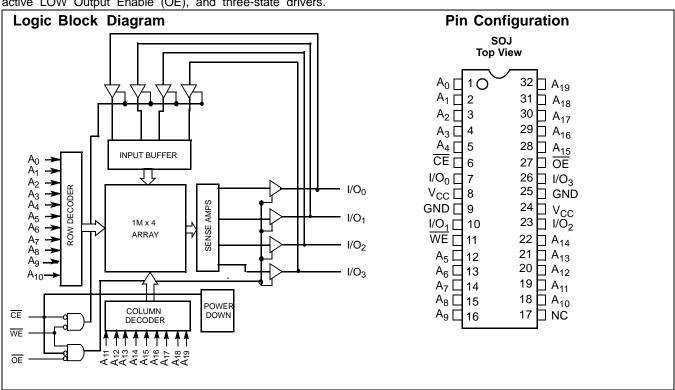


# 1M x 4 Static RAM

#### **Features**

- · High speed
  - $-t_{AA} = 10ns$
- Low active power for 10 ns speed
  - -324 mW (max.)
- · 2.0V data retention
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with  $\overline{\text{CE}}$  and  $\overline{\text{OE}}$  features

#### Functional Description[1]


The CY7C1046CV33 is a high-performance CMOS static RAM organized as 1,048,576 words by 4 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and three-state drivers.

Writing to the device is <u>acc</u>omplished by taking Chip Enable  $(\overline{CE})$  and Write Enable  $(\overline{WE})$  inputs LOW. Data on the four I/O pins  $(I/O_0$  through  $I/O_3)$  is then written into the location specified on the address pins  $(A_0$  through  $A_{19})$ .

Reading from the device is accomplished by taking Chip Enable ( $\overline{\text{CE}}$ ) and Output Enable ( $\overline{\text{OE}}$ ) LOW while forcing Write Enable ( $\overline{\text{WE}}$ ) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The four input/output pins (I/O $_0$  through I/O $_3$ ) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a Write operation (CE LOW, and WE LOW).

The CY7C1046CV33 is available in a standard 400-mil-wide 32-pin SOJ package with center power and ground (revolutionary) pinout.



#### **Selection Guide**

|                              | <b>-8</b> <sup>[2]</sup> | -10 | -12 | -15 | Unit |
|------------------------------|--------------------------|-----|-----|-----|------|
| Maximum Access Time          | 8                        | 10  | 12  | 15  | ns   |
| Maximum Operating Current    | 100                      | 90  | 85  | 80  | mA   |
| Maximum CMOS Standby Current | 10                       | 10  | 10  | 10  | mA   |

#### Notes:

For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.
 Shaded areas contain advance information.



## **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ......-65°C to +150°C Ambient Temperature with Power Applied ......55°C to +125°C

Supply Voltage on  $\rm V_{CC}$  to Relative  $\rm GND^{[3]}\,....\,-0.5V$  to +4.6V

DC Voltage Applied to Outputs in High-Z State  $^{[3]}$  ......-0.5V to  $\rm V_{CC}$  + 0.5V DC Input Voltage<sup>[3]</sup>.....-0.5V to V<sub>CC</sub> + 0.5V

Current into Outputs (LOW)......20 mA Static Discharge Voltage.....> 2001V (per MIL-STD-883, Method 3015) Latch-up Current.....>200 mA

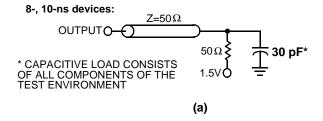
## **Operating Range**

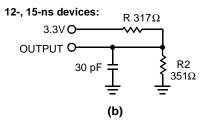
| Range      | Ambient<br>Temperature | V <sub>cc</sub> |
|------------|------------------------|-----------------|
| Commercial | 0°C to +70°C           | 3.0V - 3.6V     |
| Industrial | –40°C to + 85°C        | 3.0V - 3.6V     |

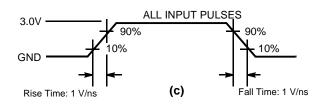
## DC Electrical Characteristics Over the Operating Range

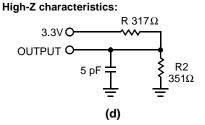
|                  |                                                   |                                                                                                                                                                                                                                                            |                                           | -8                       | [2]  | -10                      |      | -12                      |      | -15                      |      |    |
|------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|------|--------------------------|------|--------------------------|------|--------------------------|------|----|
| Parameter        | Description                                       | Test Cond                                                                                                                                                                                                                                                  | Min.                                      | Max.                     | Min. | Max.                     | Min. | Max.                     | Min. | Max.                     | Unit |    |
| V <sub>OH</sub>  | Output HIGH Voltage                               | V <sub>CC</sub> = Min., I <sub>OH</sub> = -                                                                                                                                                                                                                | $V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$ |                          |      | 2.4                      |      | 2.4                      |      | 2.4                      |      | V  |
| V <sub>OL</sub>  | Output LOW Voltage                                | $V_{CC} = Min., I_{OL} = 8$                                                                                                                                                                                                                                | 3.0 mA                                    |                          | 0.4  |                          | 0.4  |                          | 0.4  |                          | 0.4  | V  |
| V <sub>IH</sub>  | Input HIGH Voltage                                |                                                                                                                                                                                                                                                            | 2.0                                       | V <sub>CC</sub><br>+ 0.3 | 2.0  | V <sub>CC</sub><br>+ 0.3 | 2.0  | V <sub>CC</sub><br>+ 0.3 | 2.0  | V <sub>CC</sub><br>+ 0.3 | V    |    |
| V <sub>IL</sub>  | Input LOW Voltage[3]                              |                                                                                                                                                                                                                                                            |                                           | -0.3                     | 0.8  | -0.3                     | 0.8  | -0.3                     | 0.8  | -0.3                     | 0.8  | V  |
| I <sub>IX</sub>  | Input Load Current                                | $GND \le V_1 \le V_{CC}$                                                                                                                                                                                                                                   |                                           | -1                       | +1   | -1                       | +1   | -1                       | +1   | -1                       | +1   | μΑ |
| I <sub>OZ</sub>  | Output Leakage<br>Current                         | $\begin{aligned} & GND \leq V_{OUT} \leq V_{CC}, \\ & Output \ Disabled \end{aligned}$                                                                                                                                                                     |                                           | -1                       | +1   | -1                       | +1   | -1                       | +1   | -1                       | +1   | μΑ |
| Icc              | V <sub>CC</sub> Operating<br>Supply Current       | $V_{CC} = Max.,$<br>$f = f_{MAX} = 1/t_{RC}$                                                                                                                                                                                                               |                                           |                          | 100  |                          | 90   |                          | 85   |                          | 80   | mA |
| I <sub>SB1</sub> | Automatic CE<br>Power-Down Current<br>—TTL Inputs | Max. $V_{CC}$ , $\overline{CE} \ge V_{IH}$<br>$V_{IN} \ge V_{IH}$ or<br>$V_{IN} \le V_{IL}$ , $f = f_{MAX}$                                                                                                                                                |                                           |                          | 40   |                          | 40   |                          | 40   |                          | 40   | mA |
| I <sub>SB2</sub> | Power-Down Current                                | $\begin{split} & \underline{\text{Max}}. \ V_{\text{CC}}, \\ & \underline{\text{CE}} \geq V_{\text{CC}} - 0.3\text{V}, \\ & V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}, \\ & \text{or } V_{\text{IN}} \leq 0.3\text{V}, \\ & \text{f} = 0 \end{split}$ | Commercial                                |                          | 10   |                          | 10   |                          | 10   |                          | 10   | mA |

## Capacitance<sup>[4]</sup>


| Parameter        | Description       | Test Conditions                                    | Max. | Unit |
|------------------|-------------------|----------------------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance | $T_A = 25^{\circ}C$ , $f = 1$ MHz, $V_{CC} = 3.3V$ | 6    | pF   |
| C <sub>OUT</sub> | I/O Capacitance   |                                                    | 6    | pF   |


#### Notes:


- 3.  $V_{IL}$  (min.) = -2.0V for pulse durations of less than 20 ns.
- 4. Tested initially and after any design or process changes that may affect these parameters.




## AC Test Loads and Waveforms<sup>[5]</sup>









#### Notes:

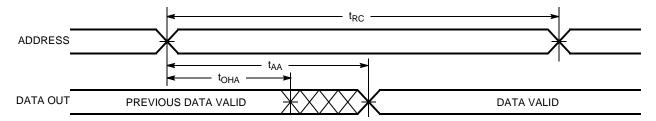
5. AC characteristics (except High-Z) for all 8-ns and 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).



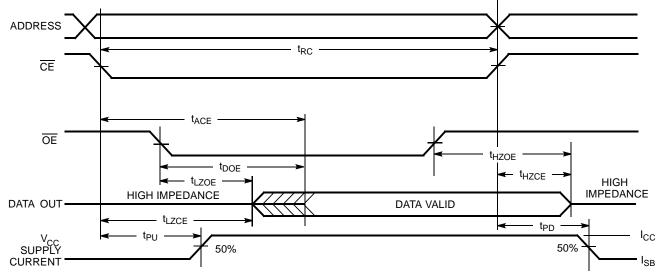
## AC Switching Characteristics<sup>[6]</sup> Over the Operating Range

|                                   |                                               | -8   | [2]  | -1   | 10   | -12  |      | -15  |      |      |  |
|-----------------------------------|-----------------------------------------------|------|------|------|------|------|------|------|------|------|--|
| Parameter                         | Description                                   | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit |  |
| Read Cycle                        |                                               | •    |      |      |      |      | •    | •    | •    |      |  |
| t <sub>power</sub> <sup>[7]</sup> | V <sub>CC</sub> (typical) to the first access | 1    |      | 1    |      | 1    |      | 1    |      | μs   |  |
| t <sub>RC</sub>                   | Read Cycle Time                               |      |      | 10   |      | 12   |      | 15   |      | ns   |  |
| t <sub>AA</sub>                   | Address to Data Valid                         |      | 8    |      | 10   |      | 12   |      | 15   | ns   |  |
| t <sub>OHA</sub>                  | Data Hold from Address Change                 | 3    |      | 3    |      | 3    |      | 3    |      | ns   |  |
| t <sub>ACE</sub>                  | CE LOW to Data Valid                          |      | 8    |      | 10   |      | 12   |      | 15   | ns   |  |
| t <sub>DOE</sub>                  | OE LOW to Data Valid                          |      | 4    |      | 5    |      | 6    |      | 7    | ns   |  |
| t <sub>LZOE</sub>                 | OE LOW to Low-Z <sup>[9]</sup>                | 0    |      | 0    |      | 0    |      | 0    |      | ns   |  |
| t <sub>HZOE</sub>                 | OE HIGH to High-Z <sup>[8, 9]</sup>           |      | 4    |      | 5    |      | 6    |      | 7    | ns   |  |
| t <sub>LZCE</sub>                 | CE LOW to Low-Z <sup>[9]</sup>                | 3    |      | 3    |      | 3    |      | 3    |      | ns   |  |
| t <sub>HZCE</sub>                 | CE HIGH to High-Z <sup>[8, 9]</sup>           |      | 4    |      | 5    |      | 6    |      | 7    | ns   |  |
| t <sub>PU</sub>                   | CE LOW to Power-up                            | 0    |      | 0    |      | 0    |      | 0    |      | ns   |  |
| t <sub>PD</sub>                   | CE HIGH to Power-Down                         |      | 8    |      | 10   |      | 12   |      | 15   | ns   |  |
| Write Cycle <sup>[10]</sup>       | 0, 11]                                        |      |      |      |      |      | •    | •    |      |      |  |
| t <sub>WC</sub>                   | Write Cycle Time                              | 8    |      | 10   |      | 12   |      | 15   |      | ns   |  |
| t <sub>SCE</sub>                  | CE LOW to Write End                           | 6    |      | 7    |      | 8    |      | 10   |      | ns   |  |
| t <sub>AW</sub>                   | Address Set-up to Write End                   | 6    |      | 7    |      | 8    |      | 10   |      | ns   |  |
| t <sub>HA</sub>                   | Address Hold from Write End                   | 0    |      | 0    |      | 0    |      | 0    |      | ns   |  |
| t <sub>SA</sub>                   | Address Set-up to Write Start                 | 0    |      | 0    |      | 0    |      | 0    |      | ns   |  |
| t <sub>PWE</sub>                  | WE Pulse Width                                | 6    |      | 7    |      | 8    |      | 10   |      | ns   |  |
| t <sub>SD</sub>                   | Data Set-up to Write End                      | 4    |      | 5    |      | 6    |      | 7    |      | ns   |  |
| t <sub>HD</sub>                   | Data Hold from Write End                      | 0    |      | 0    |      | 0    |      | 0    |      | ns   |  |
| t <sub>LZWE</sub>                 | WE HIGH to Low-Z <sup>[9]</sup>               | 3    |      | 3    |      | 3    |      | 3    |      | ns   |  |
| t <sub>HZWE</sub>                 | WE LOW to High-Z <sup>[8, 9]</sup>            |      | 4    |      | 5    |      | 6    |      | 7    | ns   |  |
| Notes:                            | •                                             |      |      |      | •    |      |      |      |      |      |  |

#### Notes:


- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V. t<sub>POWER</sub> gives the minimum amount of time that the power supply should be at stable, typical Vcc values until the first memory access can be performed. t<sub>HZOE</sub>, t<sub>HZCE</sub>, and t<sub>HZWE</sub> are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.

At any given temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZOE</sub>, t<sub>HZOE</sub> is less than t<sub>LZOE</sub>, and t<sub>HZNE</sub> is less than t<sub>LZOE</sub> for any given device.
 The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
 The minimum Write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t<sub>HZWE</sub> and t<sub>SD</sub>.

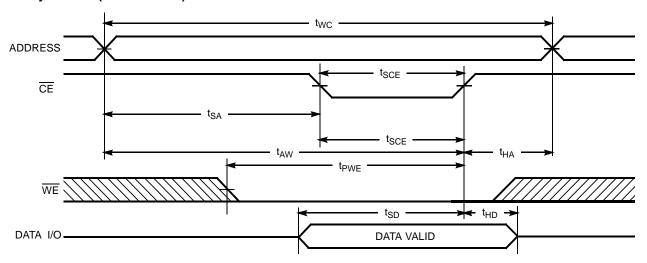



# **Switching Waveforms**

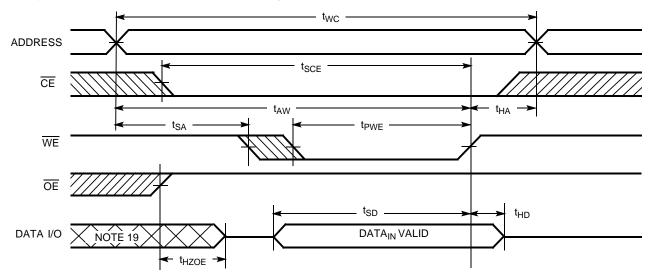
# **Read Cycle No. 1**<sup>[14, 15]</sup>



# Read Cycle No. 2 (OE Controlled)[15, 16]




- t<sub>r</sub> ≤ 3 ns for the -10, -12, and -15 speeds.
   No input may exceed V<sub>CC</sub> + 0.5V.
   Device is continuously selected. OE, CE = V<sub>IL</sub>.
   WE is HIGH for Read cycle.
   Address valid prior to or coincident with CE transition LOW.



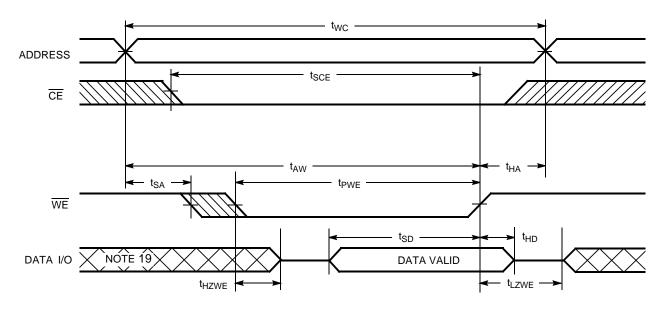

# Switching Waveforms (continued)

# Write Cycle No. 1 (CE Controlled)[17, 18]



# Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[17, 18]




#### Notes:

17. Data I/O is high impedance if OE = V<sub>IH</sub>.
18. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
19. During this period the I/Os are in the output state and input signals should not be applied.



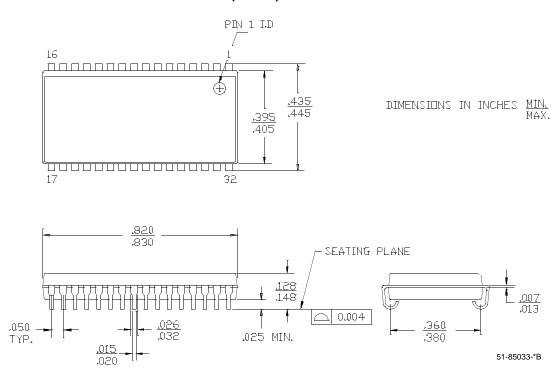
# Switching Waveforms (continued)

# Write Cycle No. 3 (WE Controlled, OE LOW)[18]



## **Truth Table**

| CE | OE | WE | I/O <sub>0</sub> – I/O <sub>7</sub> | Mode                       | Power                      |
|----|----|----|-------------------------------------|----------------------------|----------------------------|
| Н  | Х  | Х  | High-Z                              | Power-down                 | Standby (I <sub>SB</sub> ) |
| L  | L  | Н  | Data Out                            | Read                       | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | Data In                             | Write                      | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | High-Z                              | Selected, Outputs Disabled | Active (I <sub>CC</sub> )  |


# **Ordering Information**

| Speed (ns) | Ordering Code     | Package<br>Name | Package Type                 | Operating<br>Range |
|------------|-------------------|-----------------|------------------------------|--------------------|
| 10         | CY7C1046CV33-10VC | V33             | 32-lead (400-mil) Molded SOJ | Commercial         |
|            | CY7C1046CV33-10VI | V33             | 32-lead (400-mil) Molded SOJ | Industrial         |
| 12         | CY7C1046CV33-12VC | V33             | 32-lead (400-mil) Molded SOJ | Commercial         |
|            | CY7C1046CV33-12VI | V33             | 32-lead (400-mil) Molded SOJ | Industrial         |
| 15         | CY7C1046CV33-15VC | V33             | 32-lead (400-mil) Molded SOJ | Commercial         |
|            | CY7C1046CV33-15VI | V33             | 32-lead (400-mil) Molded SOJ | Industrial         |



# **Package Diagram**

## 32-Lead (400-Mil) Molded SOJ V33



All product and company names mentioned in this document may be the trademarks of their respective holders.



# **Document History Page**

| Document Title: CY7C1046CV33 1M x 4 Static RAM Document Number: 38-05003 |        |          |     |                          |  |  |  |
|--------------------------------------------------------------------------|--------|----------|-----|--------------------------|--|--|--|
| REV. ECN NO. Date Change Description of Change                           |        |          |     |                          |  |  |  |
| **                                                                       | 112570 | 03/06/02 | HGK | New data sheet for RAM 7 |  |  |  |
| *A 116478 09/16/02 CEA Add applications foot note to data sheet, page 1. |        |          |     |                          |  |  |  |

Document #: 38-05003 Rev. \*A Page 9 of 9