

1-Mbit (64K x 16) Static RAM

Features

• Temperature Ranges

— Commercial: 0°C to 70°C — Industrial: –40°C to 85°C — Automotive: –40°C to 125°C

High speed

- t_{AA} = 12 ns (Commercial & Industrial)

- $t_{AA} = 15 \text{ ns (Automotive)}$

CMOS for optimum speed/power

· Low active power

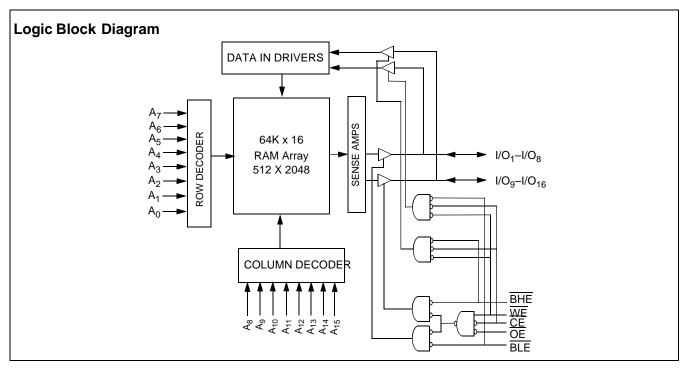
— 770 mW (max.)

· Automatic power-down when deselected

Independent control of upper and lower bits

 Available in Pb-free and non Pb-free 44-pin TSOP II and 44-pin 400-mil-wide SOJ

Functional Description[1]

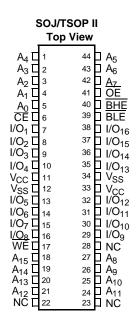

The CY7C1021B is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₁ through I/O₈), is written into the location specified on the address pins (A0 through A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₉ through I/O₁₆) is written into the location specified on the address pins (A_0) through A_{15}).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O₁ to I/O₈. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O₁ through I/O₁₆) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1021B is available in standard 44-pin TSOP Type II and 44-pin 400-mil-wide SOJ packages.


1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Selection Guide

		-12	-15
Maximum Access Time (ns)		12	15
Maximum Operating Current (mA)	Com'l/Ind'l	140	130
	Automotive		130
Maximum CMOS Standby Current (mA)	Com'I/Ind'I	10	10
	Automotive		15
	L Version	0.5	0.5

Pin Configurations

Pin Definitions

Pin Name	SOJ, TSOP-Pin Number	I/O Type	Description
A ₀ -A ₁₅	1-5,18-21, 24-27, 42-44	Input	Address Inputs used to select one of the address locations.
I/O ₁ –I/O ₁₆	7–10, 13–16, 29–32, 35–38	Input/Output	Bidirectional Data I/O lines . Used as input or output lines depending on operation.
NC	22, 23, 28	No Connect	No Connects. Not connected to the die.
WE	17	Input/Control	Write Enable Input, active LOW. When selected LOW, a Write is conducted. When deselected HIGH, a Read is conducted.
CE	6	Input/Control	Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
BHE, BLE	40, 39	Input/Control	Byte Write Select Inputs, active LOW. $\overline{\rm BHE}$ controls I/O ₁₆ –I/O ₉ , BLE controls I/O ₈ –I/O ₁ .
ŌĒ	41	Input/Control	Output Enable, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins.
V _{SS}	12, 34	Ground	Ground for the device . Should be connected to ground of the system.
V _{CC}	11, 33	Power Supply	Power Supply inputs to the device.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage on $\rm V_{CC}$ Relative to $\rm GND^{[2]}$ –0.5V to +7.0V DC Voltage Applied to Outputs in High Z State $^{[2]}$ –0.5V to $\rm V_{CC} + 0.5V$ DC Input Voltage^[2].....-0.5V to V_{CC}+0.5V Current into Outputs (LOW)20 mA

Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature (T _A) ^[3]	V _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%
Automotive	–40°C to +125°C	5V ± 10%

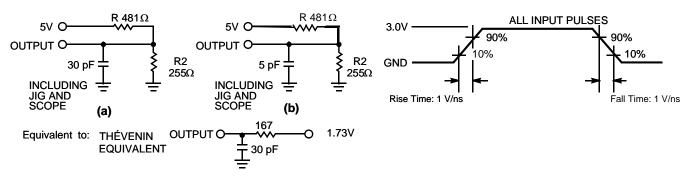
Electrical Characteristics Over the Operating Range

		Test		-1	2	-1	5	
Parameter	Description	Conditions		Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ m/s}$	4	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$			0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	6.0	2.2	6.0	V
V _{IL}	Input LOW Voltage ^[2]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_CC$	Com'l/Ind'l	-1	+1	-1	+1	μΑ
			Auto			-4	+4	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{I} \leq V_{CC},$	Com'l/Ind'l	-1	+1	-1	+1	μΑ
		Output Disabled	Auto			-4	+4	μΑ
I _{CC}	V _{CC} Operating	$V_{CC} = Max., I_{OUT} = 0 mA,$	Com'l/Ind'l		140		130	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Auto				130	mA
I _{SB1}	Automatic CE	Max. V _{CC} , CE ≥ V _{IH}	Com'l/Ind'l		40		40	mA
	Power Down Current —TTL Inputs	$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	Auto				50	mA
I _{SB2}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{CC}$ –	Com'l/Ind'l		10		10	mA
	Power Down Current —CMOS Inputs	$0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$	Auto				15	mA
		IIV — /	L Version		0.5		0.5	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

Thermal Resistance^[4]


Parameter	Description	Test Conditions	44-pin SOJ	44-pin TSOP-II	Unit
Θ_{JA}	(Junction to Ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance,	64.32	76.89	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)	per EIA/JESD51.	31.03	14.28	°C/W

Notes:

- 2. $V_{\rm IL}$ (min.) = -2.0V and $V_{\rm IH}$ (max) = $V_{\rm CC}$ + 0.5V for pulse durations of less than 20 ns. 3. $T_{\rm A}$ is the "Instant On" case temperature. 4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching CharacteristicsOver the Operating Range^[5]

		7C10	21B-12	7C102	21B-15	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle				•	•	
t _{RC}	Read Cycle Time	12		15		ns
t _{AA}	Address to Data Valid		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15	ns
t _{DOE}	OE LOW to Data Valid		6		7	ns
t _{LZOE}	OE LOW to Low Z ^[6]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15	ns
t _{DBE}	Byte Enable to Data Valid		6		7	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		6		7	ns
Write Cycle ^[8]	•	•	•	•	•	•
t _{WC}	Write Cycle Time	12		15		ns
t _{SCE}	CE LOW to Write End	9		10		ns
t _{AW}	Address Set-Up to Write End	8		10		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{SD}	Data Set-Up to Write End	6		8		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7	ns
t _{BW}	Byte Enable to End of Write	8		9		ns

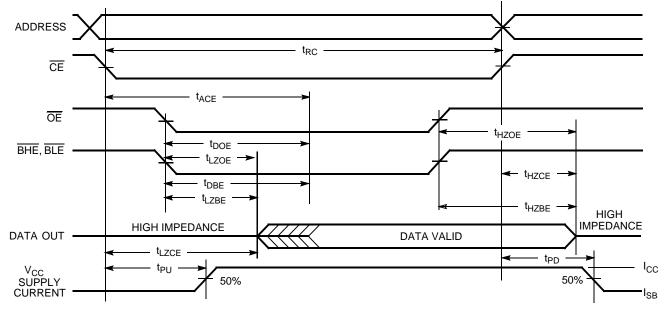
Notes:

^{5.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

^{6.} At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

7. t_{HZOE}, t_{HZDE}, t_{HZDE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 <u>D</u>F as in <u>part</u> (b) of AC <u>Test Loads</u>. Transition is measured ±500 mV from steady-state voltage.

8. The internal write time of the memory is defined by the overlap of <u>CE</u> LOW, <u>WE</u> LOW and <u>BHE/BLE</u> LOW. <u>CE</u>, <u>WE</u> and <u>BHE/BLE</u> must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.



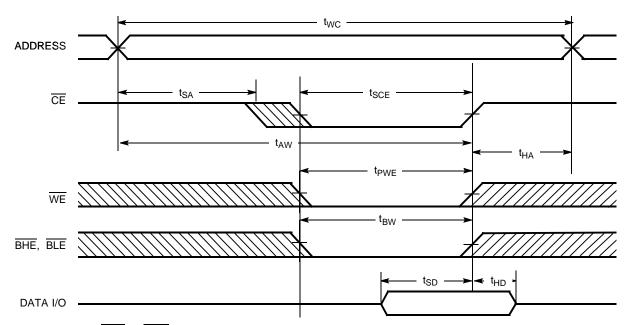
Switching Waveforms

Read Cycle No. $\mathbf{1}^{[9, 10]}$

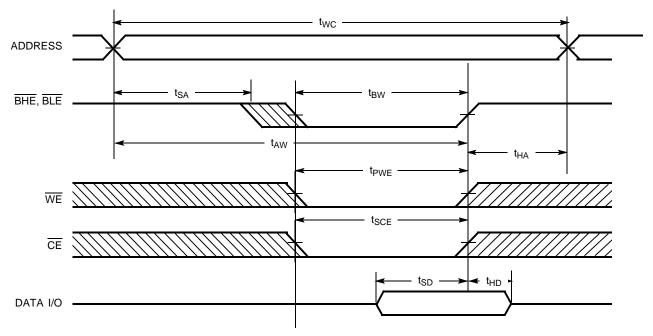
Read Cycle No. 2 (OE Controlled)[10, 11]

Notes:

- 9. <u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u>, <u>BHE</u> and/or <u>BHE</u> = V_{IL}.


 10. <u>WE</u> is HIGH for read cycle.

 11. Address valid prior to or coincident with <u>CE</u> transition LOW.

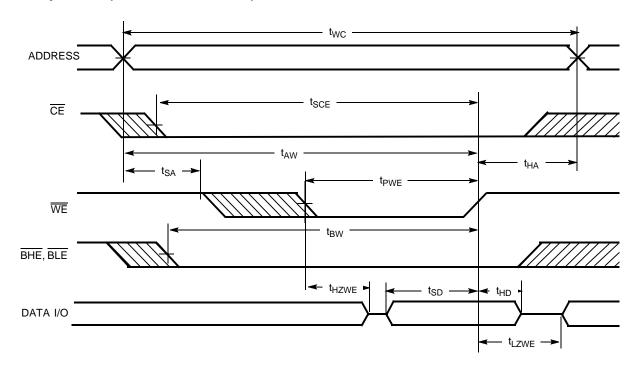


Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[12, 13]

Write Cycle No. 2 (BLE or BHE Controlled)

Notes:


12. Data I/O is high impedance if $\overline{\text{OE}}$ or $\overline{\text{BHE}}$ and/or $\overline{\text{BLE}} = \text{V}_{\text{IH}}$.

13. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

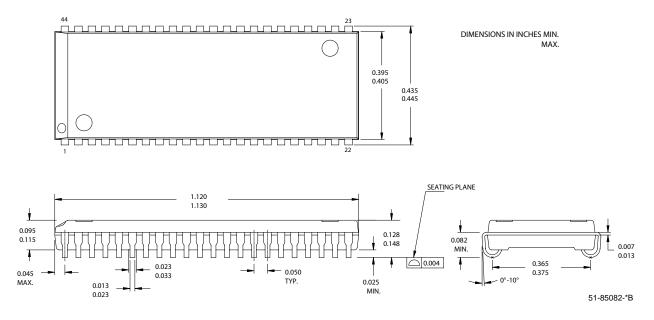
Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₁ –I/O ₈	I/O ₉ -I/O ₁₆	Mode	Power
Н	Χ	Χ	Χ	X	High Z	High Z	Power-Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read - All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read - Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write - All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write - Upper bits only	Active (I _{CC})
L	Н	Н	Χ	X	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Χ	Χ	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

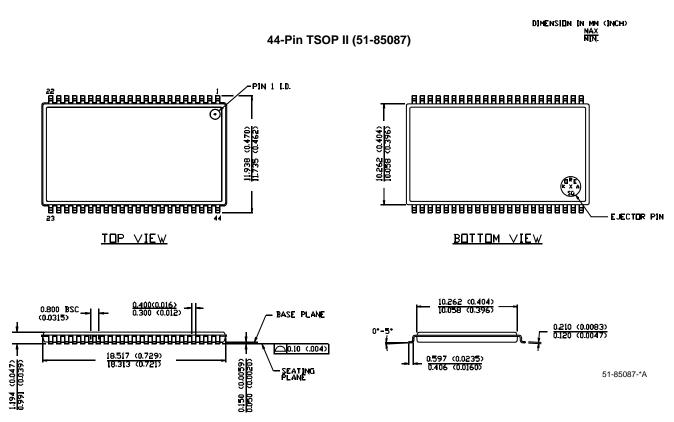
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1021B-12VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1021B-12VXC		44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021B-12ZC	51-85087	44-pin TSOP Type II	
	CY7C1021B-12ZXC		44-pin TSOP Type II (Pb-Free)	
	CY7C1021B-12VI	51-85082	44-pin (400-Mil) Molded SOJ	Industrial
	CY7C1021B-12VXI		44-pin (400-Mil) Molded SOJ (Pb-Free)	



Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C1021B-15VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1021B-15VXC	7	44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021B-15ZC	51-85087	44-pin TSOP Type II	
	CY7C1021B-15ZXC	7	44-pin TSOP Type II (Pb-Free)	
	CY7C1021B-15VI	51-85082	44-pin (400-Mil) Molded SOJ	Industrial
	CY7C1021B-15VXI		44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021B-15ZI	51-85087	44-pin TSOP Type II	
	CY7C1021BL-15ZI		44-pin TSOP Type II	
	CY7C1021B-15ZXI		44-pin TSOP Type II (Pb-Free)	
	CY7C1021BL-15ZXI	7	44-pin TSOP Type II (Pb-Free)	
	CY7C1021B-15VE	51-85082	44-pin (400-Mil) Molded SOJ	Automotive
	CY7C1021B-15VXE	7	44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021B-15ZE	51-85087	44-pin TSOP Type II	
	CY7C1021B-15ZSXE	7	44-pin TSOP Type II (Pb-Free)	

Package Diagrams


44-pin (400-Mil) Molded SOJ (51-85082)

[+] Feedback

Package Diagrams (continued)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109889	09/22/01	SZV	Change from Spec number: 38-00951 to 38-05145
*A	238454	See ECN	RKF	Added Automotive Specs to Data Sheet Added Pb-Free device offering in the Ordering Information
*B	361795	See ECN	SYT	Added Pb-Free offerings in the Ordering Information
*C	505726	See ECN	NXR	Removed CY7C10211B from Product offering Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Changed teh I _{CC} Max value from 150 mA to 130 mA Removed I _{OS} parameter from DC Electrical Characteristics table Updated Ordering Information Table

Document #: 38-05145 Rev. *C Page 10 of 10