K24 TXBVSS[3] TXBVDD[3] VDD2 K24 K24 K24 VSS VDD2 K23 K24 K24 <td>NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26</td> <td>NC G24 NC H24 NC J24</td> <td>RXVSS[5] G23 TXB- VDD[5] H23</td> <td>NC G22 RXBVDD[5]</td> <td>NC G21</td> <td></td> <td>F19 SCAN</td> <td>F18</td> <td></td> <td></td> <td></td> <td></td>	NC VSS RXVDD[4] G25 G26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26	NC G24 NC H24 NC J24	RXVSS[5] G23 TXB- VDD[5] H23	NC G22 RXBVDD[5]	NC G21		F19 SCAN	F18				
G19 G20 G21 G22 G23 G24 NC NC RXBVSS[5] RXBVD[5] VD[5] NC H20 H21 H22 H23 H24 VSS TXBSS[5] TXVSS[5] RXVSS[4] NC J21 J22 J23 J24 TXB- RXBVSS[4] VDD[4] VD[4] VD[4] VD[4] VSS TXBVSS[4] RXE TXB- RXBVSS[4] VDD[4] VD[4] VD[4] VD[4] VSS TXBVSS[4] VDD2 RXBVSS[3] TXVSS[4] VD2 K23 K24 TXVSS[4] VD2 M14 M15 VD2 M23 M24 VSS VDD2 N23 M24 NVSS TXVSS[3] TXBVD[3] VD2 N2 N23 N24 RX/2)- N24 VD2 VSS TXVSS[3] RX[2]- N24	G25 G26 NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26	G24 NC H24 NC J24	G23 TXB- VDD[5] H23	G22 RXBVDD[5]	G21	NC	MODE	UART_TX				
NC NC RXBVSS[5] RXBVDD[5] VVD[5] NC H20 H21 H22 H23 H24 VSS TXBVSS[5] TXVSS[5] RXVSS[4] NC J21 J22 J23 J24 TXB- TXB- TXB- TXB- RXBVSS[4] RXBVD[4] VD[4] RX[3]- K22 K23 K24 TXVSS[4] VDD2 TXSS VDD2 VSS VDD2 M24 TXVSS[3] TXBVDD[3] VDD2 RXBVSS[3] M14 M15 VDD2 M23 M24 TXVSS[3] TXBVDD[3] VDD2 ND2 N14 N15 VDD2 N23 N24 VDD2 VSS TXVSS[3] TXBVDD[3] VDD2 N22 V23 N24 N24 N24 TXVSS[3] TXBVDD[3] R24 N24 N20 VSS TXVSS[3] R24 N22 N23 N24 <td>NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26</td> <td>NC H24 NC J24</td> <td>TXB- VDD[5] ^{H23}</td> <td>RXBVDD[5]</td> <td></td> <td>G20</td> <td>G19</td> <td></td> <td></td> <td></td> <td></td> <td></td>	NC VSS TX[4]+ H25 H26 NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26	NC H24 NC J24	TXB- VDD[5] ^{H23}	RXBVDD[5]		G20	G19					
No No No No No No 120 H21 H22 H23 H24 VSS TXBVSS[5] TXVSS[5] RXVSS[4] NC J21 J22 J23 J24 TXB- RXBVSS[4] RXBVD[4] VDD[4] RX[3]- K22 K23 K24 TXB- TXBVSS[4] VDD2 RXBVSS[4] VDD2 K22 K23 L24 TXVSS[4] VD2 VSS VDD2 K23 L24 TXVSS[4] VSS VD2 K23 K24 TXVSS[4] VSS VDD2 M24 TXVSS[3] TXBVD0[3] VDD2 M24 TXVSS[3] TXBVD0[3] VDD2 M24 VDD2 VSS TXVSS[3] TXBVD0[3] N24 N22 N23 N24 RX[2]- N24	NC TXVDD[4] TX[4]- J25 J26 J26 X[3]- RX[3]+ NC K25 K26 K26	H24 NC J24	H23		RXBVSS[5]	NC	NC					
VSS TXBVSS[5] TXVSS[5] RXVSS[4] NC J21 J22 J23 J24 TXB-	NC TXVDD[4] TX[4]- J25 J26 RX[3]- RX[3]+ NC K25 K26	NC J24		H22	H21	H20						
M14 M15 VDD2 VSS VDD2 VSS VDD2 VSS VDD2 VZ3 124 TXB- TXB- <thtxb-< th=""> <thtxb-< th=""> <thtxb-< th=""></thtxb-<></thtxb-<></thtxb-<>	J25 J26 RX[3]- RX[3]+ NC K25 K26 K26	J24	RXVSS[4]	TXVSS[5]	TXBVSS[5]	VSS						
M14 M15 VDD2 VSS VDD2 VZS VZ2 VZ3 K24 M22 L24 L24 L24 L24 L24 VDD2 VDD2 N14 N15 VDD2 VSS VDD2 N24 N24 N22 N23 R24 R24 R25 L24 L24 TXVSS[3] TXVSS[4] VSS VDD2 N24 N24 N24 N22 V23 R24	RX[3]- RX[3]+ NC		J23	J22	J21							
M14 M15 VDD2 VSS VD2 VZ2 VZ3 VZ4 VDD2 VSS VDD2 XZ4 VD2 VD2 VD2 N14 N15 VDD2 XZ5 VD2 XZ4 VDD2 VSS VD2 XZ4 XZ4 XZ4 XVSS VD2 XZ4 XZ4 XZ4 XZ4	$\frac{RX[3]-}{K25} \qquad \qquad RX[3]+ \qquad NC$	DV(0)	TXB-		DVDVOQUU							
TXBVSS[4] VDD2 RXBVSS[3] L22 L23 L24 TXVSS[4] VSS VDD2 N14 N15 M24 VDD2 VSS VDD2 N15 N22 N23 VDD2 VSS X23 N15 N24 X2VSS[3] VDD2 VSS TXVSS[3]		KX[3]-	VDD[4] K23	KXBVDD[4]	RXBV55[4]							
M14 M15 VDD2 RXBVSS[4] VD2 I23 I24 M14 M15 VD2 XXSS[4] VSS VDD2 N14 N15 M22 M24 XVSS[3] TXBVD[3] VDD2 N14 N15 N22 N23 N24 VDD2 VSS TXVSS[3] TXBVS[3] XI2			VDD0									
TXVSS[4] VSS VDD2 M14 M15 M24 M24 VVSS VDD2 N15 VDD2 V14 N15 N22 N23 N24 VDD2 VSS TXVSS[3] TXBVSD[3] RXJ2-		RABV55[3]	VDD2	1XBV55[4]								
M14 M15 M22 M23 M24 N14 N15 N2 N24 N24 VDD2 VSS TXVSS[3] TXBVSS[3] RXI2-	VDD2 VSS TX[3]+	VDD2	VSS	TXVSS[4]						7	http	044
N14 N15 N22 N23 N24 VDD2 VSS TXVSS[3] TXBVSS[3] RX[2]-	VDD2 VSS TX[3]-] VDD2	TXBVDD[3]	RXVSS[3]							VDD2	VSS
	RX[2]- RX[2]+ NC] RX[2]-	N23 TXBVSS[3]	TXVSS[3]							VSS	VDD2
P14 P15 P22 P23 P24 VSS VDD2 RXVDD[2] NC NC	NC VSS TXVDD[3]	P24 NC	P23 NC	RXVDD[2]							VDD2	VSS
R14 R15 R22 R23 R24 VDD2 VSS NC TXVDD[2] NC	NC VSS RXBVSS[2]	R24 NC	R23 TXVDD[2]	R22 NC							R15 VSS	R14 VDD2
T22 T23 T24	T25 T26	T24	T23	T22						-	•	
NC NC TX[2]-	TX[2]- TX[2]+ RXBVDD[2]	TX[2]-	NC	NC								
U22 U23 U24	U25 U26	U24	U23	U22								
NC VSS TXVSS[2]	(VSS[2] TXBVSS[2] RXVSS[2]	TXVSS[2]	VSS	NC								
V21 V22 V23 V24	V25 V26	V24	V23	V22	V21							
TXBVDD[1] RXVSS[1] RXBVSS[1] RX[1]+	RX[1]+ RX[1]- TXBVDD[2]											
W20 W21 W22 W23 W24] RX[1]+	RXBVSS[1]	RXVSS[1]	TXBVDD[1]							
TXBVSSI01 RXVSSI01 TXBVSSI01 RXBVSSI01 RXBVD0111 NC	W25 W26] RX[1]+	RXBVSS[1] W23	RXVSS[1] W22	TXBVDD[1] W21	W20						
	NC VSS NC] RX[1]+ ^{W24} 1 NC	RXBVSS[1] W23 RXBVDD[1]	RXVSS[1] ^{W22} TXBVSS[1]	TXBVDD[1] W21 RXVSS[0]	W20 TXBVSS[0]						
Y19 Y20 Y21 Y22 Y23 Y24	W25 W26 NC VSS NC Y25 Y26] RX[1]+ ^{W24}] NC ^{Y24}	RXBVSS[1] W23 RXBVDD[1] Y23	RXVSS[1] W22 TXBVSS[1] Y22	TXBVDD[1] ^{W21} RXVSS[0] ^{Y21}	W20 TXBVSS[0] Y20	Y19					
Y19 Y20 Y21 Y22 Y23 Y24 VSS TXVSS(0) TXVSS(1) RXRVSS(1) NC	W25 W26 NC VSS NC Y25 Y26 Y26 NC VSS RXVDDI11] RX[1]+ W24] NC Y24 NC	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0]	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1]	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0]	W20 TXBVSS[0] Y20 TXVSS[0]	Y19 VSS					
Y19 Y20 Y21 Y22 Y23 Y24 VSS TXVSS[0] TXBVDD[0] TXVSS[0] NC AA18 AA19 AA20 AA21 AA22 AA23 AA24	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26	RX[1]+ W24 NC Y24 NC AA24	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21	W20 TXBVSS[0] Y20 TXVSS[0] AA20	Y19 VSS AA19	AA18				
V19 V20 V21 V22 V23 V24 VSS TXVSS[0] TXBVDD[0] TXVSS[1] RXBVSS[0] NC AA18 AA19 AA20 AA21 AA22 AA23 AA24 LED LED ED ED RXB- VDD[0] TXVD[1] TVD[0] TVD[0]	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA25] RX[1]+ W24] NC Y24] NC AA24 TY//DD[4]	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0]	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21	W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED_ EAU T22/	Y19 VSS AA19					
AA18 AA19 AA20 AA21 AA22 AA23 AA24 LED_ ACT[4]/ NC FAULT[3]/ GPI0[1] VSS VD[0] TXVSS[0] TXBVDD[0] TXVSS[0] NC AB14 IAB15 IAB16 IAB17 AB17 AB20 AB21 AB22 AB23 AA24	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26] RX[1]+ W24] NC Y24] NC AA24 TXVDD[1] AB24	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPI0[1] AB21	W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED_ FAULT[3]/ AB20	Y19 VSS AA19 NC AB19	AA18 LED_ ACT[4]/ AB18	AB17	AB16	AB15	AB14
AA18 AA19 AA20 AA21 AA22 AA23 AA24 LED_ ACT(4) NC FAULT[3] GPI0[1] VSS VD[0] TXVSS[0] TXVSS[0] TXVSS[0] TXVSS[0] NC AA18 AA19 AA20 AA21 AA22 AA23 AA24 LED_ LED_ LED_ AB16 AB17 AB19 AB20 AB21 AB22 AB23 AB24 LED_ LED_ LED_ LED_ LED_ LED_ LED_ DUD10 TXVDD[1] TXVDD[1]	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ AB25 AB26] RX[1]+ W24] NC Y24] NC AA24 TXVDD[1] AB24 	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPI0[1] AB21 LED_	W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED_ FAULT[3]/ AB20	V19 VSS AA19 NC AB19	AA18 LED_ ACT[4]/ AB18 LED_	AB17 LED_	AB16	AB15 LED	AB14
AB15 AB16 AB17 AB17 LED_ LED_ ACT[4] AB17 AB16 AB17 LED_ LED_ ACT[4] AB19 AB20 AB21 AB22 AB23 AB24 NC STATUS[7] NC STATUS[7] NC FAULT[3] GPI0[1] VSS VDD[0] TXVSS[0] TXVDD[1] NC STATUS[7] NC STATUS[7] NC RXB- RXB- VDD[0] TXVDD[1] NC STATUS[7] NC STATUS[7] NC RX[0]+ RXD- AC72 AB23 AB24	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 3X[0]+ RX[0]- TX[1]-] RX[1]+ W24] NC Y24] NC AA24 TXVDD[1] AB24 RX[0]+	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 NC AC23	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPI0[1] AB21 LED_ FAULT[1]/ AC21	W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED_ FAULT[3]/ AB20 NC AC20	V19 VSS AA19 NC AB19 NC AC19	AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18	AB17 LED_ STATUS[3]/	AB16 NC	AB15 LED_ STATUS[7]/	AB14 NC
AB14 AB15 AB16 AB17 LED_ LED_ NC STATUS[3] VI I AI AI <th< td=""><td>W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 3X[0]+ RX[0]- TX[1]- 4 AC25 AC26</td><td>] RX[1]+ W24] NC] 224] NC AA24 TXVDD[1] AB24 RX[0]+ AC24</td><td>RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 NC AC23</td><td>RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22</td><td>TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPIO[1] AB21 LED_ FAULT[1]/ AC21</td><td>W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED_ FAULT[3]/ AB20 NC AC20</td><td>V19 VSS AA19 NC AB19 NC AC19</td><td>AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18</td><td>AB17 LED_ STATUS[3]/ AC17</td><td>AB16 NC AC16</td><td>AB15 LED_ STATUS[7]/ AC15</td><td>AB14 NC AC14</td></th<>	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 3X[0]+ RX[0]- TX[1]- 4 AC25 AC26] RX[1]+ W24] NC] 224] NC AA24 TXVDD[1] AB24 RX[0]+ AC24	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 NC AC23	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPIO[1] AB21 LED_ FAULT[1]/ AC21	W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED_ FAULT[3]/ AB20 NC AC20	V19 VSS AA19 NC AB19 NC AC19	AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18	AB17 LED_ STATUS[3]/ AC17	AB16 NC AC16	AB15 LED_ STATUS[7]/ AC15	AB14 NC AC14
AB14 AB15 AB16 AB17 AB17 AB19 AB19 AB20 AB21 AB22 AB23 AB24 NC STATUS[7] NC STATUS[7] NC FAULT[1] VUI V23 V24 V23 V24 V23 V24 V23 V24 V23 V24 V24 V25 V23 V24 V24<	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 RX[0]+ RX[0]- TX[1]- 4 AC25 AC26 [X[0]- TX[0]+ NC] RX[1]+ W24 Y24 1 NC AA24 TXVDD[1] AB24 RX[0]+ AC24 TX[0]- H20-	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 NC AC23 GPIO[3]	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22 VSS	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPIO[1] AB21 LED_ FAULT[1]/ AC21 NC	W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED_ FAULT[3]/ AB20 NC AC20 NC	V19 VSS AA19 NC AB19 NC AC19 NC	AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18 NC ID10	AB17 LED_ STATUS[3]/ AC17 VDDIO33	AB16 NC AC16 VSS	AB15 LED_ STATUS[7]/ AC15 NC	AB14 NC AC14 NC
AB16 AB16 AB16 AB17 AB18 AB19 AB20 AB21 AB22 AB23 AB24 NC STATUS[7] NC STATUS[7] NC STATUS[7] NC RXB- NC STATUS[7] NC STATUS[7] NC STATUS[7] NC RXB- NC NC NC STATUS[7] NC STATUS[7] NC RX[0]+ AC14 AC15 AC16 AC17 AC18 AC19 AC20 AC21 AC22 AC23 AC24 NC NC VSS VDDIO33 NC NC NC NC AC24 AC24 <td>W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 RX[0]+ RX[0]- TX[1]- 4 AC25 AC26 FX[0]- TX[0]+ NC 4 AD25 AD26</td> <td>] RX[1]+ W24] NC Y24 AA24 TXVDD[1] AB24 RX[0]+ AC24 TX[0]- AD24</td> <td>RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 NC AC23 GPI0[3] LED</td> <td>RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22 VSS AD22 LED</td> <td>TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPIO[1] AB21 LED_ FAULT[1]/ AC21 NC AD21</td> <td>W20 TXBVSS[0] Y20 TXVSS[0] LED_ FAULT[3]/ AB20 NC AC20 NC AD20</td> <td>V19 VSS AA19 NC AB19 NC AC19 NC AD19</td> <td>AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18 NC AD18 LED</td> <td>AB17 LED_ STATUS[3]/ AC17 VDDIO33 AD17</td> <td>AB16 NC AC16 VSS AD16</td> <td>AB15 LED_ STATUS[7]/ AC15 NC AD15</td> <td>AB14 NC AC14 NC AD14</td>	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 RX[0]+ RX[0]- TX[1]- 4 AC25 AC26 FX[0]- TX[0]+ NC 4 AD25 AD26] RX[1]+ W24] NC Y24 AA24 TXVDD[1] AB24 RX[0]+ AC24 TX[0]- AD24	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 NC AC23 GPI0[3] LED	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22 VSS AD22 LED	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPIO[1] AB21 LED_ FAULT[1]/ AC21 NC AD21	W20 TXBVSS[0] Y20 TXVSS[0] LED_ FAULT[3]/ AB20 NC AC20 NC AD20	V19 VSS AA19 NC AB19 NC AC19 NC AD19	AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18 NC AD18 LED	AB17 LED_ STATUS[3]/ AC17 VDDIO33 AD17	AB16 NC AC16 VSS AD16	AB15 LED_ STATUS[7]/ AC15 NC AD15	AB14 NC AC14 NC AD14
AB15 AB16 AB17 AB18 AA19 AA20 AA21 AA22 AA23 AA24 NC STATUS[7] NC STATUS[7] NC	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 RX[0]+ RX[0]- TX[1]- 4 AC25 AC26 FX[0]- TX[0]+ NC 4 AD25 AD26 iPIO[0] NC RXVDD[0]] RX[1]+ W24] NC Y24 AA24 TXVDD[1] AB24 RX[0]+ AC24 TX[0]- AD24 GPIO[0]	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 AC23 GPI0[3] AD23 LED_ FAULT[0]/	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22 VSS AD22 LED_ ACT[1]/	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPIO[1] AB21 LED_ FAULT[1]/ AC21 NC AD21 VDDIO33	W20 TXBVSS[0] Y20 TXVSS[0] LED_ FAULT[3]/ AB20 NC AC20 NC AD20 VDDIO33	Y19 VSS AA19 NC AB19 NC AC19 AC19 NC AD19 NC	AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18 NC AD18 LED_ STATUS[5]/	AB17 LED_ STATUS[3]/ AC17 VDDIO33 AD17 NC	AB16 NC AC16 VSS AD16 VDDIO33	AB15 LED_ STATUS[7]/ AC15 NC AD15 VDDIO33	AB14 NC AC14 NC AD14 RESET/
AB14 AB15 AB16 AB17 AB17 <th< td=""><td>W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 RX[0]+ RX[0]- TX[1]- 4 AC25 AC26 TX[0]- TX[0]+ NC 4 AD25 AD26 iPIO[0] NC RXVDD[0] 4 AE25 AE26</td><td>RX[1]+ W24 NC Y24 NC AA24 TXVDD[1] AB24 RX[0]+ AC24 TX[0]- AD24 GPIO[0] AE24</td><td>RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 NC AC23 GPI0[3] LED_ FAULT[0]/ LED_ FAULT[0]/</td><td>RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22 VSS AD22 LED_ ACT[1)/ AE22 LED_ LED_</td><td>TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPIO[1] AB21 LED_ FAULT[1]/ AC21 NC AD21 VDDIO33 AE21</td><td>W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED_FAULT[3]/ AB20 AC20 NC AD20 VDDIO33 AE20</td><td>Y19 VSS AA19 NC AB19 AC19 AC19 NC AD19 NC AE19</td><td>AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18 NC AD18 LED_ STATUS[5]/ AE18</td><td>AB17 LED_ STATUS[3]/ AC17 VDDIO33 AD17 NC AE17 LEDSYNC</td><td>AB16 NC AC16 VSS AD16 VDDIO33 AE16</td><td>AB15 LED_ STATUS[7]/ AC15 NC AD15 VDDIO33 AE15</td><td>AB14 NC AC14 NC AD14 RESET/ AE14</td></th<>	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 RX[0]+ RX[0]- TX[1]- 4 AC25 AC26 TX[0]- TX[0]+ NC 4 AD25 AD26 iPIO[0] NC RXVDD[0] 4 AE25 AE26	RX[1]+ W24 NC Y24 NC AA24 TXVDD[1] AB24 RX[0]+ AC24 TX[0]- AD24 GPIO[0] AE24	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 NC AC23 GPI0[3] LED_ FAULT[0]/ LED_ FAULT[0]/	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22 VSS AD22 LED_ ACT[1)/ AE22 LED_ LED_	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPIO[1] AB21 LED_ FAULT[1]/ AC21 NC AD21 VDDIO33 AE21	W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED_FAULT[3]/ AB20 AC20 NC AD20 VDDIO33 AE20	Y19 VSS AA19 NC AB19 AC19 AC19 NC AD19 NC AE19	AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18 NC AD18 LED_ STATUS[5]/ AE18	AB17 LED_ STATUS[3]/ AC17 VDDIO33 AD17 NC AE17 LEDSYNC	AB16 NC AC16 VSS AD16 VDDIO33 AE16	AB15 LED_ STATUS[7]/ AC15 NC AD15 VDDIO33 AE15	AB14 NC AC14 NC AD14 RESET/ AE14
AB14 AB15 AB16 AB17 AB18 AB19 AA20 AA21 AA22 RXB- VDD[1] TXVDD[1] TXVDD[1] <td>W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 RX[0]+ RX[0]- TX[1]- 4 AC25 AC26 TX[0]+ NC TX[0]+ 4 AD25 AD26 iPIO[0] NC RXVDD[0] 4 AE25 AE26 iPIO[2] TXVDD[0] VSS</td> <td>RX[1]+ W24 Y24 NC AA24 TXVDD[1] AB24 RX[0]+ AC24 TX[0]- AD24 GPIO[0] AE24</td> <td>RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 AC23 GPI0[3] AD23 LED_ FAULT[0]/ AE23 FAULT[0]/ AE23</td> <td>RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22 VSS AD22 LED_ ACT[1]/ AE22 LED_ ACT[2]/</td> <td>TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPI0[1] AB21 LED_ FAULT[1]/ AC21 NC AD21 VDDIO33 AE21 VSS</td> <td>W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED FAULT[3]/ AB20 NC AC20 VDDIO33 AE20 VSS</td> <td>Y19 VSS AA19 NC AB19 AC19 AC19 NC AD19 NC AE19 STATUS[4]/</td> <td>AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18 NC AD18 LED_ STATUS[5]/ AE18 LED_ STATUS[6]/</td> <td>AB17 LED_ STATUS[3]/ AC17 VDDIO33 AD17 NC AE17 LEDSYNC- OUT</td> <td>AB16 NC AC16 VSS AD16 VDDIO33 AE16 VSS</td> <td>AB15 LED_ STATUS[7]/ AC15 NC AD15 VDDIO33 AE15 VSS</td> <td>AB14 NC AC14 NC AD14 RESET/ AE14 NC</td>	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 RX[0]+ RX[0]- TX[1]- 4 AC25 AC26 TX[0]+ NC TX[0]+ 4 AD25 AD26 iPIO[0] NC RXVDD[0] 4 AE25 AE26 iPIO[2] TXVDD[0] VSS	RX[1]+ W24 Y24 NC AA24 TXVDD[1] AB24 RX[0]+ AC24 TX[0]- AD24 GPIO[0] AE24	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 AC23 GPI0[3] AD23 LED_ FAULT[0]/ AE23 FAULT[0]/ AE23	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22 VSS AD22 LED_ ACT[1]/ AE22 LED_ ACT[2]/	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPI0[1] AB21 LED_ FAULT[1]/ AC21 NC AD21 VDDIO33 AE21 VSS	W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED FAULT[3]/ AB20 NC AC20 VDDIO33 AE20 VSS	Y19 VSS AA19 NC AB19 AC19 AC19 NC AD19 NC AE19 STATUS[4]/	AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18 NC AD18 LED_ STATUS[5]/ AE18 LED_ STATUS[6]/	AB17 LED_ STATUS[3]/ AC17 VDDIO33 AD17 NC AE17 LEDSYNC- OUT	AB16 NC AC16 VSS AD16 VDDIO33 AE16 VSS	AB15 LED_ STATUS[7]/ AC15 NC AD15 VDDIO33 AE15 VSS	AB14 NC AC14 NC AD14 RESET/ AE14 NC
AB14 AB15 AB16 AB17 AB18 AB19 AA20 AA21 AA22 AA23 AA24 NC STATUS[7] NC FAULT[3] GPI0[1] VSS TXVSS[0] TXUSVS[0] TXVSS[0] TXVSS[0] NC AA18 AA19 AA20 AA21 AA22 AA23 AA24 RXB- VDD[0] TXVSVS[0] TXVDD[1] TXVD	W25 W26 NC VSS NC Y25 Y26 NC VSS RXVDD[1] 4 AA25 AA26 (VDD[1] NC TX[1]+ 4 AB25 AB26 RX[0]+ RX[0]- TX[1]- 4 AC25 AC26 TX[0]+ NC 4 4025 AD26 IPIO[0] NC RXVDD[0] 4 AE25 AE26 IPIO[2] TXVDD[0] VSS	RX[1]+ W24 Y24 NC AA24 TXVDD[1] AB24 RX[0]+ AC24 TX[0]- AD24 GPIO[0] AE24 GPIO[0] AE24	RXBVSS[1] W23 RXBVDD[1] Y23 RXBVSS[0] AA23 RXB- VDD[0] AB23 NC AC23 GPI0[3] LED_ FAULT[0]/ AE23 LED_ FAULT[0]/ AE23	RXVSS[1] W22 TXBVSS[1] Y22 TXVSS[1] AA22 VSS AB22 VDDIO33 AC22 VSS AD22 LED_ ACT[1]/ AE22 LED_ ACT[2]/ AF22 LED_ ACT[2]/	TXBVDD[1] W21 RXVSS[0] Y21 TXBVDD[0] AA21 GPI0[1] AB21 LED_ FAULT[1]/ AC21 NC AD21 VDDI033 AE21 VSS AF21 FD	W20 TXBVSS[0] Y20 TXVSS[0] AA20 LED	V19 VSS AA19 NC AB19 NC AC19 NC AC19 NC AE19 LED_ STATUS[4]/ AF19 D	AA18 LED_ ACT[4]/ AB18 LED_ STATUS[0]/ AC18 NC AD18 LED_ STATUS[5]/ AF18 LED_ STATUS[6]/ AF18 STATUS[6]/	AB17 LED_ STATUS[3]/ AC17 VDDIO33 AD17 NC AE17 LEDSYNC- OUT AF17 LEDSYNC-	AB16 NC AC16 VSS AD16 VDDIO33 AE16 VSS AF16 D	AB15 LED	AB14 NC AC14 NC AD14 RESET/ AE14 NC AF14

1. Boot load options configure the polarity of the RX+/RX- signals and TX+/TX- signals for each phy.

5.4 Package Diagram

The LSISASx12 is packaged in a 472-EPBGA-T package with a 27 mm x 27 mm footprint and 1.0 mm ball pitch. The package code is UO. The package drawing number is JZ02-000015-00. Figure 5.3 provides the package diagram for the LSISASx12.

Figure 5.3 472-Pin EPBGA-T (UO) Mechanical Drawing (Sheet 1 of 3)

Important: For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code UO.

Figure 5.3 472-Pin EPBGA-T (UO) Mechanical Drawing (Sheet 2 of 3) (Bottom View)

Important:

For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code UO.

Figure 5.3 472-Pin EPBGA-T (UO) Mechanical Drawing (Sheet 3 of 3) (Bottom View)

nportant: For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code UO.

Appendix A Register Summary

Table A.1 through Table A.9 provide a register summary.

Table A.1 Configuration	Manager	Config	Register	Мар
-------------------------	---------	--------	----------	-----

Register Name	Offset	Page
LSISASx12 Expander SAS Address High	0x0000	4-6
LSISASx12 Expander SAS Address Low	0x0004	4-6
Vendor Identifier High	0x0008	4-7
Vendor Identifier Low	0x000C	4-8
Product Identifier 3	0x0010	4-8
Product Identifier 2	0x0014	4-9
Product Identifier 1	0x0018	4-9
Product Identifier 0	0x001C	4-10
Product Revision	0x0020	4-10
Component Vendor ID High	0x0024	4-11
Component Vendor ID Low	0x0028	4-11
Component ID and Revision	0x002C	4-11
Vendor Specific Dword 1	0x0030	4-12
Vendor Specific Dword 0	0x0034	4-12
Report General 1	0x0038	4-13
Report General 2	0x003C	4-13
Spin-up Control	0x0040	4-14
Phy Configuration	0x0044	4-15

Register Name	Offset	Page
Phy Transmit Polarity	0x004C	4-15
Phy Receiver Polarity	0x0050	4-16
Boot Control and Status	0x0090	4-16
Reserved	-	-
API2C Global Control	0x4000	4-17
API2C Interrupt Status	0x4008	4-18
API2C Interrupt Enable	0x4010	4-19
API2C Wait Timer Control	0x4018	4-19
API2C t _{TIMEOUT} Control	0x4020	4-20
API2C t _{LOW} Control	0x4028	4-21
API2C Timer Clock Divider Control	0x4038	4-22
API2C Monitor	0x4040	4-23
API2C Soft Reset	0x4048	4-24
API2C Master Command	0x4050	4-25
API2C Receive Transfer Length	0x4058	4-26
API2C Transmit Transfer Length	0x4060	4-27
API2C Address Register 1	0x4068	4-28
API2C Address Register 2	0x4070	4-29
API2C Data	0x4078	4-29
API2C Transmit FIFO Status	0x4080	4-30
API2C Receive FIFO Status	0x4088	4-30
API2C Master Interrupt Enable	0x4090	4-31
API2C Master Interrupt Status	0x4098	4-32
API2C Transmit Bytes Transferred	0x40A0	4-35
API2C Receive Bytes Transferred	0x40A8	4-36

 Table A.1
 Configuration Manager Config Register Map (Cont.)

Register Name	Offset	Page
API2C SCL High Period	0x4100	4-36
API2C SCL Low Period	0x4108	4-37
API2C Spike Filter Control	0x4110	4-38
API2C SDA Setup Time	0x4118	4-39
API2C SDA Hold Time	0x4120	4-40
Reserved	-	-
LED Group Control	0x8000	4-41
Group 0 GPIO Control	0x8004	4-42
Group 1 GPIO Control	0x8008	4-43
Group 2 GPIO Control	0x800C	4-43
Group 3 GPIO Control	0x8010	4-44
Group 4 GPIO Control	0x8014	4-44
Group 0 GPIO Value	0x8018	4-45
Group 1 GPIO Value	0x801C	4-45
Group 2 GPIO Value	0x8020	4-46
Group 3 GPIO Value	0x8024	4-46
Group 4 GPIO Value	0x8028	4-47
LED Blinker Definition 1	0x8030	4-47
LED Blinker Definition 2	0x8034	4-48
LED Blinker Definition 3	0x8038	4-49
Group 0 Override	0x8040	4-50
Group 1 Override	0x8048	4-51
Group 2 Override	0x8050	4-52
Group 3 Override	0x8058	4-53
Group 4 Override	0x8060	4-54

 Table A.1
 Configuration Manager Config Register Map (Cont.)

Register Name	Offset	Page
Reserved	-	-
SIO Configuration	0xC000	4-55
SIO Receive 0	0xC004	4-57
SIO Receive 1	0xC008	4-58
SIO General Purpose Receive 0	0xC00C	4-58
SIO General Purpose Receive 1	0xC010	4-59
SIO Output Data Control 0	0xC014	4-59
SIO Output Data Control 1	0xC018	4-63
SIO Output Data Control 2	0xC01C	4-64
SIO General Purpose Output Data 0	0xC020	4-66
SIO General Purpose Output Data 1	0xC024	4-66
Reserved	-	-
SIO Pattern Definition 0	0xC040	4-67
SIO Pattern Definition 1	0xC044	4-67
SIO Pattern Definition 2	0xC048	4-68
SIO Pattern Definition 3	0xC04C	4-69
Activity Stretch Control	0xC050	4-69
SIO Adapter Control	0xC054	4-71

Table A.1 Configuration Manager Config Register Map (Cont.)

 Table A.2
 SMP Target Register Map

Register Name	Offset	Page
LSISASx12 Expander SAS Address High	0x00000	4-73
LSISASx12 Expander SAS Address Low	0x00004	4-73
Remote Routing Table Configuration	0x00020-0x0004C	4-73

Register Name	Offset	Page
Identify Address Information	0x0004	4-76
Identify SAS Address High	0x0010	4-78
Identify SAS Address Low	0x0014	4-78
Discover Information 1	0x0044	4-78
Discover Information 2 – SAS Address High	0x0048	4-80
Discover Information 3 – SAS Address Low	0x004C	4-80
Discover Information 4 – Attached SAS Address High	0x0050	4-81
Discover Information 5 – Attached SAS Address Low	0x0054	4-81
Discover Information 6 – Attached Phy Identifier	0x0058	4-81
Discover Information 7 – Reserved	0x005C	4-82
Discover Information 8 – Link Rates	0x0060	4-82
Discover Information 9 – Routing Attributes	0x0064	4-83
Discover Information 10 – Vendor Specific	0x0068	4-83
Report SATA Phy ID	0x0070	4-84
SATA Target Address High	0x0078	4-84
SATA Target Address Low	0x007C	4-85
SATA Dev2Host FIS0	0x0080	4-85
SATA Dev2Host FIS1	0x0084	4-86
SATA Dev2Host FIS2	0x0088	4-86
SATA Dev2Host FIS3	0x008C	4-87
Affiliated STP Initiator Address High	0x0098	4-87
Affiliated STP Initiator Address Low	0x009C	4-88
Phy Control Link Rates	0x00A0	4-88

Table A.3 SPhynx Link Register Map

Register Name	Offset	Page
Phy Control PPTOV	0x00A4	4-89
Connection Information	0x00AC	4-89
Broadcast Change High	0x00C0	4-90
Broadcast Change Low	0x00C4	4-90
Broadcast SES High	0x00C8	4-91
Broadcast SES Low	0x00CC	4-91
SATA Nexus Loss Timeout	0x0108	4-92
SATA Connection Mode	0x0120	4-93

Table A.3 SPhynx Link Register Map (Cont.)

Table A.4Phy Register Map

Register Name	Offset	Page
Reserved	-	-
SMP Command	0x0010	4-94
Reserved	-	-
Error Log Invalid Word	0x0018	4-95
Error Log Display Error	0x001C	4-95
Error Log Loss of Sync	0x0020	4-96
Error Log Reset Sequence Fail	0x0024	4-96
Test Register	0x0028	4-97
Reserved	-	-
Custom Jitter	0x0034	4-98
Reserved	-	_

Register Name	Offset	Page
Reserved	-	-
Expander SAS Address High	0x0010	4-101
Expander SAS Address Low	0x0014	4-101
Reserved	-	-
Discover Information	0x0044	4-101
Discover Information 2 – SAS Address High	0x0048	4-103
Discover Information 3 – SAS Address Low	0x004C	4-104
Discover Information 4 – Attached SAS Address High	0x0050	4-104
Discover Information 5 – Attached SAS Address Low	0x0054	4-104
Discover Information 6 – Attached Phy Identifier	0x0058	4-105
Discover Information 7 – Reserved	0x005C	4-105
Discover Information 8 – Link Rates	0x0060	4-105
Discover Information 9 - Routing Attributes	0x0064	4-106
Discover Information 10 – Vendor Specific	0x0068	4-107
Reserved	-	_
Phy SATA Phy ID	0x0070	4-107
Reserved	-	-
STP Target SAS Address High	0x0078	4-108
STP Target SAS Address Low	0x007C	4-108
SATA Dev2Host Reset FIS0	0x0080	4-108
SATA Dev2Host Reset FIS1	0x0084	4-109
SATA Dev2Host Reset FIS2	0x0088	4-110
SATA Dev2Host Reset FIS3	0x008C	4-110

Table A.5 STP Target Register Map

Register Name	Offset	Page
Reserved	-	_
Affiliated STP Initiator Address High	0x0098	4-111
Affiliated STP Initiator Address Low	0x009C	4-111
Phy Control Link Rates	0x00A0	4-111
Phy Control PPTOV	0x00A4	4-112
Reserved	-	-
Connection Information	0x00AC	4-112
Reserved	-	-
SATA Nexus Loss Timeout	0x0108	4-113
Reserved	-	-
Last H2D Register FIS Received Dword 0	0x0200	4-115
Last H2D Register FIS Received Dword 1	0x0204	4-115
Last H2D Register FIS Received Dword 2	0x0208	4-116
Last H2D Register FIS Received Dword 3	0x020C	4-116
Reserved	-	-
STP Connection Control	0x0220	4-117
Reserved	-	-
SMP Phy Operation	0x0310	4-117
Reserved	-	-
Error Log – Invalid DWord	0x0318	4-118
Error Log – I ² C CRC Error Count	0x031C	4-119
Error Log – Unexpected SYNC Count	0x0320	4-120
Error Log – R_ERR Transmitted/Received Count	0x0324	4-120

Table A.5 STP Target Register Map (Cont.)

Register Name	Offset	Page
Reserved	0x328	-
STP Error Status	0x032C	4-121
Reserved	0x330–3FF	_

Table A.5 STP Target Register Map (Cont.)

Table A.6 ECM Phy Register Map

Register Name	Offset	Page
Phy 0 ECM Config Register	0x00000	4-127
Phy 0 Remote Bank Enable	0x00004	4-128
Reserved	0x00008-0x0000C	-
Phy 1 ECM Config Register	0x00010	4-127
Phy 1 Remote Bank Enable	0x00014	4-128
Reserved	0x00018-0x0001C	-
Phy 2 ECM Config Register	0x00020	4-127
Phy 2 Remote Bank Enable	0x00024	4-128
Reserved	0x00028-0x0002C	-
Phy 3 ECM Config Register	0x00030	4-127
Phy 3 Remote Bank Enable	0x00034	4-128
Reserved	0x00038-0x0003C	-
Phy 4 ECM Config Register	0x00040	4-127
Phy 4 Remote Bank Enable	0x00044	4-128
Reserved	0x00048-0x00042C	-
Phy 5 ECM Config Register	0x00050	4-127
Phy 5 Remote Bank Enable	0x00054	4-128
Reserved	0x00058-0x0005C	-
Phy 6 ECM Config Register	0x00060	4-127

Register Name	Offset	Page
Phy 6 Remote Bank Enable	0x00064	4-128
Reserved	0x00068–0x0006C	-
Phy 7 ECM Config Register	0x00070	4-127
Phy 7 Remote Bank Enable	0x00074	4-128
Reserved	0x00078–0x0007C	-
Phy 8 ECM Config Register	0x00080	4-127
Phy 8 Remote Bank Enable	0x00084	4-128
Reserved	0x00088–0x0008C	-
Phy 9 ECM Config Register	0x00090	4-127
Phy 9 Remote Bank Enable	0x00094	4-128
Reserved	0x00098-0x0009C	-
Phy 10 ECM Config Register	0x000A0	4-127
Phy 10 Remote Bank Enable	0x000A4	4-128
Reserved	0x000A8-0x000AC	-
Phy 11 ECM Config Register	0x000B0	4-127
Phy 11 Remote Bank Enable	0x000B4	4-128
Reserved	0x00058-0x0005C	-
STP Target ECM Config Register	0x000C0	4-127
STP Target Remote Bank Enable	0x000C4	4-128
Reserved	0x00058-0x0005C	-
SMP Target ECM Config Register	0x000D0	4-127
SMP Target Remote Bank Enable	0x000D4	4-128
Reserved	0x000D8-0x01FFF	-
Global Config	0x02000	4-129

Table A.6 ECM Phy Register Map (Cont.)

Table A.7 provides the offsets of each remote bank in the expander connection manager register map. The register space for each Remote Bank [NN] Config is a 96-byte space with the format defined in Table A.8. The format and register definitions for each remote bank are identical with the exception of a differing offset.

Register Name	Offset	Page
Remote Bank 00 Config	0x10000	
Remote Bank 01 Config	0x100C0	
Remote Bank 02 Config	0x10180	
Remote Bank 03 Config	0x10240	
Remote Bank 04 Config	0x10300	
Remote Bank 05 Config	0x103C0	4-129
Remote Bank 06 Config	0x10480	
Remote Bank 07 Config	0x10540	
Remote Bank 08 Config	0x10600	
Remote Bank 09 Config	0x106C0	
Remote Bank 10 Config	0x10780	
Remote Bank 11 Config	0x10840	
Remote Bank 12 Config	0x10900	1
Reserved	0x109C0-0x1FFFF	

Table A.7 ECM Remote Bank Register Map

Table A.8 ECM Remote Bank Register Map

Register Name	Offset	Page
Remote Bank NN SAS Address High 0	0x00	4-132
Remote Bank NN SAS Address Low 0	0x04	4-132
Remote Bank NN Config 0	0x08	4-133
Reserved	0x0C	-

Register Name	Offset	Page
Remote Bank NN SAS Address High 1	0x10	4-132
Remote Bank NN SAS Address Low 1	0x14	4-132
Remote Bank NN Config 1	0x18	4-133
Reserved	0x1C	-
Remote Bank NN SAS Address High 2	0x20	4-132
Remote Bank NN SAS Address Low 2	0x24	4-132
Remote Bank NN Config 2	0x28	4-133
Reserved	0x2C	-
Remote Bank NN SAS Address High 3	0x030	4-132
Remote Bank NN SAS Address Low 3	0x34	4-132
Remote Bank NN Config 3	0x38	4-133
Reserved	0x3C	-
Remote Bank NN SAS Address High 4	0x40	4-132
Remote Bank NN SAS Address Low 4	0x44	4-132
Remote Bank NN Config 4	0x048	4-133
Reserved	0x4C	-
Remote Bank NN SAS Address High 5	0x50	4-132
Remote Bank NN SAS Address Low 5	0x54	4-132
Remote Bank NN Config 5	0x58	4-133
Reserved	0x5C	-
Remote Bank NN SAS Address High 6	0x60	4-132
Remote Bank NN SAS Address Low 6	0x64	4-132
Remote Bank NN Config 6	0x68	4-133
Reserved	0x6C	-
Remote Bank NN SAS Address High 7	0x70	4-132

Table A.8 ECM Remote Bank Register Map (Cont.)
Register Name	Offset	Page
Remote Bank NN SAS Address Low 7	0x74	4-132
Remote Bank NN Config 7	0x78	4-133
Reserved	0x7C	-
Remote Bank NN SAS Address High 8	0x80	4-132
Remote Bank NN SAS Address Low 8	0x84	4-132
Remote Bank NN Config 8	0x88	4-133
Reserved	0x8C	-
Remote Bank NN SAS Address High 9	0x90	4-132
Remote Bank NN SAS Address Low 9	0x94	4-132
Remote Bank NN Config 9	0x98	4-133
Reserved	0x9C	-
Remote Bank NN SAS Address High 10	0xA0	4-132
Remote Bank NN SAS Address Low 10	0xA4	4-132
Remote Bank NN Config 10	0xA8	4-133
Reserved	0xAC	-
Remote Bank NN SAS Address High 11	0xB0	4-132
Remote Bank NN SAS Address Low 11	0xB4	4-132
Remote Bank NN Config 11	0xB8	4-133
Reserved	0xBC	_

Table A.8 ECM Remote Bank Register Map (Cont.)

Register Name	Offset	Page
Data FIS RAM	0x000–0x41F	_
Reserved	0x420-0x4FF	-
STP - SEP Doorbell	0x500	4-134
SEP - STP Doorbell	0x501	4-137
STP - SEP Transfer Length	0x502	4-138
SEP - STP Transfer Length	0x503	4-138
Transfer Attributes	0x504	4-139
Command Status	0x505	4-139
Error Detection Control	0x506	4-140
Error Status	0x507	4-141
Actual CRC	0x508	4-142
Expected CRC	0x509	4-143
Reserved	0x508–0x5FF	-
RR_Command0 - RR_Command3	0x600 - 0x603	4-143
RR_Data0 - RR_Data7	0x604 - 0x60B	4-144
RR_Control	0x60C	4-144
Reserved	0x60D–0xFFF	-

Table A.9 EMB Slave Register Map

•

Appendix B Example Code for API2C Interface and Serial EEPROM

The following code examples demonstrate how to initialize the API2C interface, read from the serial EEPROM, and write to the serial EEPROM. The read and write examples perform a 32-byte page read and 32-byte page write. This code assumes the use of a serial EEPROM that supports 16-bit addressing and is able to write a 32-byte page.

B.1 Initialize API2C Interface

This section provides example code for initializing the API2C interface.

```
// reset
write(SOFT RESET, 0x1);
do {
   temp = read(SOFT_RESET);
} while (temp & 0x1);
// Flush TX FIFO
write(MASTER_COMMAND, 0x7);
write(MASTER COMMAND, 0xF);
// Enable Master
write(GLOBAL_CONTROL, 0x1);
// Enable Master Interrupt
write(INTERRUPT_ENABLE, 0x1);
// Enable individual interrupt sources
write(MASTER_INTERRUPT_ENABLE, 0xFFF0);
// Set the clock timings
write(SCL_HIGH_PERIOD, 0x0176);
write(SCL_LOW_PERIOD, 0x0176);
write(SDA SETUP TIME, 0x002D);
write(SDA_HOLD_TIME, 0x0026);
write(SPIKE_FILTER_CONTROL, 0x0005);
```

```
write(WAIT_TIMER, 0xCE4D);
write(TIMER_CLOCK_DIVIDER_CONTROL, 0x000D);
// Flush any data in the RX FIFO
depth = read(RX_FIFO_STATUS);
for (i=0; i<depth; i++)
{
    read(DATA);
}1
```

B.2 Write a 32-Byte Page to the Serial EEPROM

This section provides example code for writing a 32-byte page to the serial EEPROM.

```
// transferring a total of 34 (decimal) bytes
// 2 for 16-bit serial EEPROM address plus 32 bytes
// of data
Write(TRANSMIT_TRANSFER_LENGTH, 34);
Write(RECEIVE TRANSFER LENGTH, 0x00);
// Control byte for serial EEPROM
Write(ADDRESS REGISTER 1, 0xA0);
// set to automatic transfer mode
Write(MASTER COMMAND, 0x01);
Write(MASTER_COMMAND, 0x09);
// write upper EEPROM address, this example is writing
// to address 0x00 in serial EEPROM
Write(DATA, 0x00);
// write lower EEPROM address, this example is writing
// to address 0x00 in serial EEPROM
Write(DATA, 0x00);
bytesLeft = 32;
while (bytesLeft) {
   depth = Read(TRANSMIT_FIFO_STATUS);
   while (depth > 0 && bytesLeft) {
          Write(DATA, *ptrData);
          ptrData++;
          bytesLeft--;
          depth--;
   }
```

```
}
// wait for Transfer Stopped Interrupt
Do {
   temp = Read(MASTER_INTERRUPT_STATUS);
} while ((temp & 0x08) == 0x00);
// clear interrupt
Write(INTERRUPT_STATUS, 0x1);
```

B.3 Read a 32-Byte Page from the Serial EEPROM

This section provides example code for reading a 32-byte page from the serial EEPROM.

```
// write 2 bytes to select eeprom address
Write(TRANSMIT_TRANSFER_LENGTH, 2);
Write(RECEIVE_TRANSFER_LENGTH, 0x00);
// Control byte for serial EEPROM
Write(ADDRESS_REGISTER_1, 0xA0);
// set to automatic transfer mode
Write(MASTER_COMMAND, 0x01);
Write(MASTER COMMAND, 0x09);
// write upper EEPROM address, this example is writing
// to address 0x00 in serial EEPROM
Write(DATA, 0x00);
// write lower EEPROM address, this example is writing
// to address 0x00 in serial EEPROM
Write(DATA, 0x00);
// wait for Transfer Stopped Interrupt
Do {
   temp = Read(MASTER INTERRUPT STATUS);
} while ((temp & 0x08) == 0x00);
// clear interrupt
Write(INTERRUPT_STATUS, 0x1);
// read 32 bytes
Write(TRANSMIT_TRANSFER_LENGTH, 0x00);
```

```
Write(RECEIVE_TRANSFER_LENGTH, 32);
// Control byte for serial EEPROM and set read bit
Write(ADDRESS REGISTER 1, 0xA1);
// set to automatic transfer mode
Write(MASTER COMMAND, 0x01);
Write(MASTER COMMAND, 0x09);
bytesLeft = 32;
while(bytesLeft)
   depth = Read(RECEIVE_FIFO_STATUS);
   for (i=0; i<depth; i++) {</pre>
          temp = Read(DATA);
          *ptrData = (temp & 0xFF);
          ptrData++;
          bytesLeft--;
   }
}
// wait for Transfer Stopped Interrupt
Do {
   temp = Read(MASTER INTERRUPT STATUS);
} while ((temp & 0x08) == 0x00);
// clear interrupt
Write(INTERRUPT_STATUS, 0x1);
```

Index

Numerics

signals 2-7

Α

abort command 4-134 absolute maximum stress ratings 5-2 AC characteristics 5-7 active HIGH 3-1 active LOW 3-1 activity LED 2-6, 3-6 Activity Stretch Control 4-69 address frame type 4-77 address identify 4-76 address map 4-2 address space 2-11 addressing port number encoding 2-12 SAS 2-11 affiliations 4-84, 4-107 air temperature 5-2 analog voltage 5-2 API2C 2-17 API2C Global Control 4-17 API2C interface 2-18 API2C Interrupt Enable 4-19 API2C Interrupt Status 4-18, 4-19, 4-22, 4-23, 4-24, 4-25, 4-26, 4-27, 4-28, 4-29, 4-30, 4-31, 4-32, 4-35, 4-36, 4-37, 4-38, 4-39, 4-40 API2C Master Command 4-25 API2C Master Interrupt Status 4-32 API2C Master Receive Transfer Length 4-26 API2C Montior 4-23 API2C Receive FIFO Status 4-30 API2C Soft Reset 4-24 API2C Timer Clock Divider Control 4-22 API2C Wait Timer Control 4-19 application examples 1-3

arbitration 2-3 ATAPI command status 2-33 ATAPI command 2-29, 2-33

В

ball grid array 5-12, 5-13 bank enable 4-129 bank selection 2-10 BGA top view 5-12 blink pattern 4-48 BlinkClkin 2-7, 3-8 BlinkClkout 2-7, 3-8 block diagram 2-1, 2-2 block read transfer 2-33 block transfers 2-32 boot control 4-16 boot loader 2-17 boot record format 2-18, 2-19 boot retries 2-17 boot sequencer 2-6 boot strap loader 3-5 broadcast change 4-90 broadcast processing 2-6 broadcast SES 4-91 BSL_SCL 3-5, 5-3 BSL SD 3-5, 5-3 byte write transfers 2-32

С

cable detection LED 2-7, 3-6 CABLE_DET[11:0]/ 2-24, 5-4 capacitance 5-6 CBL_DET[11:0]/ 2-7, 3-6 checksum 2-17, 2-19, 2-23 CLK 3-6, 5-6 clock 2-9, 3-6 commands 2-12 component ID 4-11, 4-12 component vendor ID 4-11 config ECM 2-21 GigaBlaze 2-21 configuration manager 2-6 configuration manager config registers 4-3 configuration routing table 2-23 connect wait 4-127 connection information register 4-89 connection manager 2-3 connection manager register map 4-124, 4-129, A-11 connection manager remote bank register map 4-130 connection router 2-3 core power 3-9 core voltage 5-2 CRC 1-7, 2-28, 2-31, 2-32, 2-33, 3-5, 4-117, 4-121, 4-140, 4-142 current I/O supply 5-2 latch-up 5-2 custom jitter 4-98

D

data rates 1-6 data transfer rates 1-7 DC characteristics 5-1 device diagnostics 4-134 device support 1-6 direct routing 2-10 disable STP 4-118 discover information 4-78, 4-80, 4-103, 4-104 doorbell 2-30, 3-5 SEP-STP 4-137 STP 2-30 STP-SEP 4-134 drawing package 5-12, 5-13 drive spin up 1-6, 2-8

Ε

ECM 2-21 config 2-21 remote bank enable 2-21 ECM Config 4-127 EEPROM 1-8, 2-6, 3-5 electrical characteristics 5-5 BSL SCL 5-3 BSL SD 5-3 CABLE_DET[11:0]/ 5-4 CLK 5-6 EMB_CRC_INT 5-4 EMB DB INT 5-4 EMB_SCL 5-3 EMB SD 5-3 GPIO[3:0] 5-3 ISTW_ADDR[1:0] 5-5 LED ACTIVE[11:0]/ 5-3 LED FAULT[11:0]/ 5-3 LED_STATUS[11:0]/ 5-3 LEDSYNCIN 5-5 LEDSYNCOUT 5-4 MODE[3:0] 5-5 PROCMON 5-5 REFCLK 5-6 RESET/ 5-6 RX[11:0] 5-3 SCAN ENABLE 5-5 SCAN MODE 5-5 SCANCLK1 5-6 SCANCLK2 5-6 SCANCLK3 5-6 TCK 5-6 TDI 5-6 TDO 5-4 TMS 5-6 TN 5-5 TRST/ 5-6 TX[11:0] 5-3 UART RX 5-5 UART_TX 5-4 electrostatic discharge 5-2 EMB 4-1 doorbell 2-30 register space 2-11 signals 3-5 EMB_CRC_INT 2-5, 2-32, 3-5, 5-4 EMB_DB_INT 2-5, 3-5, 5-4 EMB SCL 2-5, 3-5, 5-3 EMB_SD 2-5, 3-5, 5-3 enclosure management 2-28

enclosure management bridge 1-2, 2-5 enhanced SGPIO interface 2-26, 2-27 enhanced SPGIO interface 2-26 error detection 2-31 error detection control register 2-31 error log disparity error 4-95 I2C error count 4-119 invalid dword count 4-118 invalid word 4-95 loss of synchronization 4-96 R ERR transmitted/received count 4-120 reset sequence failure 4-96 unexpected SATA sync count 4-120 ESD 1-8, 5-2 expander features 1-6

F

fault LED 2-7, 3-6 FIS 2-28 FIS type 4-85 fixed data field 2-17, 2-19 frame information structures 2-28

G

Gflx 1-2 GigaBlaze 1-8, 2-4 GigaBlaze RX config 2-21 GigaBlaze TX config (SAS) 2-21 GigaBlaze TX config (SATA) 2-21 global config 4-129 GPIO 1-7, 2-6, 2-7, 2-17, 2-24 control 4-42 direction 4-42 value 4-45 GPIO control structure 2-25 GPIO signals 3-6 GPIO[3:0] 2-7, 2-24, 3-6, 5-3 ground signals 3-9 aroup GPIO control bits 2-25 group GPIO value bits 2-25 group override 4-50 group override register usage 2-26

I

I/O

supply voltage 5-2

I/O power 3-9 I/O supply current 5-2 I²C 1-6, 2-5, 2-30, 2-31, 3-5, 4-1, 4-119, 4-121 address 4-17 signals 3-5 **IBML tLOW** MEXT Control 4-21 IDD-Core 5-2 IDD-I/O 5-2 IDDT 3-8, 5-5 identify address 4-76 input 3-2 reset 5-7 Inter-IC interface 1-6 interrupt bit 4-85 ISTW ADDR 2-17 ISTW_ADDR[1:0] 2-5, 2-6, 3-5, 5-5 **ISTWI 2-30** address 4-17 slave addressing 2-31 slave read 2-33 slave write operation 2-32 ISTWI error detection 2-31 ISTWI signals 3-5 ISTWI slave register map register map ISTWI slave 4-133

J

jitter custom 4-98 enable 4-97 JPAT select 4-97 JTAG 1-8, 2-9 signals 3-8 junction temperature 5-2

L

last transfer 4-139 latch-up current 5-2 latch-up protection 1-8 LED 2-6, 2-7, 2-17, 2-24 blinker definition 4-47 group control 4-41 signals 3-6 LED control structure 2-25 LED synchronization 3-7

LED_ACT[11:0]/ 2-6, 3-6 LED_ACTIVE[11:0]/ 5-3 LED_ACTIVITY[11:0]/ 2-24 LED FAULT[11:0]/ 2-7, 2-24, 3-6, 5-3 LED_STATUS[10]/ 2-8, 3-8 LED_STATUS[11:0]/ 2-6, 2-24, 3-6, 5-3 LED_STATUS[11]/ 2-8, 3-8 LED_STATUS[6]/ 2-8, 3-7 LED_STATUS[7]/ 2-8, 3-7 LED STATUS[9]/ 2-8, 3-7 LEDSYNCIN 2-8, 2-26, 3-7, 3-8, 5-5 LEDSYNCOUT 2-8, 2-26, 3-7, 3-8, 5-4 link layer 2-4 link rate 4-79, 4-82, 4-88, 4-102, 4-111 link rates 4-105 link register 4-75, 4-76 LSISASx12A 2-26

Μ

MAR1 4-28 MAR2 4-29 maximum stress ratings 5-2 mode select pins 3-9 MODE[3:0] 3-9, 5-5

Ν

narrow ports 1-1 NC 3-1, 3-11 no connect signal 3-1, 3-11

0

OAF 2-4, 2-28 offset 2-23 OPEN address frame 2-4 open timeout 4-92 operating conditions 5-2 operating free air temperature 5-2 optional data field 2-17 output 3-2

Ρ

package 5-14 package drawing 5-12, 5-13 partial pathway timeout value 4-83, 4-89 partial wait 4-128 path redundancy 1-4 PECL 5-6 phy 2-4, 2-21 config 2-20 configuration 4-15 enables 4-15 identifier 4-105 layer 2-4 operations encoding 4-94 polarity 4-15, 4-16 registers 4-93 physical layer 2-4 PhySMPOp 4-95, 4-96 pin out 5-12 PLL VDD 3-10 PLL_VSS 3-10 **PMNAK 2-30** PMREQ P 2-30 PMREQ_S 2-30 polarity 1-6, 2-21, 4-15, 4-16 POR 3-6 port number encodings 2-12 ports 1-1 power sequencing 5-2 power signals 3-9 PPTOV 4-83, 4-89, 4-106, 4-112 primary internal register space 2-11 primary internal registers 2-11 PROCMON 3-9, 5-5 product ID 2-19 product identifier register 4-8 product revision 2-20 product revision register 4-10 programmable TX/RX 1-6

R

R_ERRs 4-120 READ N REGISTERS 2-12, 2-15 receive descramble control 4-113 received count 4-121 REFCLK 3-4, 5-6 register RR_command 2-11 RR_Data 2-11 register description configuration manager config 4-3 connection manager 4-124, 4-129, A-11 SPhynx link 4-75 SPhynx phy 4-93 STP target 4-99

register descriptions SMP target 4-72 register map A-1, A-4, A-5, A-6, A-7, A-9, A-11, A-14 configuration manager config 4-3, A-1 connection manager 4-124, 4-129, A-11 connection manager remote bank 4-130 ECM configuration A-9 ECM remote bank A-11 EMB slave A-14 link A-5 phy A-6 SMP target 4-72, A-4 SPhynx link 4-75 SPhynx phy 4-93 STP target 4-99 stp target A-7 register space 2-11 EMB 2-11 registers link 4-76 regsiter map remote bank 4-130 remote band enable enable remote bank 2-21 remote bank enable 4-129 remote bank offset 4-130 remote bank register map 4-130 remote disable 4-129 remote entries 2-10 remote entry disable 4-133 remote entry disable bit 2-10 remote routing 4-73 report general register 4-13 Reset 2-9 reset input 5-7 RESET/ 3-6, 5-6 revision ID 4-11, 4-12 round robin disable 4-129 routing 2-9 routing attribute 4-83, 4-106 routing table 1-8 configuration 2-23, 4-73 offset 2-23, 4-74 size 4-74 RR_Command 4-143 RR_Command register 2-11

RR_Data 4-144 RR_Data0 register 2-11 RR_Request 4-144 RTRIM 3-4 RX 1-6 polarity 4-16 RX jitter enable 4-97 RX/TX polarity 2-21 RX[11:0] 3-4, 5-3 RX_VDD[11:0] 3-10 RX_VSS[11:0] 3-10 RXB_VDD[11:0] 3-10 RXB_VSS[11:0] 3-10

S

safety byte 2-19 SAS 1-1, 1-6 data rates 1-6 GigaBlaze config 2-21 multiple expander topology 1-4 path redundant topology 1-4 simple topology 1-3 version 1.1 features 1-1, 1-6 SAS address 2-11, 4-73, 4-78, 4-80, 4-101, 4-103, 4-132 SAS signals 3-4 SAS transfer rates 1-2 SATA 1-2, 1-6 connection mode 4-93 data rates 1-6 FIS 2-29 GigaBlaze config 2-21 nexus loss timeout 4-92 signals 3-4 target address 4-84 WWN 4-7 SCAN_ENABLE 5-5 SCAN MODE 5-5 SCANCLK1 3-9. 5-6 SCANCLK2 3-9, 5-6 SCANCLK3 3-9, 5-6 SCANEN 3-9 SCANMODE 3-8 SEP 2-11 SEP doorbell 2-30, 4-137 sequencing drive spin-up 1-6 serial ATA tunneled protocol 1-2, 1-5 serial attached SCSI 1-1

serial debugger 2-9 serial EEPROM 1-8, 2-6, 2-17, 3-5 serial EEPROM signals 3-5 serial I/O 1-7 serial management protocol 1-2, 1-5 serial SCSI protocol 1-2, 1-5 SGPIO 2-7 signal functional grouping 3-3 signal grouping 3-2 signals BlinkClkin 2-7, 3-8 BlinkClkout 2-7, 3-8 BSL SCL 3-5 BSL_SD 3-5 CABLE DET[11:0]/ 2-24 CBL_DET[11:0]/ 3-6 CLK 3-6 EMB 3-5 EMB_CRC_INT 2-5, 2-32, 3-5 EMB_DB_INT 2-5, 3-5 EMB_SCL 2-5, 3-5 EMB SD 2-5, 3-5 GPIO 3-6 GPIO[3:0] 2-24, 3-6 ground 3-9 12C 3-5 IDDT 3-8 ISTW_ADDR[1:0] 2-5, 2-6, 3-5 **ISTWI 3-5** JTAG 3-8 LED 3-6 LED_ACT[11:0]/ 2-6, 3-6 LED ACTIVITY[11:0]/ 2-24 LED_FAULT[11:0]/ 2-7, 2-24, 3-6 LED_STATUS[10]/ 2-8, 3-8 LED STATUS[11:0]/ 2-6, 2-24, 3-6 LED STATUS[11]/ 2-8, 3-8 LED_STATUS[6]/ 2-8, 3-7 LED_STATUS[7]/ 2-8, 3-7 LED_STATUS[9]/ 2-8, 3-7 LEDSYNCIN 2-8, 2-26, 3-7, 3-8 LEDSYNCOUT 2-8, 2-26, 3-7, 3-8 MODE[3:0] 3-9 NC 3-11 PLL VDD 3-10 PLL VSS 3-10 power 3-9 PROCMON 3-9

REFCLK 3-4 RESET/ 3-6 RTRIM 3-4 RX[11:0] 3-4 RX_VDD[11:0] 3-10 RX VSS[11:0] 3-10 RXB_VDD[11:0] 3-10 RXB_VSS[11:0] 3-10 SAS 3-4 SATA 3-4 SCANCLK1 3-9 SCANCLK2 3-9 SCANCLK3 3-9 SCANEN 3-9 SCANMODE 3-8 serial EEPROM 3-5 SioClkin 2-7, 3-8 SioClkout 3-8 SioDiin 2-7 SioDin 3-7 SioDout 2-7, 3-7 SioEnd 2-7, 3-7 Siolkout 2-7 SioStart 2-7, 3-7 **TCK 3-8** TDI 3-8 TDiode_N 3-9 TDiode P 3-9 TDO 3-8 TMS 3-8 TN/ 3-8 TRST/ 3-8 TX[11:0]+ 3-4 TX_VDD[11:0] 3-10 TX_VSS[11:0] 3-11 TXB VDD[11:0] 3-10 TXB_VSS[11:0] 3-10 types 3-2 UART_RX 3-7 UART TX 3-6 VDD2 3-9 VDDIO33 3-9 VSS2 3-10 SIO 1-7, 2-6, 2-7, 3-6, 3-7 configuration register 4-55 device count 4-55 general purpose output data 4-66 general purpose receive 4-58

output data control 4-59 receive 4-57 SIO Adapter Control 4-71 SIO Control Select bit 2-26 SIO Pattern Definition 0 4-67 SIO Pattern Definition 1 4-67 SIO Pattern Definition 2 4-68 SIO Pattern Definition 3 4-69 SIO_CFG register 3-8 SioClkin 2-7, 3-8 SioClkout 3-8 SioDin 2-7, 3-7 SioDout 2-7, 3-7 SioEnd 2-7, 3-7 Siolkout 2-7 SioStart 2-7, 3-7 slash 3-1 slave addressing 2-30, 2-31 slave read 2-33 slave write operation 2-32 SMP 1-2, 1-5, 1-6, 2-3 target 2-4 SMP command 4-94 SMP commands 2-12 SMP target 1-2, 2-23, 4-15 vendor-specific commands 2-12 WWN 4-7 SMP target register map 4-72 SmpPhyOp 4-118 commands 4-118 SPhynx 2-4 SPhynx link registers 4-75 SPhynx phy registers 4-93 spin mode 2-8, 4-14 spin number 2-8, 4-14 spin up 1-6, 2-8 spin-up 1-6 spin-up control 2-20 spin-up delay 4-14 SSP 1-2, 1-5, 1-6 status LED 2-6, 3-6 STP 1-2, 1-5, 1-6, 2-3, 2-30 data transfer rates 1-7 doorbell 2-30 features 1-7 initiator address 4-87 STP doorbell 2-30 STP interface 2-28

STP target 2-5, 2-28, 4-15 SAS address 4-108 STP target register map 4-99 STP-SEP 2-30 STP-SEP doorbell 2-30, 4-134 stress ratings 5-2 subtractive decode enable 4-128 subtractive routing 2-10 supply current 5-2 supply voltage 5-2 synchronization 3-7

Т

Ta 5-2 table routing 2-10 target enclosure management bridge 1-5 TCK 3-8 TCK. 5-6 TDI 3-8, 5-6 TDiode N 3-9 TDiode_P 3-9 TDO 3-8, 5-4 temperature junction 5-2 operating free air 5-2 storage 5-2 test signals signals test 3-8 thermal diode 3-9 thermal resistance 5-2 timers spin up 2-9 timing PCI and PCI-X 5-7 reset 5-7 Tj 5-2 TMS 3-8, 5-6 TN 5-5 TN/ 3-8 top-level address map 4-2 transfer length 4-138 transmit mux 4-55 transmit scramble override 4-113 transmitted count 4-120 TRST/ 3-8, 5-6 TX 1-6 polarity 4-15

TX jitter enable 4-97 TX/RX polarity 2-21 TX[11:0] 3-4, 5-3 TX_VDD[11:0] 3-10 TX_VSS[11:0] 3-11 TXB_VDD[11:0] 3-10 TXB_VSS[11:0] 3-10

U

UART 1-8, 2-9 UART_RX 3-7, 5-5 UART_TX 3-6, 5-4

V

VDD_IO 5-2 VDD2 3-9 VDDC 5-2 VDDIO33 3-9 vendor ID 2-19, 4-7 component 4-11 vendor-specific commands 2-12 voltage analog 5-2 core 5-2 I/O 5-2 supply 5-2 VSS2 3-10

W

wide ports 1-1 world wide name 4-6 WRITE N REGISTERS 2-12 WWN 4-6 WWN base address 2-19

Customer Feedback

We would appreciate your feedback on this document. Please copy the following page, add your comments, and fax it to us at the number shown.

If appropriate, please also fax copies of any marked-up pages from this document.

Important: Please include your name, phone number, fax number, and company address so that we may contact you directly for clarification or additional information.

Thank you for your help in improving the quality of our documents.

Reader's Comments

Fax your comments to: LSI Logic Corporation Technical Publications M/S AF-198 Fax: 408.433.4333

Please tell us how you rate this document: *LSISASx12/LSISASx12A 3.0 Gbit/s SAS/SATA Expander Technical Manual, Version 3.0.* Place a check mark in the appropriate blank for each category.

	Excellent	Good	Average	Fair	Poor
Completeness of information					
Clarity of information					
Ease of finding information					
Technical content					
Usefulness of examples and illustrations					
Overall manual					

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you directly for clarification or additional information.

	_ Date
Fax	
	Mail Stop
	Fax