FAIRCHILD

SEMICONDUCTOR®

SSP7N60B/SSS7N60B

600V N-Channel MOSFET

General Description

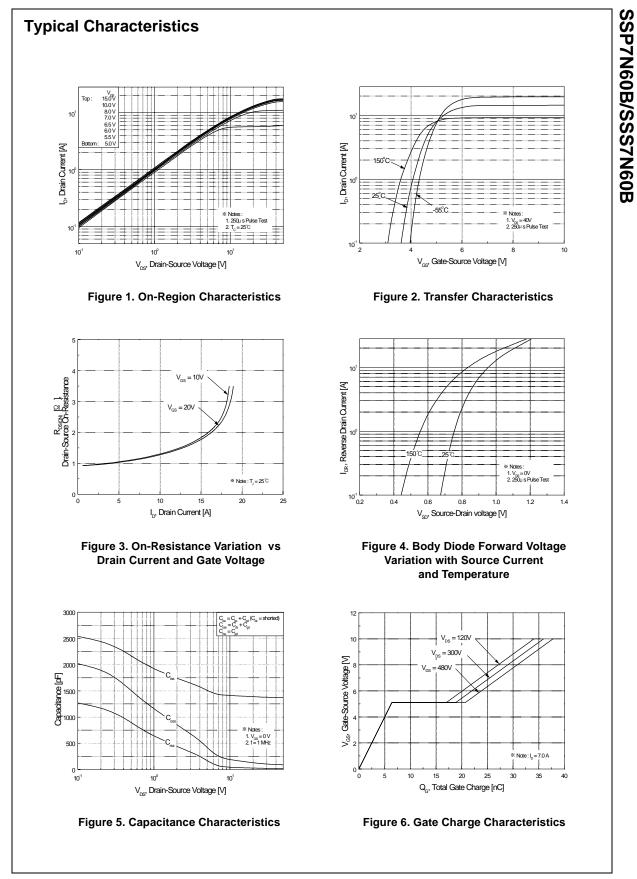
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.

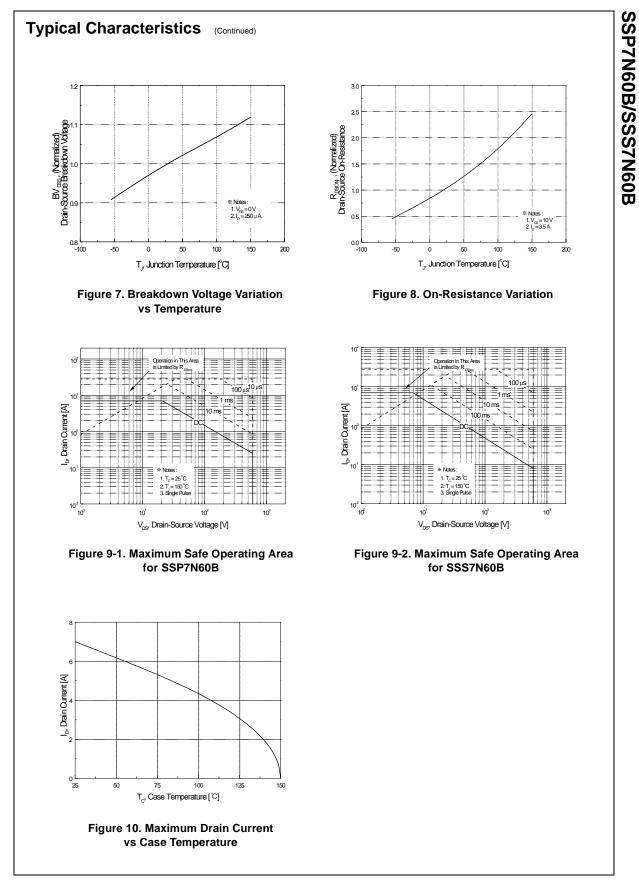
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies.

Features

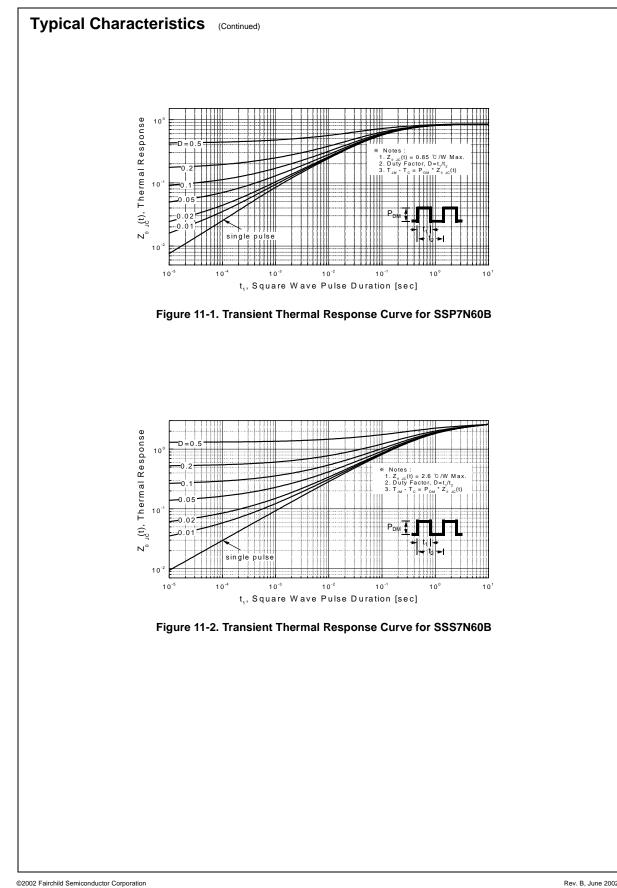
- 7.0A, 600V, $R_{DS(on)} = 1.2\Omega @V_{GS} = 10 V$ Low gate charge (typical 38 nC)
- Low Crss (typical 23 pF) •
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- TO-220F package isolation = 4.0kV (Note 6)

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

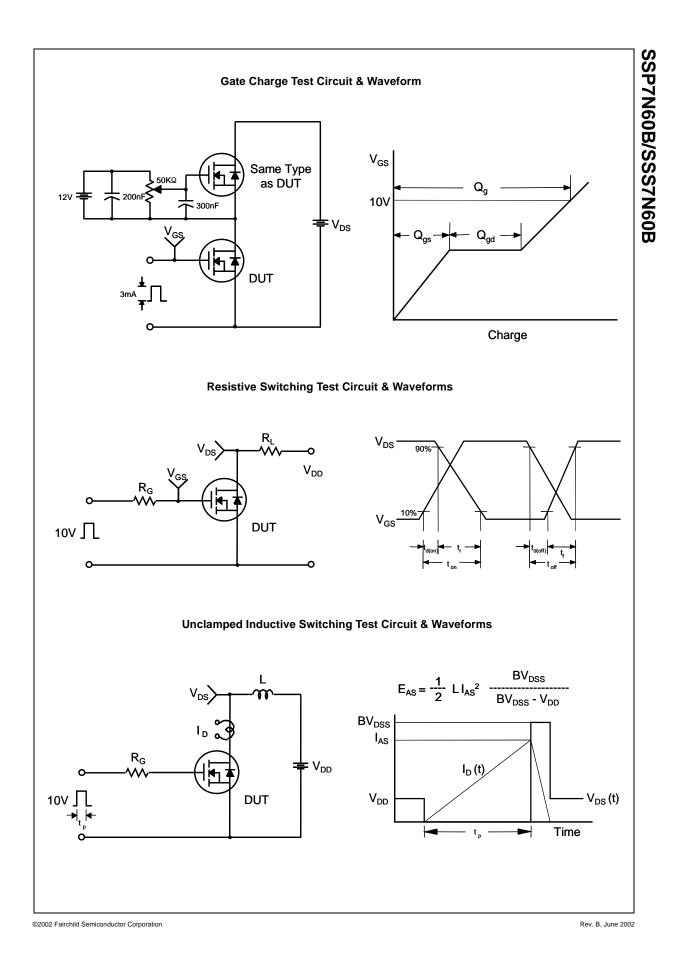

Symbol	Parameter		SSP7N60B	SSS7N60B	Units
V _{DSS}	Drain-Source Voltage		6	00	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		7.0	7.0 *	А
	- Continuous (T _C = 100°C)		4.4	4.4 *	А
I _{DM}	Drain Current - Pulsed	(Note 1)	28	28 *	А
V _{GSS}	Gate-Source Voltage		± 30		V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		420		mJ
I _{AR}	Avalanche Current	(Note 1)	7.0		А
E _{AR}	Repetitive Avalanche Energy (Note 1)		14.7		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		5.5		V/ns
P _D	Power Dissipation (T _C = 25°C) - Derate above 25°C		147	48	W
			1.18	0.38	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to	o +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300		°C
۲L			5		

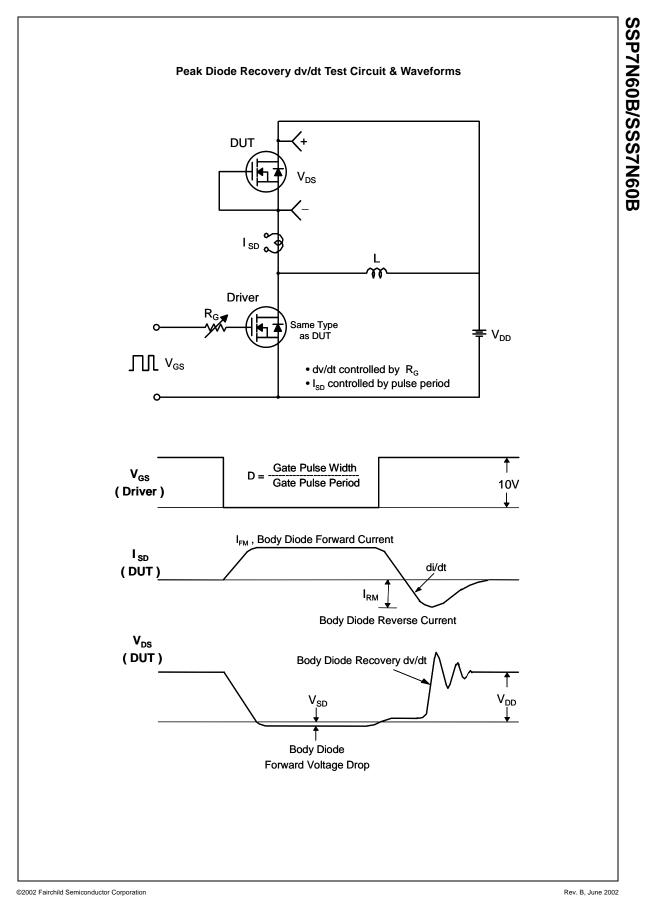

Thermal Characteristics

Symbol	Parameter	SSP7N60B	SSS7N60B	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case Max.	0.85	2.6	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink Typ.			°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient Max.	62.5	62.5	°C/W

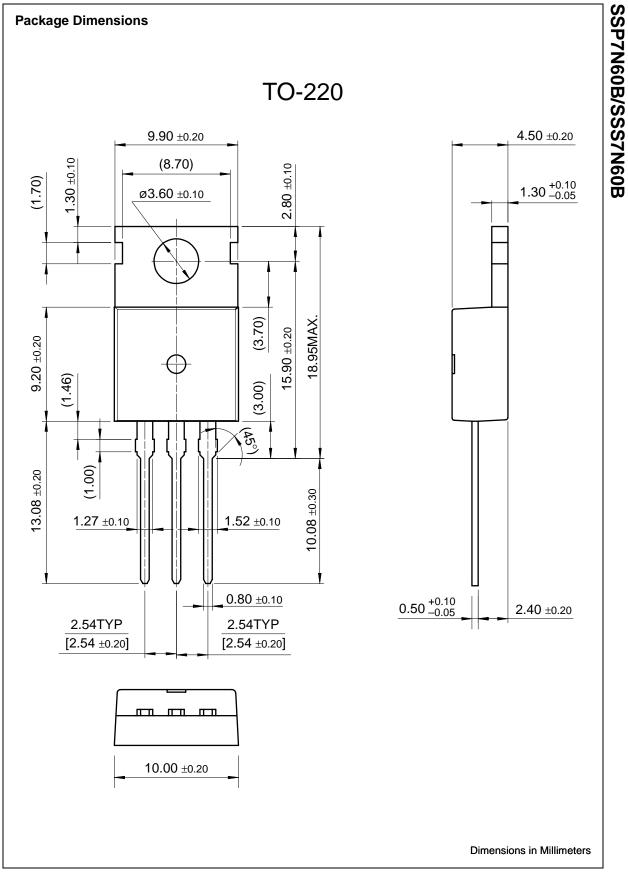

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
	restoriction					
BV _{DSS}	Iracteristics Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	600			V
ΔBV_{DSS} / ΔT_{1}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		0.65		V/°C
I _{DSS}		V _{DS} = 600 V, V _{GS} = 0 V			10	μA
·D22	Zero Gate Voltage Drain Current	$V_{DS} = 480 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			100	μ <u>Α</u>
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
0001		00 00				
	racteristics		1			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V_{GS} = 10 V, I _D = 3.5 A		1.0	1.2	Ω
9fs	Forward Transconductance	$V_{DS} = 40 \text{ V}, I_D = 3.5 \text{ A}$ (Note 4)		8.2		S
Dynami	ic Characteristics					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		1380	1800	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		115	150	pF
C _{rss}	Reverse Transfer Capacitance	-		23	30	pF
Switchi	ng Characteristics					
t _{d(on)}	Turn-On Delay Time			30	70	ns
t _r	Turn-On Rise Time	$V_{DD} = 300 \text{ V}, I_D = 7.0 \text{ A},$		80	170	ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 25 \Omega$		125	260	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		85	180	ns
Q _g	Total Gate Charge	V _{DS} = 480 V, I _D = 7.0 A,		38	50	nC
Q _{gs}	Gate-Source Charge	$V_{\rm GS} = 400$ V, $I_{\rm D} = 7.0$ A, $V_{\rm GS} = 10$ V		6.4		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		15		nC
Drain-S I _S I _{SM}	Maximum Continuous Drain-Source Diode Forward Current Maximum Pulsed Drain-Source Diode Forward Current				7.0 28	A
V _{SD}	Drain-Source Diode Forward Voltage				1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_S = 7.0 A,$		415		ns
		$dI_{\rm F} / dt = 100 \text{ A}/\mu \text{s} \qquad (\text{Note 4})$				-
Q_{rr} otes: Repetitive F L = 15.7mH I _{SD} \leq 7.0A, Pulse Test : Essentially i	$\label{eq:response} \begin{array}{l} \label{eq:response} \end{tabular} \\ \mbox{Retring: Pulse width limited by maximum junction tempe} \\ \mbox{I}_{AS} = 7.0A, \ V_{DD} = 50V, \ R_G = 25 \ \Omega, \ Starting \ T_J = 25^{\circ}C \\ \mbox{di/dt} \leq 300 \mbox{/}\mus, \ V_{DD} \leq BV_{DSS}, \ Starting \ T_J = 25^{\circ}C \\ \mbox{Pulse width} \leq 300 \mbox{/}\mus, \ Duty \ cycle \leq 2\% \\ \mbox{independent of operating temperature} \\ \mbox{s ide in } \ V_{BO} = 4.0 \mbox{V} \ and \ t = 0.3 \mbox{s} \end{array}$	$dI_F / dt = 100 \text{ A}/\mu \text{s}$ (Note 4)		4.6		μC

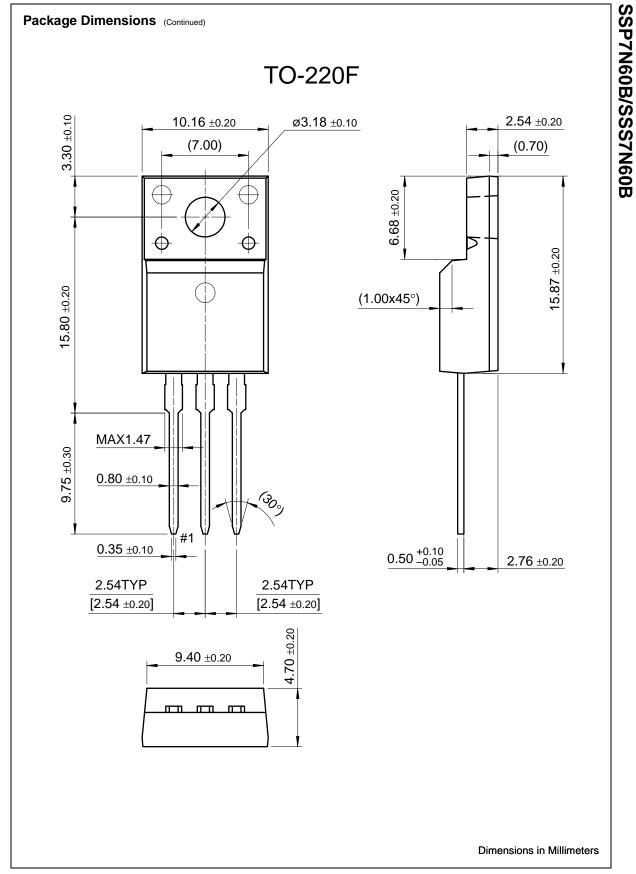
SSP7N60B/SSS7N60B


Rev. B, June 2002


Downloaded from **Elcodis.com** electronic components distributor

Rev. B, June 2002


SSP7N60B/SSS7N60B


Downloaded from Elcodis.com electronic components distributor

Downloaded from <u>Elcodis.com</u> electronic components distributor

Rev. B, June 2002

Rev. B, June 2002

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx TM Bottomless TM CoolFET TM $CROSSVOLT^{TM}$ DOME TM EcoSPARK TM E^2 CMOS TM EnSigna TM FACT TM	FASTr [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] I ² C [™] ISOPLANAR [™] LittleFET [™] MicroFET [™]	OPTOLOGIC [®] OPTOPLANAR TM PACMAN TM POP TM Power247 TM PowerTrench [®] QFET TM QS TM QT Optoelectronics TM	SMART START [™] SPM [™] STAR*POWER [™] Stealth [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™]	UltraFET [®] VCX™
-			•	
FAST®	MICROWIRE™	SLIENT SWITCHER®	UHC™	

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST ®

FASTrTM FRFETTM GlobalOptoisolatorTM GTOTM HiSeCTM l^2 CTM ISOPLANARTM LittleFETTM MicroFETTM MicroPakTM MICROWIRETM OPTOLOGIC[®] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] SPM[™] Stealth[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] TruTranslation[™] UHC[™] UltraFET[®] VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production