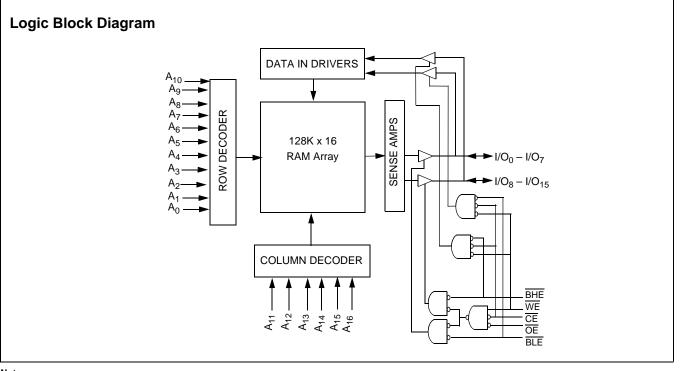


CY62136V MoBL[®]

Features

- High speed
 - 55 ns
- Temperature Ranges
 - Industrial: –40°C to 85°C
 - Automotive: –40°C to 125°C
- Wide voltage range
 - 2.7V 3.6V
- Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Available in a Pb-free and non Pb-free 44-pin TSOP Type II (forward pinout) and 48-ball FBGA packages

Functional Description^[1]


The CY62136V is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current.

2-Mbit (128K x 16) Static RAM

This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE HIGH), <u>outputs are disabled (OE HIGH)</u>, BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

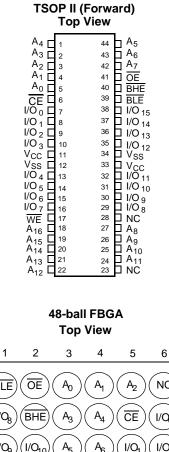
<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (\overline{CE}) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on the</u> address pins (A₀ through A₁₆). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₆).

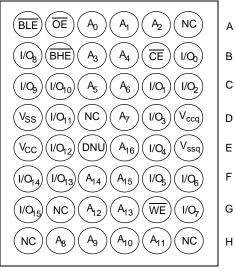
Reading <u>from</u> the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the <u>address</u> pins will appear on I/O_0 to I/O_7 . If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O_8 to I/O_{15} . See the Truth Table at the back of this data sheet for a complete description of read and write modes.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 38-05087 Rev. *D 198 Champion Court •


San Jose, CA 95134-1709 • 408-943-2600 Revised July 19, 2006



Product Portfolio

						Power Dissipation (Industrial)			
	V _{CC} Range (V)				Operating, I _{CC} (mA)		Standby, I _{SB2} (μA)		
Product	Min.	Typ. ^[2]	Max.	Speed	Grades	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62136VLL	2.7	3.0	3.6	55	Industrial	7	20	1	15
				70	Industrial	7	15	1	15
					Automotive	7	20	1	20

Pin Configurations^[3, 4]

Notes:

2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

3. NC pins are not connected on the die.

4. E3 (DNU) pin have to be left floating or tied to $V_{\mbox{SS}}$ to ensure proper operation.

Pin Definitions

Pin Number	Туре	Description
1–5, 18–22, 24–27, 42–45	Input	A ₀ -A ₁₆ . Address Inputs
7–10, 13–16, 29–32, 35–38	Input/Output	I/O ₀ -I/O ₁₅ . Data lines. Used as input or output lines depending on operation
23	No Connect	NC. This pin is not connected to the die
17	Input/Control	WE. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted
6	Input/Control	CE . When LOW, selects the chip. When HIGH, deselects the chip
40, 39	Input/Control	BHE, BLE. BHE = LOW selects higher order byte WRITEs or READs on the SRAM BLE = LOW selects lower order byte WRITEs or READs on the SRAM
41	Input/Control	OE . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are Tri-stated, and act as input data pins
12, 34	Ground	V _{SS} . Ground for the device
11, 33	Power Supply	V _{CC} . Power supply for the device

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +4.6V
DC Voltage Applied to Outputs in High-Z State $^{[5]}$ 0.5V to V_{CC} + 0.5V
DC Input Voltage ^[5] 0.5V to V _{CC} + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage	.>2001V
(per MIL-STD-883, Method 3015)	

Latch-up Current.....> 200 mA

Operating Range

Range	Ambient Temperature [T _A] ^[7]	V _{CC}
Industrial	–40°C to +85°C	2.7V to 3.6V
Automotive	–40°C to +125°C	

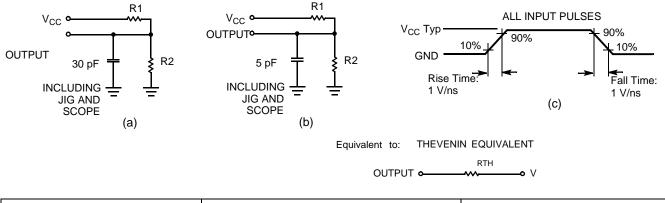
Electrical Characteristics Over the Operating Range

					CY		CY62136V-55			CY62136V-70		
Parameter	Description	Test Conditions			Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.7V$		2.4			2.4			V	
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$				0.4			0.4	V	
V _{IH}	Input HIGH Voltage		V _{CC} = 3.6V		2.2		V _{CC} + 0.5V	2.2		V _{CC} + 0.5V	V	
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$		-0.5		0.8	-0.5		0.8	V	
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		Industrial	-1		+1	-1		+1	μA	
				Automotive				-10		+10	μA	
I _{OZ}	Output Leakage	$GND \leq V_O \leq V_{CC}$,	$ \frac{\text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}},}{\text{Dutput Disabled}} $		-1		+1	-1		+1	μΑ	
	Current	Output Disabled						-10		+10	μA	
I _{CC}	V _{CC} Operating Supply	$f = f_{Max} = 1/t_{RC},$	$V_{CC} = 3.6V,$	Industrial		7	20		7	15	mA	
	Current		I _{OUT} =0mA, CMOS	Automotive					7	20	mA	
		f = 1 MHz,	Levels			1	2		1	2	mA	
I _{SB1}	Automatic CE Power-downCurrent— CMOS Inputs	$\label{eq:constraint} \begin{array}{ c c } \hline CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or } V_{IN} \leq 0.3V, \\ f = f_{Max} \end{array}$					100			100	μA	
I _{SB2}	Automatic CE	$\overline{CE} \ge V_{CC} - 0.3V$	$V_{CC} = 3.6V$	Industrial		1	15		1	15	μA	
	Power-down Current— CMOS Inputs	$V_{IN} \ge V_{CC}$ -0.3V or $V_{IN} \le 0.3$ V, f = 0		Automotive					1	20		

Capacitance^[6]

Parameter	Description	Description Test Conditions		Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, f = 1 MHz, $V_{CC} = V_{CC(typ)}$	6	pF
C _{OUT}	Output Capacitance		8	pF

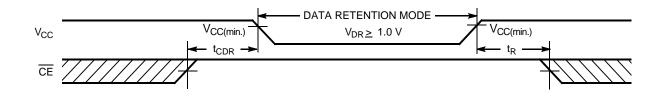
Thermal Resistance^[6]


Parameter	Description	Test Conditions	FBGA	TSOPII	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 2-layer printed circuit board	41.17	60	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		11.74	22	°C/W

Notes:

5. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns. 6. Tested initially and after any design or process changes that may affect these parameters. 7. T_A is the "Instant-On" case temperature.

AC Test Loads and Waveforms



Parameters	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

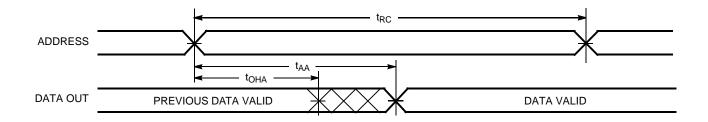
Parameter	Description	Conditions ^[9]	Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.0		3.6	V
I _{CCDR}		$V_{CC} = 1.0V, \overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V,$ No input may exceed $V_{CC} + 0.3V$		0.5	7.5	μΑ
t _{CDR} ^[6]	Chip Deselect to Data Retention Time		0			ns
t _R ^[8]	Operation Recovery Time		70			ns

Data Retention Waveform

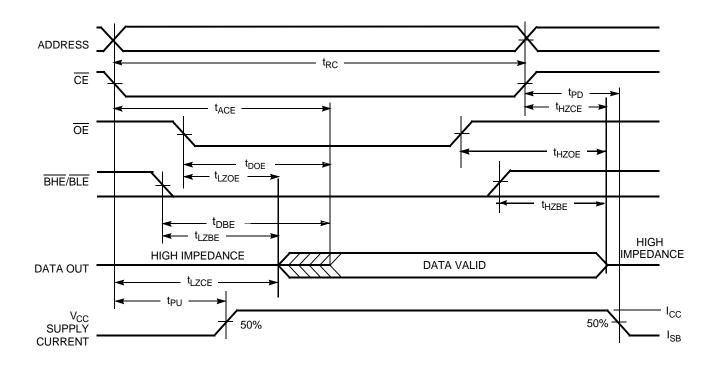
Notes:

- Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.
 Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.

Switching Characteristics Over the Operating Range [9]


		55	5 ns	70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle						
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low-Z ^[10]	5		5		ns
t _{HZOE}	OE HIGH to High-Z ^[10, 11]		25		25	ns
t _{LZCE}	CE LOW to Low-Z ^[10]	10		10		ns
t _{HZCE}	CE HIGH to High-Z ^[10, 11]		25		25	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		25		35	ns
t _{LZBE}	BLE/BHE LOW to Low-Z ^[10, 11]	5		5		ns
t _{HZBE}	BLE/BHE HIGH to High-Z ^[12]		25		25	ns
Write Cycle ^[12, 13]	1					
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BLE/BHE LOW to Write End	50		60		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[10, 11]		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[10]	5		10		ns

Notes:
10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
11. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
12. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
13. The minimum write cycle time for write cycle 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

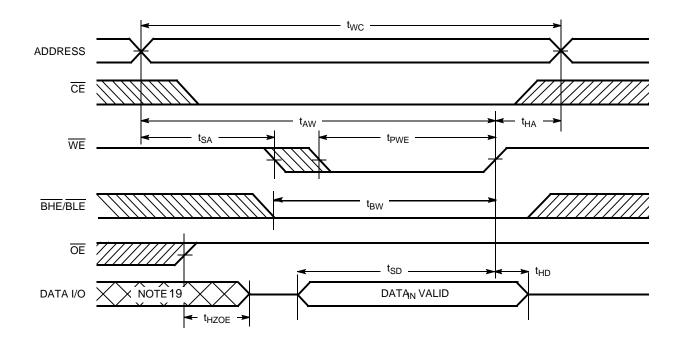


Switching Waveforms

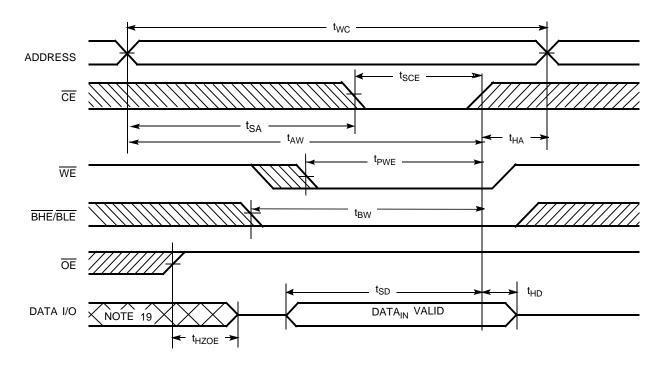
Read Cycle No. 1 (Address Transition Controlled)^[14, 15]

Read Cycle No. 2 (OE Controlled)^[15, 16]

Notes:


14. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 15. WE is HIGH for read cycle.

16. Address valid prior to or coincident with \overline{CE} transition LOW.



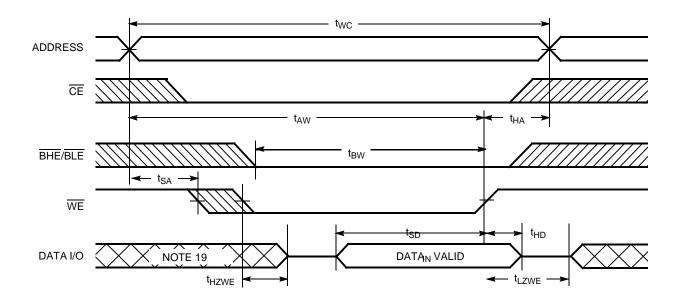
Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)^[12, 17, 18]

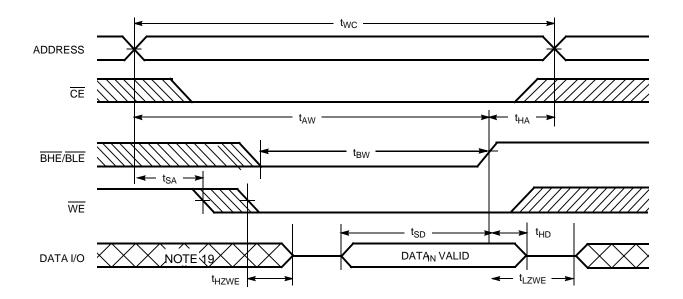
Write Cycle No. 2 (CE Controlled)^[12, 17, 18]

Notes:

17. Data I/O is high impedance if $\overline{OE} = V_{IH}$ 18. If \overline{CE} goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state. 19. During this period, the I/Os are in output state and input signals should not be applied.


Document #: 38-05087 Rev. *D

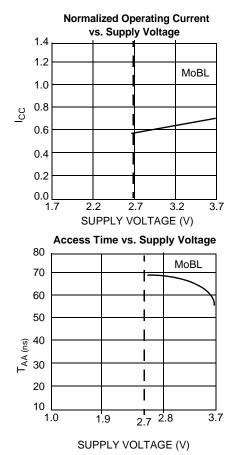
Page 8 of 13

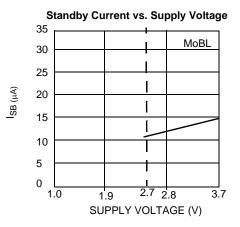


Switching Waveforms (continued)

Write Cycle No. 3 (\overline{WE} Controlled, \overline{OE} LOW)^[13, 18]

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)^[19]



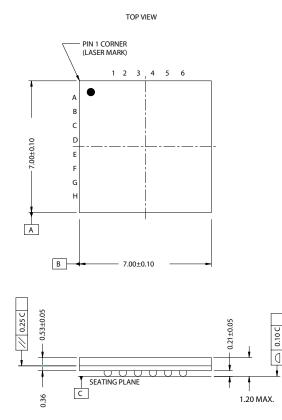

Document #: 38-05087 Rev. *D

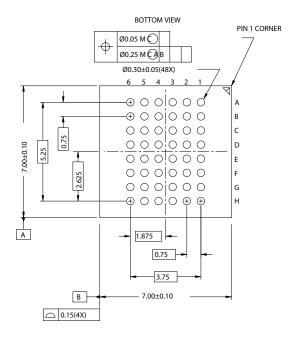
Page 9 of 13

Typical DC and AC Characteristics

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	High Z (I/O ₈ –I/O ₁₅); Data Out (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); High Z (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	High Z (I/O ₈ –I/O ₁₅); Data In (I/O ₀ –I/O ₇)	Write	Active (I _{CC})
L	L	Х	L	Н	Data in (I/O ₈ –I/O ₁₅); High Z (I/O ₀ –I/O ₇)	Write	Active (I _{CC})
L	н	L	Н	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})


Ordering Information

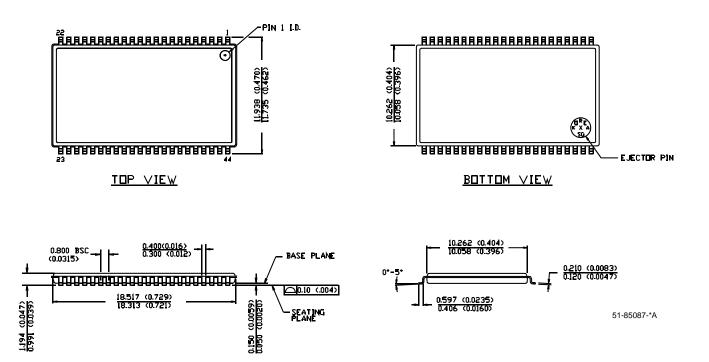

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62136VLL-55BAI	51-85096	48-ball Fine-Pitch Ball Grid Array (7 x 7 x 1.2 mm)	Industrial
	CY62136VLL-55ZI	51-85087	44-pin TSOP II	
	CY62136VLL-55ZXI		44-pin TSOP II (Pb-free)	
70	CY62136VLL-70BAI	51-85096	48-ball Fine-Pitch Ball Grid Array (7 x 7 x 1.2 mm)	Industrial
	CY62136VLL-70ZI	51-85087	44-pin TSOP II	
	CY62136VLL-70ZXI		44-pin TSOP II (Pb-free)	
	CY62136VLL-70ZSE	1	44-pin TSOP II	Automotive
	CY62136VLL-70ZSXE	1	44-pin TSOP II (Pb-free)	

Please contact your local Cypress sales representative for availability of these parts

Package Diagrams

48-ball FBGA (7 x 7 x 1.2 mm) (51-85096)

51-85096-*F


Document #: 38-05087 Rev. *D

Package Diagrams (continued)

44-pin TSOP II (51-85087)

DIMENSION IN MM (INCH) NAX NIN.

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the products of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Downloaded from Elcodis.com

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	107347	05/25/01	SZV	Changed from Spec #: 38-00728 to 38-05087	
*A	116509	09/04/02	GBI	Added footnote 1 Added SL power bin Deleted fBGA package; replacement fBGA package available in CY62136CV30	
*B	269729	See ECN	SYT	Added Automotive Information for 70-ns Speed Bin. Added Footnotes # 3 and # 6. Corrected Typo in Electrical Characteristics for I_{CC} (Max)-55 ns from 15 to 20 mA. Added SL row for I_{SB2} in the Electrical Characteristics table. Changed Package Name from Z44 to ZS44. Replaced 'Z' with 'ZS' in the Ordering Code.	
*C	344595	See ECN	SYT	Added Lead-Free Package on page# 9 Changed Package Name from ZS44 to Z44 for the 44 TSOP II Package Replaced 'ZS' with 'Z' in the Ordering Code for Industrial	
*D	486789	See ECN	VKN	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court". Added FBGA Package for Industrial Operating range. Removed SL Power bin. Updated Ordering Information table.	