

4-Mbit (256K x 16) Static RAM

Features

■ Temperature ranges

□ Commercial: 0°C to 70°C
□ Industrial: −40°C to 85°C
□ Automotive-A: −40°C to 85°C
□ Automotive-E: −40°C to 125°C

■ Pin and function compatible with CY7C1041BV33

■ High speed

□ t_{AA} = 10 ns (Commercial, Industrial and Automotive-A)

 \Box t_{AA} = 12 ns (Automotive-E)

■ Low active power
□ 324 mW (max)

■ 2.0V data retention

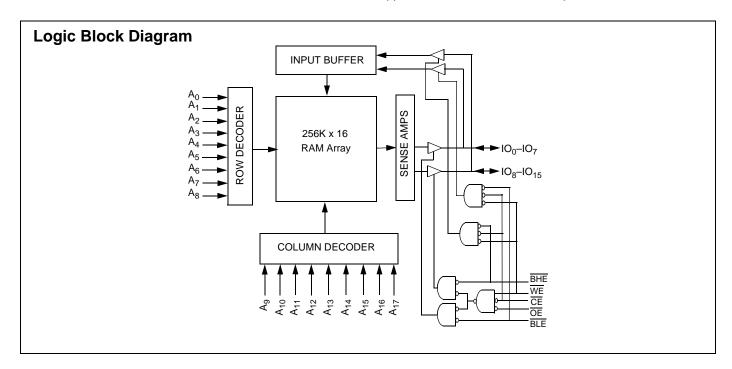
■ Automatic power down when deselected

■ TTL-compatible inputs and outputs

■ Easy memory expansion with CE and OE features

 Available in Pb-free and non Pb-free 44-pin 400 Mil SOJ, 44-pin TSOP II and 48-Ball FBGA packages

Functional Description


The CY7C1041CV33 is a high performance CMOS static RAM organized as 262,144 words by 16 bits.

 $\overline{\text{To w}}$ rite to the device, take Chip Enable $\overline{(CE)}$ and Write Enable $\overline{(WE)}$ inputs LOW. If Byte Low Enable $\overline{(BLE)}$ is LOW, then data from IO pins $\overline{(IO_0)}$ through $\overline{IO_7}$, is written into the location specified on the address pins $\overline{(A_0)}$ through $\overline{A_{17}}$. If Byte High Enable $\overline{(BHE)}$ is LOW, then data from IO pins $\overline{(IO_8)}$ through $\overline{IO_{15}}$ is written into the location specified on the address pins $\overline{(A_0)}$ through $\overline{A_{17}}$.

To read <u>from</u> the device, take Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW <u>while</u> forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by <u>the</u> address pins appear on IO₀ to IO₇. If Byte High Enable (BHE) is LOW, then data from memory appears on IO₈ to IO₁₅. For more information, see the <u>Truth Table</u> on page 9 for a complete description of Read and Write modes.

The input and output pins (IO_0 through IO_{15}) are <u>placed</u> in a high impedance state when the device is <u>deselected</u> (\overline{CE} HIGH), the <u>outputs are</u> disabled (\overline{OE} HIGH), the <u>BHE</u> and <u>BLE</u> are disabled (\overline{BHE} , <u>BLE</u> HIGH), or during a write operation (\overline{CE} LOW and \overline{WE} LOW).

For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.

Cypress Semiconductor Corporation
Document Number: 38-05134 Rev. *I

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600

Selection Guide

Description		-10	-12	-15	-20	Unit
Maximum Access Time	10	12	15	20	ns	
Maximum Operating Current	Commercial	90	85	80	75	mA
	Industrial	100	95	90	85	mA
	Automotive-A	100			85	mA
	Automotive-E		120		90	mA
Maximum CMOS Standby Current	Commercial/ Industrial	10	10	10	10	mA
	Automotive-A	10			10	mA
	Automotive-E		15		15	mA

Pin Configuration

Figure 1. 44-Pin SOJ/TSOP II (Top View) [1]

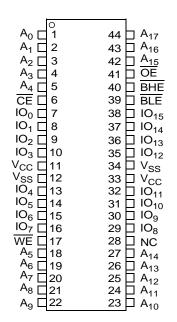
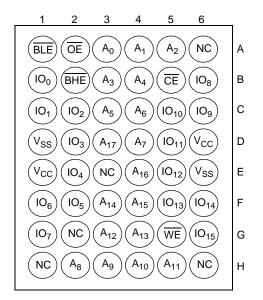



Figure 2. 48-Ball FBGA Pinout (Top View) [1]

Note

^{1.} NC pins are not connected on the die.

Pin Definitions

Din Name	SOJ, TSOP	BGA	IO Turns	Description
Pin Name	Pin Number	Pin Number	IO Type	Description
A ₀ -A ₁₇	1–5, 18–27, 42–44	A3, A4, A5, B3, B4, C3, C4, D4, H2, H3, H4, H5, G3, G4, F3, F4, E4, D3	Input	Address Inputs. Used to select one of the address locations.
IO ₀ -IO ₁₅	7–10,13–16, 29–32, 35–38	B1, C1, C2, D2, E2, F2, F1, G1, B6, C6, C5, D5, E5, F5, F6, G6	Input or Output	Bidirectional Data IO lines . Used as input or output lines depending on operation.
NC	28	A6, E3, G2, H1, H6	No Connect	No Connects. Not connected to the die.
WE	17	G5	Input or Control	Write Enable Input, Active LOW . When selected LOW, a write is conducted. When deselected HIGH, a read is conducted.
CE	6	B5	Input or Control	Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
BHE, BLE	40, 39	B2, A1	Input or Control	Byte Write Select Inputs, Active LOW. $\overline{\rm BHE}$ controls $\rm IO_{16}-\rm IO_{9}$, BLE controls $\rm IO_{8}-\rm IO_{1}$.
ŌĒ	41	A2	Input or Control	Output Enable, Active LOW. Controls the direction of the IO pins. When LOW, the IO pins are allowed to behave as outputs. When deasserted HIGH, the IO pins are tri-stated and act as input data pins.
V _{SS}	12, 34	D1, E6	Ground	Ground for the Device. Connected to ground of the system.
V _{CC}	11, 33	D6, E1	Power Supply	Power Supply Inputs to the Device.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

DC Input Voltage^[2]......-0.5V to V_{CC}+0.5V Current into Outputs (LOW).......20 mA

Static Discharge Voltage.....>2001V (MIL-STD-883, Method 3015)

Latch Up Current>200 mA

Operating Range

Range	Ambient Temperature (T _A)	v _{cc}
Commercial	0°C to +70°C	3.3V ± 10%
Industrial	-40°C to +85°C	
Automotive-A	-40°C to +85°C	
Automotive -E	-40°C to +125°C	

Electrical Characteristics

Over the Operating Range

Parameter	Description Test Conditions				10	-12		-1	15	-2	20	Unit
Parameter	Description	lest Collai	Min	Max	Min	Max	Min	Max	Min	Max	Ollit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min, I_{OH} = -4$.0 mA	2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = Min, I_{OL} = 8.0$) mA		0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	V						
V _{IL} [2]	Input LOW Voltage			-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage	$GND \le V_I \le V_{CC}$	Com'l/Ind'l	-1	+1	-1	+1	-1	+1	-1	+1	μΑ
	Current		Auto-A	-1	+1					-1	+1	
			Auto-E			-20	+20			-20	+20	
I _{OZ}	Output Leakage	GND ≤ V _{OUT} ≤ V _{CC} , Output disabled	Com'l/Ind'l	-1	+1	-1	+1	-1	+1	-1	+1	μА
	Current		Auto-A	-1	+1					-1	+1	
			Auto-E			-20	+20			-20	+20	
I _{CC}	V _{CC} Operating	$V_{CC} = Max,$ $f = f_{MAX} = 1/t_{RC}$	Com'l		90		85		80		75	mΑ
	Supply Current		Ind'l		100		95		90		85	
			Auto-A		100						85	
			Auto-E				120				90	
I _{SB1}	Automatic CE Power	<u>Ma</u> x V _{CC} ,	Com'l/Ind'l		40		40		40		40	mA
	Down Current —TTL Inputs	CE ≥ V _{IH}	Auto-A		40						40	
	inputs	$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	Auto-E				45				45	
I _{SB2}	Automatic CE Power	<u>Ma</u> x V _{CC} ,	Com'l/Ind'l		10		10		10		10	mA
	Down Current —	$CE \ge V_{CC} - 0.3V$	Auto-A		10						10	
	CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$	Auto-E				15				15	

Note

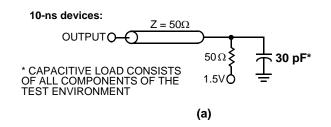
Document Number: 38-05134 Rev. *I Page 4 of 14

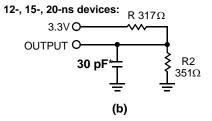
^{2.} V_{IL} (min) = -2.0V and V_{IH} (max) = V_{CC} + 0.5V for pulse durations of less than 20 ns.

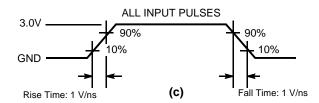
Capacitance

Tested initially and after any design or process changes that may affect these parameters.

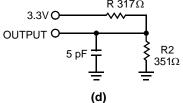
Parameter	Description	Description Test Conditions					
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 3.3V$	8	pF			
C _{OUT}	Output Capacitance		8	pF			


Thermal Resistance


Tested initially and after any design or process changes that may affect these parameters.


Parameter	Description	Test Conditions	SOJ	TSOP II	FBGA	Unit
Θ_{JA}	,	Test conditions follow standard test methods and procedures for measuring	25.99	42.96	38.15	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)	thermal impedance, per EIA/JESD51	18.8	10.75	9.15	°C/W

AC Test Loads and Waveforms


Figure 3. AC Test Loads and Waveforms [3]

High-Z characteristics: R 317Ω 3.3VO

Note

Document Number: 38-05134 Rev. *I Page 5 of 14

^{3.} AC characteristics (except High-Z) for 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).

Switching Characteristics

Over the Operating Range [4]

Dougenetes	Decarin	-10		-12		-15		-20		Unit	
Parameter	Descrip	Description				Max	Min	Max	Min	Max	Unit
Read Cycle											
t _{power} ^[5]	V _{CC} (Typical) to the First A	ccess	100		100		100		100		μS
t _{RC}	Read Cycle Time		10		12		15		20		ns
t _{AA}	Address to Data Valid			10		12		15		20	ns
t _{OHA}	Data Hold from Address C	hange	3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid			10		12		15		20	ns
t _{DOE}	OE LOW to Data Valid	Comm'l/Ind'l/Auto-A		5		6		7		8	ns
		Auto-E				7				8	
t _{LZOE}	OE LOW to Low Z ^[6]		0		0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]			5		6		7		8	ns
t _{LZCE}	CE LOW to Low Z ^[6]		3		3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]			5		6		7		8	ns
t _{PU}	CE LOW to Power Up				0		0		0		ns
t _{PD}	CE HIGH to Power Down			10		12		15		20	ns
t _{DBE}	Byte Enable to Data Valid	Comm'l/Ind'l/Auto-A		5		6		7		8	ns
		Auto-E				7				8	
t _{LZBE}	Byte Enable to Low Z		0		0		0		0		ns
t _{HZBE}	Byte Disable to High Z			6		6		7		8	ns
Write Cycle ^{[8,}	9]										
t _{WC}	Write Cycle Time		10		12		15		20		ns
t _{SCE}	CE LOW to Write End		7		8		10		10		ns
t _{AW}	Address Setup to Write En	d	7		8		10		10		ns
t _{HA}	Address Hold from Write E	nd	0		0		0		0		ns
t _{SA}	Address Setup to Write Sta	art	0		0		0		0		ns
t _{PWE}	WE Pulse Width				8		10		10		ns
t _{SD}	Data Setup to Write End		5		6		7		8		ns
t _{HD}	Data Hold from Write End				0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]		3		3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]			5		6		7		8	ns
t _{BW}	Byte Enable to End of Writ	е	7		8		10		10		ns

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, and input pulse levels of 0 to 3.0V.
 tpower gives the minimum amount of time that the power supply is at typical V_{CC} values until the first memory access is performed.
 At any temperature and voltage condition, theoretic is less than the power supply is at typical V_{CC} values until the first memory access is performed.
 At any temperature and voltage condition, theoretic is less than the power supply is at typical V_{CC} values until the first memory access is performed.
 At any temperature and voltage condition, theoretic is less than theoretic is less than the power any device.
 The proof of the season of the power is less than the performed.
 The internal write time of the memory is defined by the overlap of the power is less than the power is less than the power is less than the proof of the performed.
 The internal write time of the memory is defined by the overlap of the power is less than the power is less than the proof of the performed.
 The internal write time of the memory is defined by the overlap of the power is less than the power is the proof of the power is less than the power is the proof of the power is less than the power is the proof of the power is the po

Document Number: 38-05134 Rev. *I Page 6 of 14

Switching Waveforms

Figure 4. Read Cycle No. 1 (Address Transition Controlled)^[10, 11]

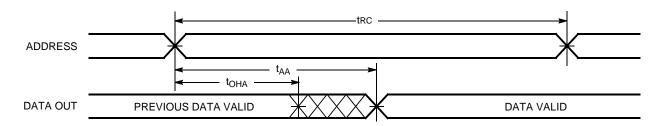
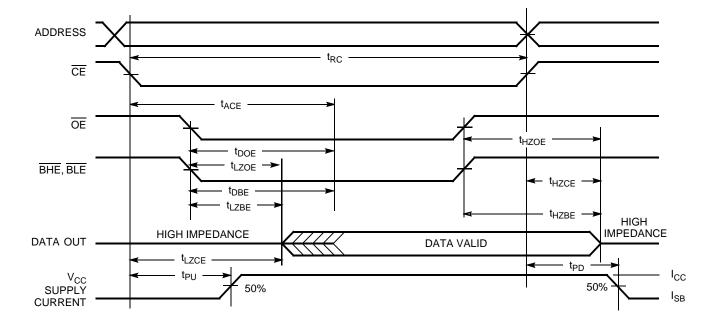



Figure 5. Read Cycle No. 2 (OE Controlled)[11, 12]

^{10.} Device is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} , and/or \overline{BLE} = V_{IL} . 11. \overline{WE} is HIGH for read cycle.

^{12.} Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 (CE Controlled)[13, 14]

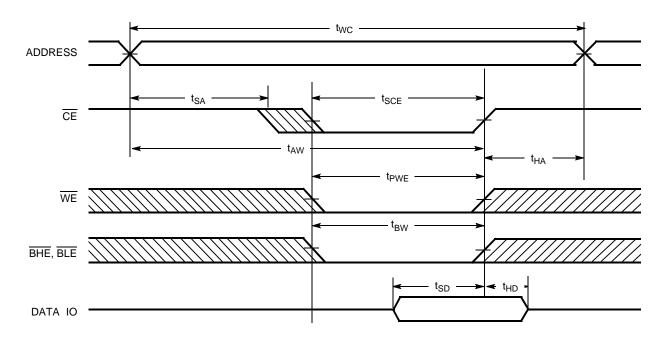
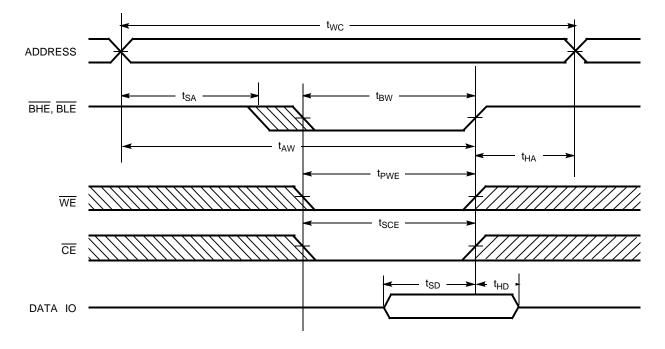
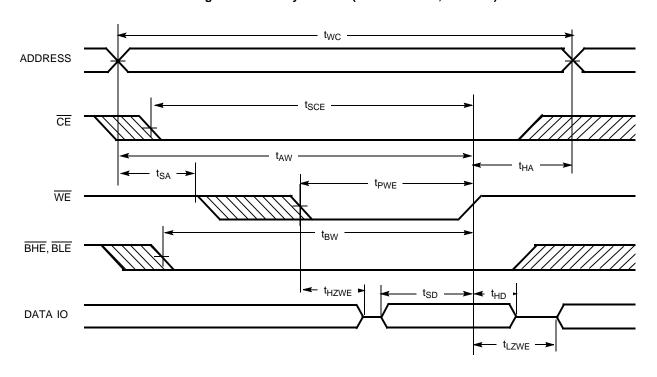



Figure 7. Write Cycle No. 2 (BLE or BHE Controlled)



Notes
13. Data IO is high impedance if \overline{OE} , \overline{BHE} , and/or $\overline{BLE} = V_{|H}$.
14. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high impedance state.

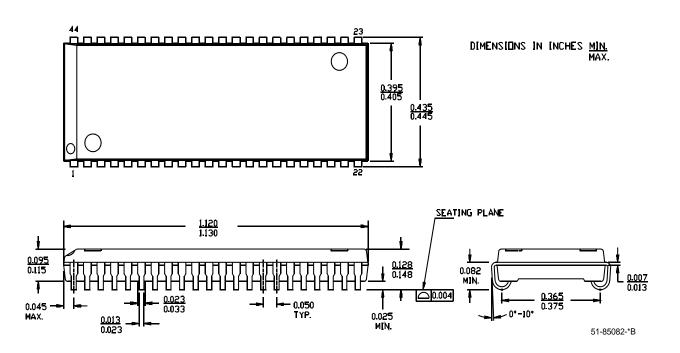
Switching Waveforms (continued)

Figure 8. Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

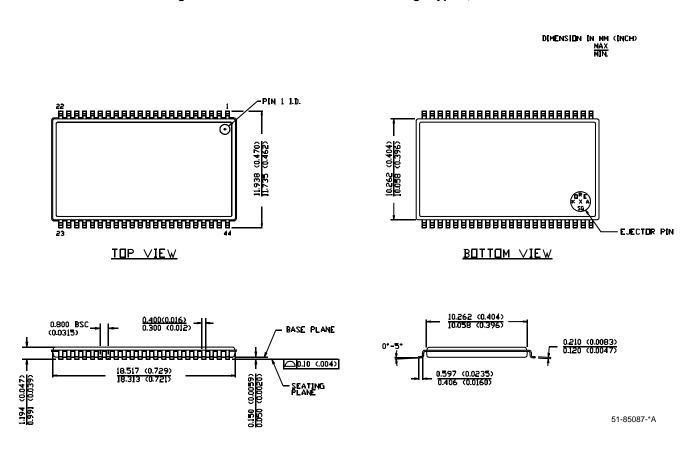
CE	OE	WE	BLE	BHE	100-107	IO ₈ – IO ₁₅	Mode	Power
Н	Х	Х	X	X	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All Bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read – Lower Bits Only	Active (I _{CC})
			Н	L	High Z	Data Out	Read – Upper Bits Only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All Bits	Active (I _{CC})
			L	Н	Data In	High Z	Write – Lower Bits Only	Active (I _{CC})
			Н	L	High Z	Data In	Write – Upper Bits Only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z		
L	Х	Х	Н	Н	High Z	High Z		

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1041CV33-10BAXC	51-85106	48-ball Fine Pitch BGA (Pb-Free)	Commercial
	CY7C1041CV33-10VC	51-85082	44-pin (400-mil) Molded SOJ	
	CY7C1041CV33-10VXC	1	44-pin (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-10ZXC	51-85087	44-pin TSOP II (Pb-Free)	
	CY7C1041CV33-10BAI	51-85106	48-ball Fine Pitch BGA	Industrial
	CY7C1041CV33-10BAXI	1	48-ball Fine Pitch BGA (Pb-Free)	
	CY7C1041CV33-10ZI	51-85087	44-pin TSOP II	
	CY7C1041CV33-10ZXI	1	44-pin TSOP II (Pb-Free)	
	CY7C1041CV33-10BAXA	51-85106	48-ball Fine Pitch BGA (Pb-Free)	Automotive-A
	CY7C1041CV33-10ZSXA	51-85087	44-pin TSOP II (Pb-Free)	
12	CY7C1041CV33-12VXC	51-85082	44-pin (400-mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1041CV33-12ZXC	51-85087	44-pin TSOP II (Pb-Free)	
	CY7C1041CV33-12ZI	51-85087	44-pin TSOP II	Industrial
	CY7C1041CV33-12ZXI	1	44-pin TSOP II (Pb-Free)	
	CY7C1041CV33-12BAXE	51-85106	48-ball Fine Pitch BGA (Pb-Free)	Automotive-E
	CY7C1041CV33-12ZSXE	51-85087	44-pin TSOP II (Pb-Free)	
15	CY7C1041CV33-15ZXC	51-85087	44-pin TSOP II (Pb-Free)	Commercial
	CY7C1041CV33-15VI	51-85082	44-pin (400-mil) Molded SOJ	Industrial
	CY7C1041CV33-15VXI	1	44-pin (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-15ZI	51-85087	44-pin TSOP II	
	CY7C1041CV33-15ZXI	1	44-pin TSOP II (Pb-Free)	
20	CY7C1041CV33-20ZC	51-85087	44-pin TSOP II	Commercial
	CY7C1041CV33-20ZSXA	51-85087	44-pin TSOP II (Pb-Free)	Automotive-A
	CY7C1041CV33-20VE	51-85082	44-pin (400-mil) Molded SOJ	Automotive-E
ŀ	CY7C1041CV33-20VXE		44-pin (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-20ZE	51-85087	44-pin TSOP II	
	CY7C1041CV33-20ZSXE		44-pin TSOP II (Pb-Free)	

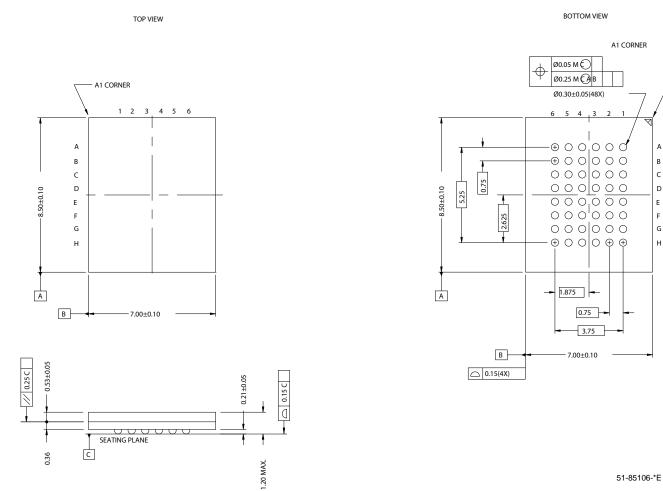
Please contact your local Cypress sales representative for availability of these parts

Package Diagrams


Figure 9. 44-Pin (400 Mil) Molded SOJ, 51-85082

Package Diagrams (continued)

Figure 10. 44-Pin Thin Small Outline Package Type II, 51-85087



Document Number: 38-05134 Rev. *I Page 12 of 14

Package Diagrams (continued)

Figure 11. 48-Ball FBGA (7 x 8.5 x 1.2 mm), 51-85106

Document Number: 38-05134 Rev. *I Page 13 of 14

Document History Page

	nent Title: C nent Numbe			256K x 16) Static RAM					
REV.	ECN NO.	Issue Date	Orig. of Change Description of Change						
**	109513	12/13/01	HGK	New Data Sheet					
*A	112440	12/20/01	BSS	Updated 51-85106 from revision *A to *C					
*B	112859	03/25/02	DFP	Added CY7C1042CV33 in BGA package Removed 1042 BGA option pin ACC Final Data Sheet					
*C	116477	09/16/02	CEA	Add applications foot note to data sheet					
*D	119797	10/21/02	DFP	Added 20-ns speed bin					
*E	262949	See ECN	RKF	Added Lead (Pb)-Free parts in the Ordering info (Page #9) Added Automotive Specs to Datasheet					
*F	361795	See ECN	SYT	Added Pb-Free offerings in the Ordering Information					
*G	435387	See ECN	NXR	Removed -8 Speed bin from Product offering. Corrected typo in description for BHE/BLE in pin definitions table on Page# 3 corrected their Pin name from OE2 to OE. Included the Maximum Ratings for Static Discharge Voltage and Latch up Current. Changed the description of I _{IX} current from Input Load Current to Input Leakage Current Added note# 4 on page# 4 Updated the Ordering Information table					
*H	499153	See ECN	NXR	Added Automotive-A Operating Range Changed t _{power} value from 1 μs to 100 μs Updated Ordering Information table					
*	2104110	See ECN	VKN/AESA	Added Automotive-E specs for 12 ns speed Updated Ordering Information table					

© Cypress Semiconductor Corporation, 2001-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-05134 Rev. *I

Revised February 14, 2008

Page 14 of 14

All product and company names mentioned in this document are the trademarks of their respective holders.