

4M (256K x 16) Static RAM

Features

- Wide voltage range: 2.7V-3.6V
- · Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- · TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Package available in a standard 44-pin TSOP Type II (forward pinout) package

Functional Description^[1]

The CY62147V is a high-performance CMOS static RAM organized as 256K words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The devices also have an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when

deselected ($\overline{\text{CE}}$ HIGH) or when $\overline{\text{CE}}$ is LOW and both $\overline{\text{BLE}}$ and $\overline{\text{BHE}}$ are HIGH. The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable $\overline{(CE)}$ and Write Enable $\overline{(WE)}$ inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation

Document #: 38-05050 Rev. *A

3901 North First Street

San Jose

CA 95134 • 408-943-2600

Revised August 28, 2002

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied-55°C to +125°C

Supply Voltage to Ground Potential-0.5V to +4.6V

DC Voltage Applied to Outputs
in High-Z State^[2]-0.5V to V_{CC} + 0.5V

DC Input Voltage ^[2]	-0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Industrial	-40°C to +85°C	2.7V to 3.6V

Product Portfolio

					Power Dissipation			
	V _{CC} Range (V)		Speed	Operating I _{CC} , (mA)		Standby I _{SB2} , (μA)		
Product	V _{CC(min.)}	V _{CC(typ.)} ^[3]	V _{CC(max.)}	(ns)	Typ. ^[3]	Maximum	Typ. ^[3]	Maximum
CY62147VLL	2.7	3.0	3.6	70	7	15	2	20

Electrical Characteristics Over the Operating Range

				C	Y62147V-	70	
Parameter	Description	Test Conditions		Min.	Typ. [3]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	V _{CC} = 2.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		V _{CC} + 0.5V	V
V_{IL}	Input LOW Voltage		V _{CC} = 2.7V	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \leq V_1 \leq V_{CC}$		-1	±1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled		-1	+1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$, CMOS Levels	V _{CC} = 3.6V		7	15	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA

Notes:

^{2.} $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns.

Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$.

Electrical Characteristics Over the Operating Range (continued)

				CY62147V-70			
Parameter	Description	Test Conditions		Min.	Typ. ^[3]	Max.	Unit
I _{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, $f = f_{MAX}$			2	20	μА
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$	V _{CC} = 3.6V				

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

Thermal Resistance

Parameter	Description	Test Conditions	BGA	TSOPII	Units
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[4]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	55	60	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case) ^[4]		16	22	°C/W

AC Test Loads and Waveforms

Parameter	3.0V	Unit
R1	1105	Ω
R2	1550	Ω
R _{TH}	645	Ω
V _{TH}	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.0		3.6	V
I _{CCDR}	Data Retention Current	V_{CC} = 1.0V, $\overline{CE} \ge V_{CC} - 0.3$ V, $V_{IN} \ge V_{CC} - 0.3$ V or $V_{IN} \le 0.3$ V; No input may exceed $V_{CC} + 0.3$ V		1	10	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		0			ns
t _R ^[5]	Operation Recovery Time		70			ns

Note:

[+] Feedback

^{4.} Tested initially and after any design or process changes that may affect these parameters.

Data Retention Waveform

Switching Characteristics Over the Operating Range[6]

		70		
Parameter	Description	Min.	Max.	Unit
Read Cycle	<u> </u>			•
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		25	ns
t _{LZOE}	OE LOW to Low-Z ^[7, 9]	5		ns
t _{HZOE}	OE HIGH to High-Z ^[9]		20	ns
t _{LZCE}	CE LOW to Low-Z ^[7]	10		ns
t _{HZCE}	CE HIGH to High-Z ^[7, 9]		20	ns
t _{PU}	CE LOW to Power-up	0		ns
t _{PD}	CE HIGH to Power-down		70	ns
t _{DBE}	BHE / BLE LOW to Data Valid		70	ns
t _{LZBE} [8]	BHE / BLE LOW to Low-Z	5		ns
t _{HZBE}	BHE / BLE HIGH to High-Z		20	ns
Write Cycle ^[10, 11]	·			
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-up to Write Start	0		ns
t _{PWE}	WE Pulse Width	40		ns
t _{BW}	BHE / BLE Pulse Width			ns
t _{SD}	Data Set-up to Write End 30			ns
t _{HD}	Data Hold from Write End 0			ns
t _{HZWE}	WE LOW to High-Z ^[7, 9]	25		ns
t _{LZWE}	WE HIGH to Low-Z ^[7]	10		ns

Notes:

- Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 10 μs or stable at V_{CC(min.)} > 10 μs.
 Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
- 7.
- At any given temperature and voltage controller, I_{HZCE} is less than I_{LZCE}, I_{HZCE}.
 If both byte enables are toggled together this value is 10ns
 t_{HZOE}, I_{HZCE}, and I_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Read Cycle No. $\mathbf{1}^{[12, 13]}$

Read Cycle No. 2 $^{[13, 14]}$

Write Cycle No. 1 (WE Controlled)

Notes:

- 12. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled) $^{[8,\ 15,\ 16]}$

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[11,\ 16]}$

- Data I/O is high-impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[17]

Typical DC and AC Characteristics

[+] Feedback

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Χ	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Х	Х	Н	Ι	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Read	Active (I _{CC})
L	Н	Н	L	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62147VLL-70ZI	Z44	44-pin TSOP II	Industrial

Package Diagram

DIMENSION IN MM (INCH)

MAX
MIN.

44-Pin TSOP II Z44

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Document #: 38-05050 Rev. *A

Page 8 of 9

Document Title: CY62147V MoBL® 4M (256K x 16) Static RAM Document Number: 38-05050				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109958	12/16/01	SZV	Changed from Spec number: 38-00757 to 38-05050
A	116514	09/04/02	GBI	Added footnote 1. Deleted fBGA package (replacement fBGA package is available in CY62147CV30).

Document #: 38-05050 Rev. *A