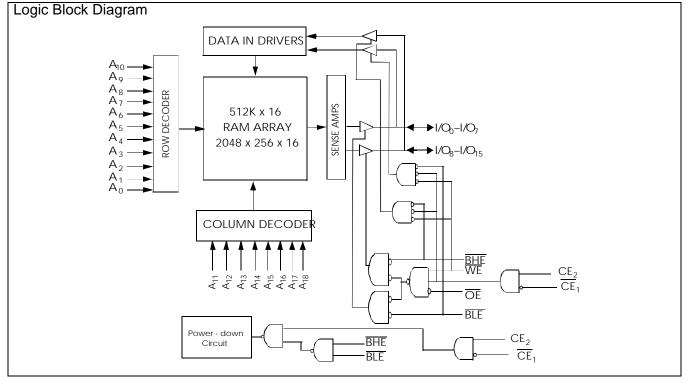


CY62157DV18 MoBL2™

Features

- Very high speed: 55 ns and 70 ns
- Voltage range: 1.65V to 1.95V
- Pin compatible with CY62157CV18
- Ultra-low active power
 - Typical active current: 1 mA @ f = 1 MHz
 - Typical active current: 10 mA @ f = f_{MAX}
- Ultra-low standby power
- Easy memory expansion with CE₁, CE₂, and OE features
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Packages offered in a 48-ball FBGA

Functional Description^[1]


The CY62157DV18 is a high-performance CMOS static RAM organized as 512K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can be put into standby mode reducing

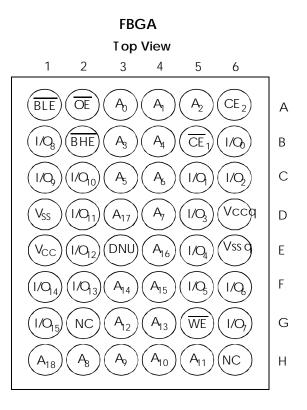
8M (512K x 16) Static RAM

power consumption by more than 99% when deselected Chip <u>Enable 1 (\overline{CE}_1) HIGH or Chip Enable 2 (CE_2) LOW or both BHE and BLE are HIGH. The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected Chip Enable 1 (\overline{CE}_1) <u>HIGH</u> or Chip Enable 2 (CE_2) LOW, outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (<u>BHE</u>, BLE HIGH) or during a write operation (<u>Chip</u> Enable 1 (\overline{CE}_1) LOW and Chip Enable 2 (CE_2) HIGH and WE LOW).</u>

<u>Writing</u> to the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) LOW and Chip Enable 2 (\overline{CE}_2) <u>HIGH</u> and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on</u> the address pins (A₀ through A₁₈). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) LOW and Chip Enable 2 (CE_2) HIGH and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

Note:


1. For best practice recommendations, please refer to the Cypress application note System Design Guidelines on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 38-05126 Rev. *B 3901 North First Street

San Jose, CA 95134 • 408-943-2600 Revised March 17, 2003

Pin Configuration^[2, 3]

Notes:

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.2V to V _{CCMAX} + 0.2V
DC Voltage Applied to Outputs in High-Z State ^[4] 0.2V to V _{CC} + 0.2V

Product Portfolio

DC Input Voltage ^[4]	–0.2V to V _{CC} + 0.2V
Output Current into Outputs (LOW)	
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA
Operating Range	

perating Range

Range	Ambient Temperature (T _A)	V _{cc}
Industrial	–40°C to +85°C	1.65V to 1.95V

							Power Di	issipation			
						Operating	j, lcc (mA)	lcc (mA)			
	V _{CC} Range(V)			Speed	f = 1 MHz		f = 1 MHz f = f _{MAX}		Standby,	I _{SB2} (μΑ)	
Product	Min.	Typ. ^[5]	Max.	(ns)	Typ. ^[5]	Max.	Typ. ^[5]	Max.	Typ. ^[5]	Max.	
CY62157DV18L	1.65	1.8	1.95	55	1	5	10	20	2	20	
				70			8	15	2	20	
CY62157DV18LL	1.65	1.8	1.95	55	1	5	10	20	2	5	
				70			8	15	2	5	

DC Electrical Characteristics (Over the Operating Range)

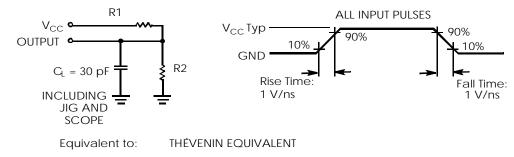
					CYe	CY62157DV18-55		CY			
Parameter	Description	Test Con	ditions		Min.	Typ. ^[5]	Max.	Min.	Typ. ^[5]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	$V_{\rm CC} = 1.6$	65V	1.4			1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{\rm CC} = 1.6$	65V			0.2			0.2	V
V _{IH}	Input HIGH Voltage				1.4		V _{CC} + 0.2	1.4		V _{CC} + 0.2	V
V _{IL}	Input LOW Voltage				-0.2		0.4	-0.2		0.4	V
I _{IX}	Input Leakage Current	$GND \leq V_{I} \leq V_{CC}$	$GND \leq V_{I} \leq V_{CC}$				+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled			-1		+1	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	Vcc = 1.9			10	20		8	15	mA
	Current	f = 1 MHz	I _{OUT} = 0 CMOS le	mA, vel		1	5		1	5	
I _{SB1}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V$	/, CE ₂ <u><</u>	L		2	20		2	20	μΑ
	Power-down Current – CMOS Inputs	0.2V, $V_{IN} \ge V_{CC} = 0.2V$, $f = f_{MAX}$ (A and Data Only), f WE, BHE and BL	Addr <u>ess</u> = 0 (OE,	LL		2	5		2	5	
I _{SB2}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V$		L		2	20		2	20	μΑ
	Power-down Current – CMOS Inputs	0.2V, V _{IN} ≥ V _{CC} − V _{IN} ≤ 0.2V, f = 0, 1.95V		LL		2	5		2	5	

Capacitance^[6]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz}$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Notes:

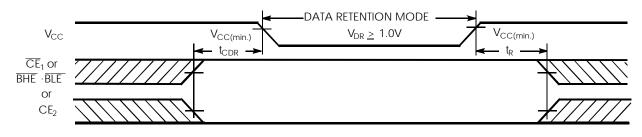
V_{IL}(min.) = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.


6. Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance

Parameter	Description	Test Conditions	BGA	Unit
θ_{JA}	101	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	55	C/W
θ _{JC}	Thermal Resistance (Junction to Case) ^[6]		16	C/W

AC Test Loads and Waveforms



Parameters	1.8V	UNIT
R1	13500	Ω
R2	10800	Ω
R _{TH}	6000	Ω
V _{TH}	0.80	V

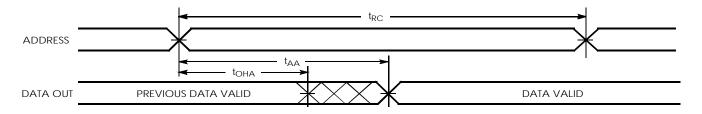
Data Retention Characteristics

Parameter	Description	Conditions	Min.	Typ. ^[5]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.0		1.95	V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.0V, \overline{CE}_1 \ge V_{CC} - 0.2V, CE_2$ L		1	10	μΑ
		≤ 0.2 V, V _{IN} \geq V _{CC} – 0.2V or V _{IN} \leq 0.2V	L		3	
t _{CDR} ^[6]	Chip Deselect to Data Retention Time		0			ns
t _R ^[7]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform^[8]

Notes:

- 7. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 100 μ s or stable at V_{CC(min.)} > 100 μ s.
- 8. BHE BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.



Switching Characteristics (Over the Operating Range)^[9]

		CY62157	7DV18-55	CY62157	7DV18-70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle	+	4		ł		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE ₁ LOW or CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[10]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[10, 12]		20		25	ns
t _{LZCE}	CE ₁ LOW or CE ₂ HIGH to Low Z ^[10]	10		10		ns
t _{HZCE}	\overline{CE}_1 HIGH or CE_2 LOW to High $Z^{[10, 12]}$		20		25	ns
t _{PU}	CE ₁ LOW or CE ₂ HIGH to Power-up	0		0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-down		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55		70	ns
t _{LZBE} ^[11]	BLE/BHE LOW to Low Z ^[10]	5		5		ns
t _{HZBE}	BLE/BHE HIGH to High-Z ^[10, 12]		20		25	ns
Write Cycle ^[13]	*	•	•	•	•	
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE ₁ LOW or CE ₂ HIGH to Write End	45		60		ns
t _{AW}	Address Set-up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		50		ns
t _{BW}	BLE/BHE LOW to Write End	45		60		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[10, 12]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[10]	10		10		ns

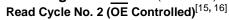
Switching Waveforms

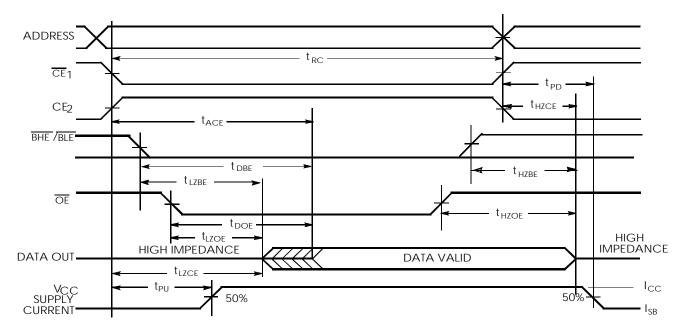
Read Cycle No. 1 (Address Transition Controlled)^[14, 15]

Notes:

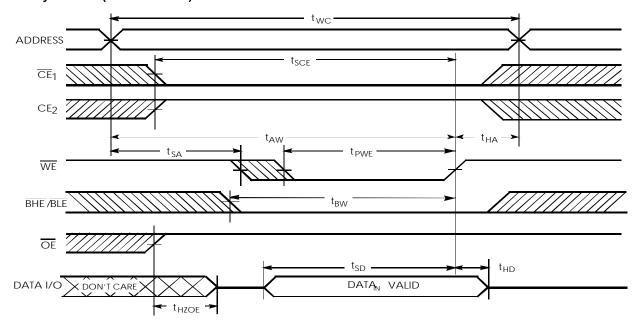
- Test conditions assume signal transition time of 3 ns or less, timing reference levels of V_{CC(typ.)/2}, input pulse levels of 0 to V_{CC(typ.)}, and output loading of 9. the specified I_{OL}.
- 10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZBE}, t_{HZOE} is less than t.

- 1. If both byte enables are toggled together, this value is 10 ns. 12. t_{HZOE} , t_{HZOE} , t_{HZEE} , and t_{HZWE} transitions are measured when the <u>outputs</u> enter a <u>high-impedance</u> state. 13. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}. 14. Device is continuously selected. OE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, CE₂ = V_{IH}.


15. WE is HIGH for Read cycle.

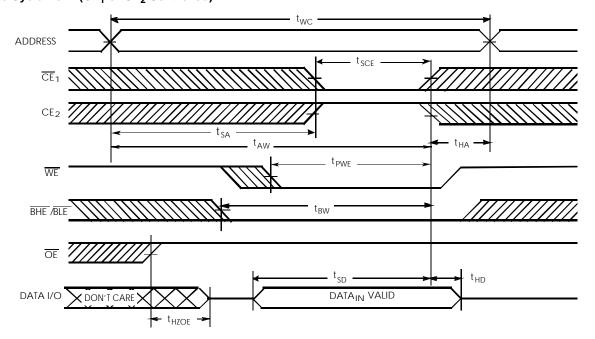

Document #: 38-05126 Rev. *B

Page 5 of 10

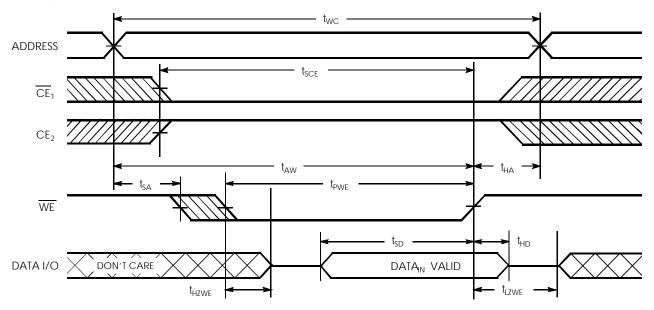


Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled) ^[13, 17, 18, 19]

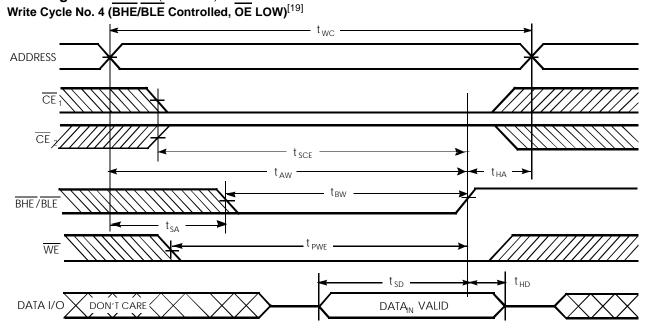

Notes:

- Address valid prior to or coincident with CE₁, BHE, BLE transition LOW and CE₂ transition HIGH.
 17. Data I/O is high-impedance if OE = V_{IH}.
 18. If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state.
 19. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)

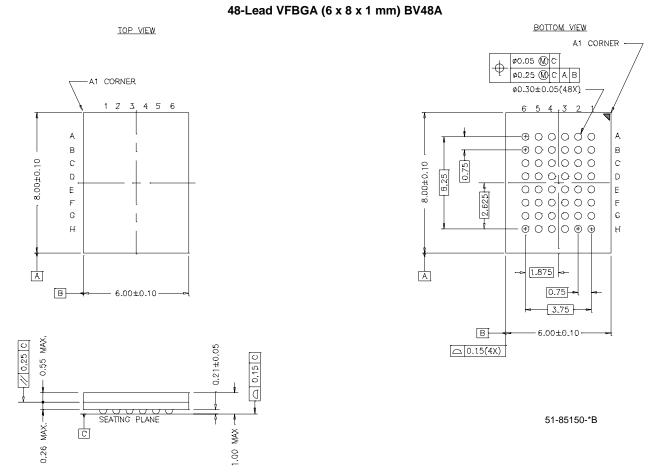
Write Cycle No. 2 (\overline{CE}_1 or \overline{CE}_2 Controlled) [13, 17, 18, 19]



Write Cycle No. 3 (WE Controlled, OE LOW)^[18, 19]

Switching Waveforms (continued)

Truth Table


CE ₁	CE ₂	WE	OE	BHE	BLE	Input / Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby(I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby(I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby(I _{SB})
L	Н	Н	L	L	L	Data Ou (I/O0- I/O15)	Read	Active(I _{CC})
L	Н	Н	L	Н	L	Data Ou (I/O0- I/O7); High Z (I/O8- I/O15)	Read	Active(I _{CC})
L	Н	Н	L	L	Н	High Z (I/O0- I/O7); Data Ou (I/O8- I/O15)	Read	Active(I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active(I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active(I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active(I _{CC})
L	Н	L	Х	L	L	Data In (I/O0-I/O15)	Write	Active(I _{CC})
L	Н	L	Х	Н	L	Data In (I/O0- I/O7); High Z (I/O8- I/O15)	Write	Active(I _{CC})
L	Н	L	Х	L	Н	High Z (I/O0- I/O7); Data In (I/O8- I/O15)	Write	Active(I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62157DV18L-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	Industrial
	CY62157DV18LL-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	
70	CY62157DV18L-70BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	Industrial
	CY62157DV18LL-70BVI	BV48A	48-ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	

Package Diagrams

MoBL is a registered trademark, and MoBL2 and More Battery Life are trademarks, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Document #: 38-05126 Rev. *B

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	112603	03/01/02	GAV	New Data Sheet, Die rev replacing CY62157CV18	
*A	116601	06/14/02	MGN	Added second power bin (L and LL) Changed from Advance Information to Preliminary	
*В	124694	03/18/03	DPM	Changed Preliminary to Final Added LL Bin to Iccdr = 3 uA max Added new footnotes (1 and 2) Filled in TBD values	