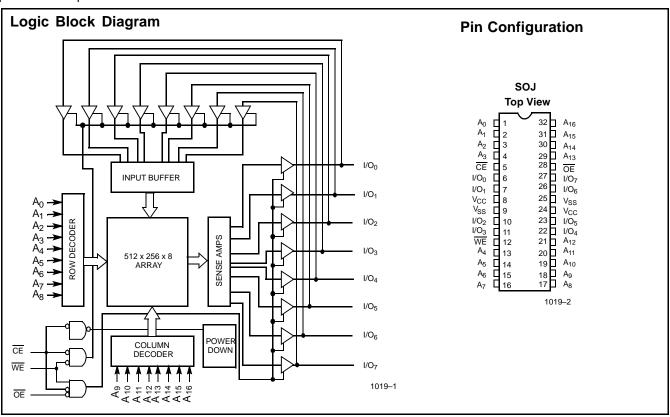


128K x 8 Static RAM

Features

- High speed
 -t_{AA} = 10 ns
- CMOS for optimum speed/power
- · Center power/ground pinout
- · Automatic power-down when deselected
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ options

Functional Description


The CY7C1019 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\text{CE}}$), an active LOW output enable ($\overline{\text{OE}}$), and three-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking chip enable (\overline{CE}) and write enable (\overline{WE}) inputs LOW. Data on the eight I/O pins $(I/O_0$ through $I/O_7)$ is then written into the location specified on the address pins $(A_0$ through $A_{16})$.

Reading from the device is accomplished by taking chip enable ($\overline{\text{CE}}$) and output enable ($\overline{\text{OE}}$) LOW while forcing write enable ($\overline{\text{WE}}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1019 is available in standard 400-mil-wide SOJs.

Selection Guide

		7C1019-10	7C1019-12	7C1019-15
Maximum Access Time (ns)		10	12	15
Maximum Operating Current (mA)		240	220	200
	L	210	190	175
Maximum Standby Current (mA)		10	10	10
	L	1	1	1

Shaded areas contain advance information.

Cypress Semiconductor Corporation
Document #: 38-05055 Rev. **

3901 North First Street •

San Jose

CA 95134 • 408-943-2600

Revised August 31, 2001

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[1]}$ –0.5V to +7.0V DC Voltage Applied to Outputs in High Z State $^{[1]}$-0.5V to $^{[1]}$ voltage $^{[1]}$-0.5V DC Input Voltage^[1]-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	5V ± 10%

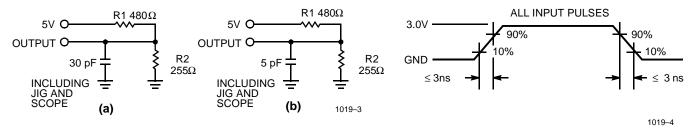
Electrical Characteristics Over the Operating Range

				7C1019-10		7C10)19-12	7C1019-15		
Parameter	Description	Test Conditions	Test Conditions			Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 n$	nΑ	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ m/s}$	١		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V	
V_{IL}	Input LOW Voltage ^[1]		-0.3	0.8	-0.3	0.8	-0.3	0.8	V	
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-1	+1	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_1 \le V_{CC}$, Output Disabled		- 5	+5	- 5	+5	- 5	+5	μА
I _{CC}	V _{CC} Operating	V _{CC} = Max.,			240		220		200	mA
	Supply Current	$I_{OUT} = 0 \text{ mÅ},$ $f = f_{MAX} = 1/t_{RC}$			210		190		175	
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{IH}$			40		40		40	mA
	Power-Down Current $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$		L		20		20		20	
I _{SB2}	Automatic CE	Max. V _{CC} ,			10		10		10	mA
	Power-Down Current —CMOS Inputs	$\overline{\text{CE}} \ge V_{\text{CC}}^{\text{C}} - 0.3V,$ $V_{\text{IN}} \ge V_{\text{CC}}^{\text{C}} - 0.3V,$ or $V_{\text{IN}} \le 0.3V,$ f=0			1		1		1	

Shaded areas contain advance information.

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF


Notes:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- T_A is the "instant on" case temperature.
 Tested initially and after any design or process changes that may affect these parameters.

Document #: 38-05055 Rev. **

AC Test Loads and Waveforms

THÉVENIN EQUIVALENT Equivalent to:

Switching Characteristics^[4] Over the Operating Range

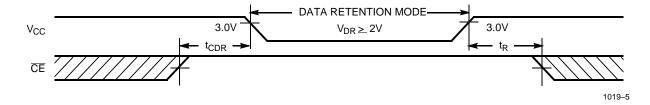
		7C10	19-10	7C1019-12		7C1019-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	LE			I.	l	I	l	
t _{RC}	Read Cycle Time	10		12		15		ns
t _{AA} Address to Data Valid			10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		5		6		7	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		5		6		7	ns
t _{LZCE}	E CE LOW to Low Z ^[6]			3		3		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		5		6		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12		15	ns
WRITE CYC	CLE ^[7,8]	<u> </u>	•		•		•	
t _{WC}	Write Cycle Time	10		12		15		ns
t _{SCE}	CE LOW to Write End	8		9		10		ns
t _{AW}	Address Set-Up to Write End	7		8		10		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	7		8		10		ns
t _{SD}	Data Set-Up to Write End	5		6		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		5		6		7	ns

Shaded areas contain advance information.

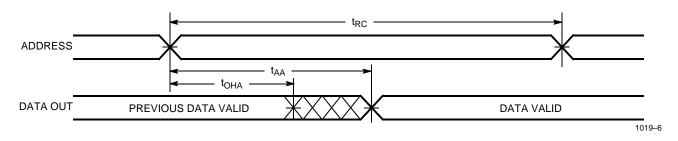
Note:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified $I_{\mbox{\scriptsize OL}}/I_{\mbox{\scriptsize OH}}$ and 30-pF load capacitance.
- t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.

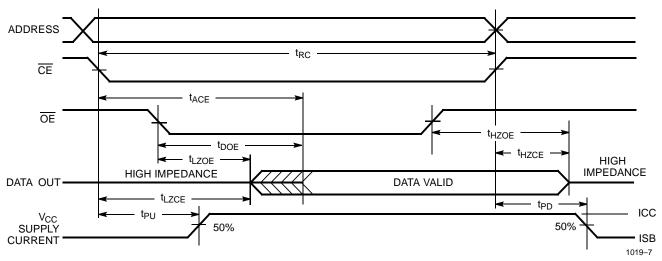
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.


 The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Data Retention Characteristics Over the Operating Range (L Version Only)


Parameter	Description	Conditions	Min.	Max	Unit
V_{DR}	V _{CC} for Data Retention	No input may exceed V _{CC} + 0.5V	2.0		V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}}{CE_1} = V_{DR} = 3.0V,$ $CE_1 \ge V_{CC} - 0.3V,$		300	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	0		ns
t _R	Operation Recovery Time		t _{RC}		ns

Data Retention Waveform

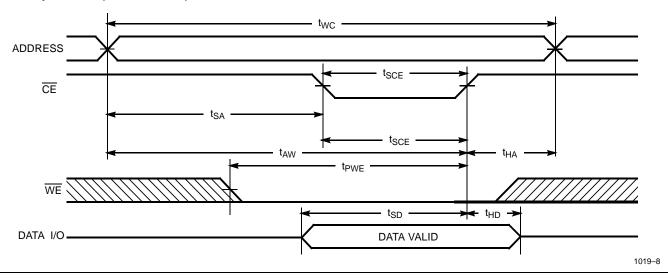


Switching Waveforms

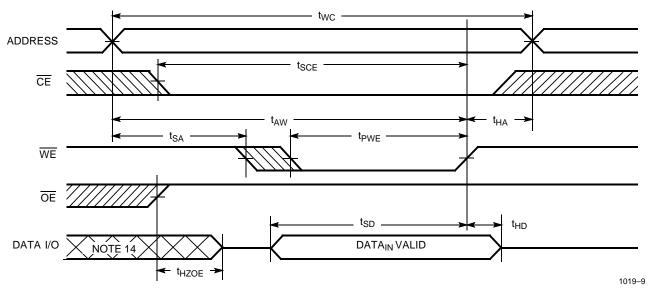
Read Cycle No. $\mathbf{1}^{[9, 10]}$

Read Cycle No. 2 (OE Controlled)[10, 11]

Notes:


- 9. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 10. WE is HIGH for read cycle.
 11. Address valid prior to or coincident with CE transition LOW.

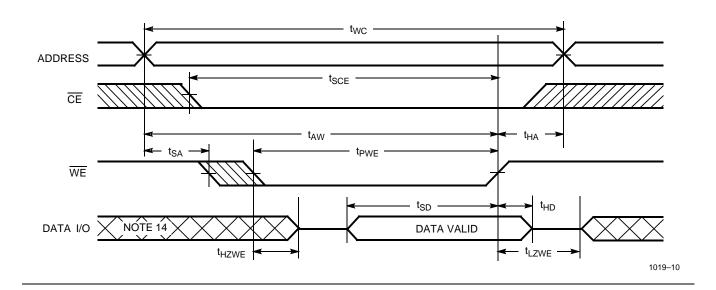
Document #: 38-05055 Rev. **



Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled)[12, 13]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[12, 13]


Notes:

- 12. Data I/O is high impedance if OE = V_{IH}.
 13. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
 14. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

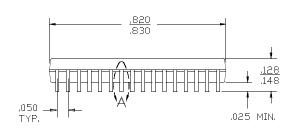
Write Cycle No. 3 (WE Controlled, OE LOW)[13]

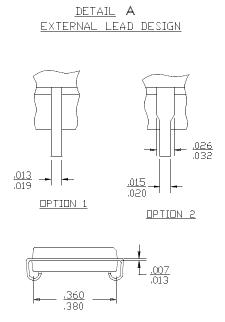
Truth Table

CE	OE	WE	I/O ₀ -I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1019-10VC	V33	32-Lead 400-Mil Molded SOJ	Commercial
	CY7C1019L-10VC	V33	32-Lead 400-Mil Molded SOJ	
12	CY7C1019-12VC	V33	32-Lead 400-Mil Molded SOJ	Commercial
	CY7C1019L-12VC	V33	32-Lead 400-Mil Molded SOJ	
15	CY7C1019-15VC	V33	32-Lead 400-Mil Molded SOJ	Commercial
	CY7C1019L-15VC	V33	32-Lead 400-Mil Molded SOJ	


Shaded area contains advance information.



Package Diagram

32-Lead (400-Mil) Molded SOJ V33

Document Title: 7C1019 128K x 8 Static RAM Document Number: 38-05055						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	107246	09/10/01	SZV	Change from Spec number: 38-00440 to 38-05055		

Document #: 38-05055 Rev. **