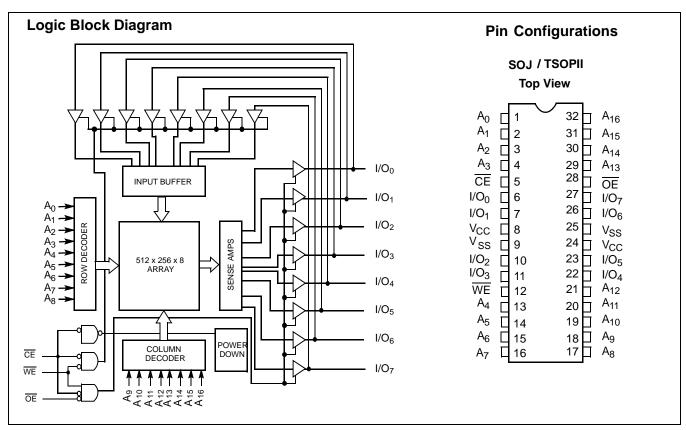


128K x 8 Static RAM

Features

- High speed
 - $t_{AA} = 12, 15 \text{ ns}$
- · CMOS for optimum speed/power
- Center power/ground pinout
- · Automatic power-down when deselected
- Easy memory expansion with CE and OE options
- Functionally equivalent to CY7C1019

Functional Description


The CY7C1019BN is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and three-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₆).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1019BN is available in standard 32-pin TSOP Type II and 400-mil-wide SOJ packages.

Selection Guide

		7C1019BN-12	7C1019BN-15	Unit
Maximum Access Time		12	15	ns
Maximum Operating Current		140	130	mA
Maximum Standby Current		10	10	mA
	L	1	1	mA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage on V_{CC} to Relative $\mbox{GND}^{[1]}\,....\,-0.5\mbox{V}$ to +7.0V

DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V CC + 0.5V

DC Input Voltage^[1].....-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)......20 mA Static Discharge Voltage.....>2001V (per MIL-STD-883, Method 3015) Latch-Up Current>200 mA

Operating Range

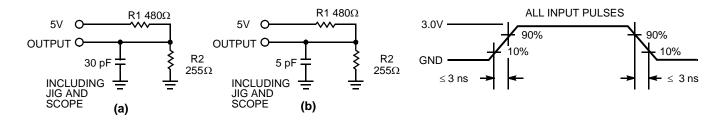
Range	Ambient Temperature ^[2]	V _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range

				-12		-15		
Parameter	Description	Test Conditions	Test Conditions		Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 I$	mΑ		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_CC$		– 1	+1	-1	+1	μА
I _{OZ}	Output Leakage Current	GND ≤ V _I ≤ V _{CC} , Output Disabled		- 5	+5	-5	+5	μА
I _{CC}		$V_{CC} = Max., I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$			140		130	mA
I _{SB1}		Max. V_{CC} , $\overline{CE} \ge V_{IH}$			40		40	mA
Power-Down Curi —TTL Inputs		$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	L		20		20	
I _{SB2}	Automatic CE				10		10	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$	L		1		1	

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF


Notes:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. T_A is the "Instant On" case temperature.
- 3. Tested initially and after any design or process changes that may affect these parameters.

Document #: 001-06425 Rev. **

AC Test Loads and Waveforms

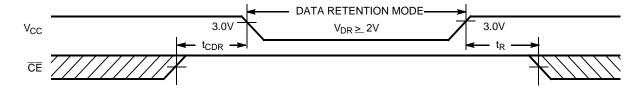
Equivalent to: THÉVENIN EQUIVALENT OUTPUT O

Switching Characteristics^[4] Over the Operating Range

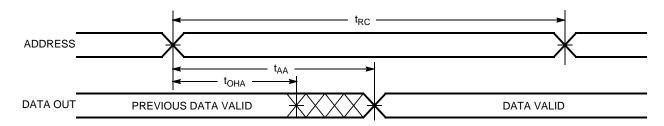
			12		15	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle			1	•		
t _{RC}	Read Cycle Time	12		15		ns
t _{AA}	Address to Data Valid		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15	ns
t _{DOE}	OE LOW to Data Valid		6		7	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		6		7	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		3		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		6		7	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15	ns
Write Cycle ^{[7, 8}	3]					
t _{WC}	Write Cycle Time	12		15		ns
t _{SCE}	CE LOW to Write End	9		10		ns
t _{AW}	Address Set-Up to Write End	8		10		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	8		10		ns
t _{SD}	Data Set-Up to Write End	6		8		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		6		7	ns

Notes:

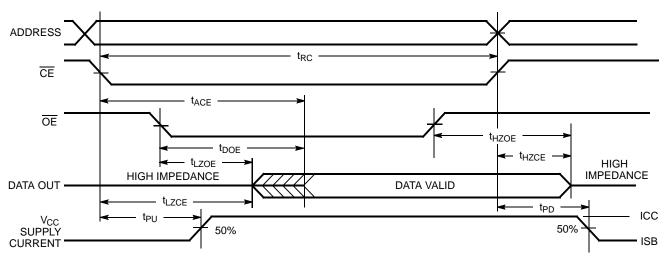
- 4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.


- t_{HZOE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, t_{HZOE} and t_{HZWE} is less than t_{LZWE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
- 8. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Data Retention Characteristics Over the Operating Range (L Version Only)


Parameter	Description	Conditions	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention	No input may exceed V _{CC} + 0.5V	2.0		V
I _{CCDR}	Data Retention Current	$\frac{V_{CC} = V_{DR} = 2.0V,}{CE \ge V_{CC} - 0.3V,}$		300	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$V_{\text{IN}} \ge V_{\text{CC}} - 0.3 \text{V or } V_{\text{IN}} \le 0.3 \text{V}$	0		ns
t _R	Operation Recovery Time		200		μS

Data Retention Waveform

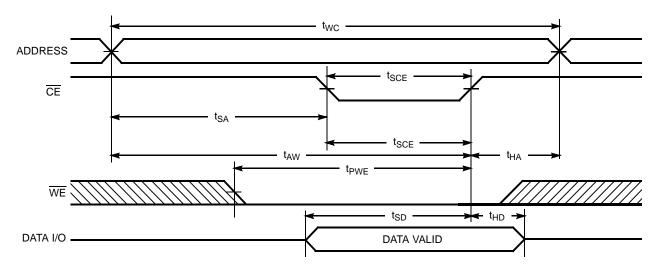


Switching Waveforms

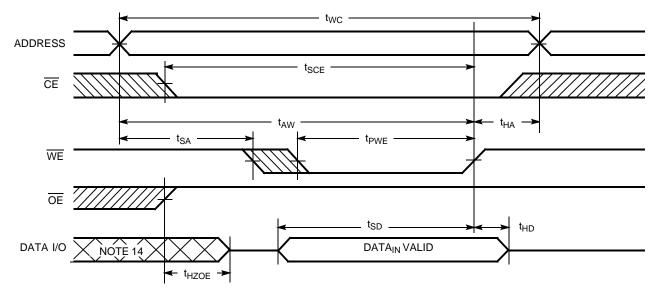
Read Cycle No. 1^[9, 10]

Read Cycle No. 2 (OE Controlled)[10, 11]

Notes:


- 9. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{II}$.
- 10. WE is HIGH for read cycle.
- 11. Address valid prior to or coincident with \overline{CE} transition LOW.

Document #: 001-06425 Rev. **



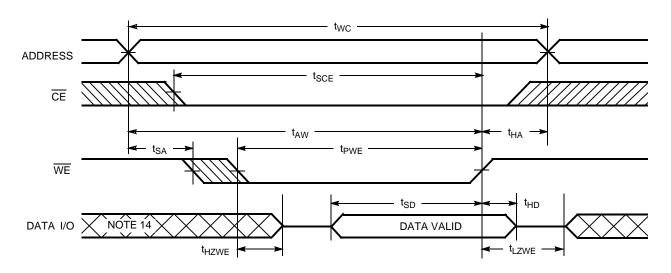
Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[12, 13]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[12, 13]

Notes:

12. Data I/O is high impedance if $\overline{OE} = V_{IH}$.


13. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

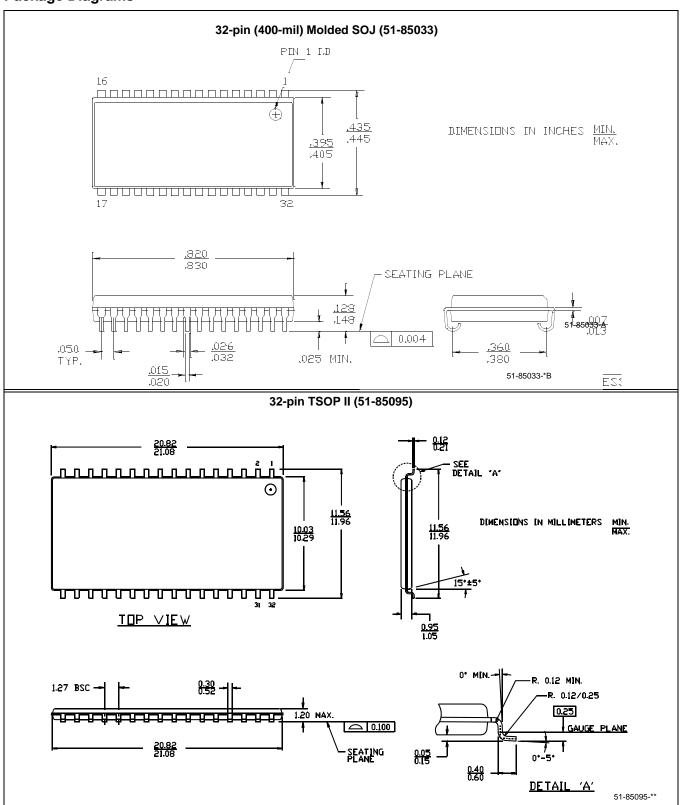
14. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[13]

Truth Table

CE	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C1019BN-12VC	51-85033	32-Lead 400-Mil Molded SOJ	Commercial
	CY7C1019BN-12ZC	51-85095	32-Lead TSOP Type II	
	CY7C1019BN-12ZXC	51-85095	32-Lead TSOP Type II (Pb-free)	
15	CY7C1019BN-15VC	51-85033	32-Lead 400-Mil Molded SOJ	Commercial
	CY7C1019BN-15ZXC	51-85095	32-Lead TSOP Type II (Pb-free)	

Please contact local sales representative regarding availability of these parts

Package Diagrams

All product or company names mentioned in this document may be the trademarks of their respective holders.

Document #: 001-06425 Rev. **

Page 7 of 8

Document History Page

	Document Title: CY7C1019BN 128K x 8 Static RAM Document Number: 001-06425							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	423847	See ECN	NXR	New Data Sheet				

Document #: 001-06425 Rev. **