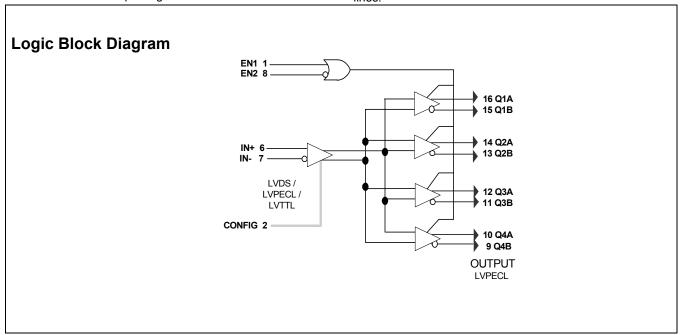


1:4 Clock Fanout Buffer

Features

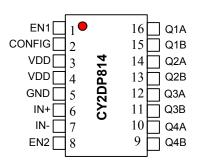
- Low-voltage operation
- V_{DD} = 3.3V
- 1:4 fanout
- Single input configurable for LVDS, LVPECL, or LVTTL
- Four differential pairs of LVPECL outputs
- Drives 50-ohm load
- Low input capacitance
- Less than 4 ns typical propagation delay
- 85 ps typical output-to-output skew
- Industrial versions available
- Available in TSSOP package


Description

The Cypress CY2 series of network circuits are produced using advanced 0.35-micron CMOS technology, achieving the industry's fastest logic.

The Cypress CY2DP814 fanout buffer features a single LVDSor a single LVPECL-compatible input and four LVPECL output pairs.

Designed for data communications clock management applications, the fanout from a single input reduces loading on the input clock.


The CY2DP814 is ideal for both level translations from single-ended to LVPECL, and/or for the distribution of LVDS-based clock signals. The Cypress CY2DP814 has configurable input between logic families. The input can be selectable for an LVPECL, LVTTL or LVDS signal, while the output drivers support LVPECL capable of driving 50-ohm lines.

Pin Configuration

Figure 1. 16-Pin TSSOP/SOIC

16 pin TSSOP / SOIC

Pin Description

Pin Number	Pin Name	Pin Standard Interface	Description
6, 7	IN+, IN–	Configurable	Differential input pair or single line . LVPECL default. See CONFIG below.
2	CONFIG	LVTTL/LVCMOS	Converts inputs from the default LVPECL/LVDS (logic = 0) to LVTTL/LVCMOS (logic = 1). See Figure 6 and Figure 7 for additional information
1, 8	EN1, EN2	LVTTL/LVCMOS	Enable/disable logic . See Function Table below for details.
16, 15, 14, 13, 12, 11, 10, 9	Q1A, Q1B, Q2A, Q2B, Q3A, Q3B, Q4A, Q4B	LVPECL	Differential outputs.
3, 4	V_{DD}	POWER	Positive supply voltage.
5	GND	POWER	Ground.

Document Number: 38-07060 Rev. *F

Page 2 of 9

Maximum Ratings^[1, 2]

Storage Temperature: -65°C to $+150^{\circ}\text{C}$ Ambient Temperature: -40°C to $+85^{\circ}\text{C}$ Supply Voltage to Ground Potential (Inputs and V_{CC} only)-0.3V to 4.6V

Supply voltage	e to Ground Potential	
(Outputs only)		–0.3

Cupply Valtage to Cround Detential

(Outputs only)	–0.3V to V _{DD} + 0.3V
DC Input Voltage	–0.3V to V _{DD} + 0.3V
DC Output Voltage	–0.3V to V _{DD} + 0.9V
Power Dissipation	0.75W

Table 1. EN1 EN2 Function Table

Enable	Logic	Input		Outputs	
EN1	EN2	IN+	IN-	QnA	QnB
Н	Н	Н	L	Н	L
Н	L	Н	L	Н	L
L	L	Н	L	Н	L
L	Н	Х	Х	Z	Z

Table 2. Input Receiver Configuration for Differential or LVTTL/LVCMOS

CONFIG Pin 2 Binary Value Input Receiver Family		Input Receiver Type
1	LVTTL in LVCMOS	Single ended, non-inverting, inverting, void of bias resistors.
0	LVDS	Low voltage differential signaling
l °	LVPECL	Low voltage pseudo (positive) emitter coupled logic

Table 3. Function Control of the TTL Input Logic Used to Accept or Invert the Input Signal

	LVTTL/LVCMOS INPUT LOGIC						
	Input Condition	Input Logic	Output Logic Q pins				
Ground	IN– Pin 7						
	IN+ Pin 6	Input	True				
V _{CC}	IN– Pin 7						
	IN+ Pin 6	Input	Invert				
Ground	IN+ Pin 6						
	IN- Pin 7	Input	Invert				
V _{CC}	IN+ Pin 6						
	IN– Pin 7	Input	True				

Table 4. Power Supply Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
I _{CCD}	Dynamic Power Supply Current	V _{DD} = Max. Input toggling 50% Duty Cycle, Outputs Loaded		1.5	2.0	mA/MHz
I _C	,	V _{DD} = Max. Input toggling 50% Duty Cycle, Outputs Loaded, fL= 100 MHz		90	100	mA

Table 5. DC Electrical Characteristics: 3.3V-LVDS Input

Parameter	Description	Conditions		Min	Тур	Max	Unit
V_{ID}	Magnitude of Differential Input Voltage			100		600	mV
V _{IC}	Common-Mode of Differential Input Voltage IV _{ID} I (min. and max.)			IV _{ID} I /2		4– ₂ l /2)	٧
I _{IH}	Input High Current	V _{DD} = Max.	$V_{IN} = V_{DD}$		±10	±20	μА
I_{IL}	Input Low Current	V _{DD} = Max.	$V_{IN} = V_{SS}$		±0	±20	μА
I _I	Input High Current	$V_{DD} = Max., V_{IN} = V_{DD}(max.)$				±20	μА

Notes

Document Number: 38-07060 Rev. *F Page 3 of 9

Stresses greater than those listed under absolute maximum ratings may cause permanent damage to the device. This is intended to be a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{2.} Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

Table 6. DC Electrical Characteristics: 3.3V-LVPECL Input

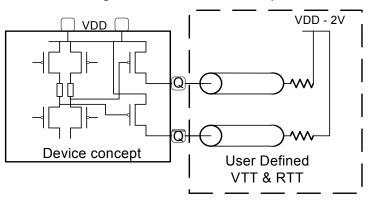
Parameter	Description	Condition		Min	Тур	Max	Unit
I V _{ID} I	Differential Input Voltage p-p	Guaranteed Logic High Level		400		2600	mV
VCM	Common-mode Voltage			1650		2250	mV
I _{IH}	Input High Current	V _{DD} = Max.	$V_{IN} = V_{DD}$		±10	±20	μΑ
I _{IL}	Input Low Current	V _{DD} = Max.	$V_{IN} = V_{SS}$		±10	±20	μΑ
I _I	Input High Current	$V_{DD} = Max., V_{IN} = V_{DD}(max.)$				±20	μΑ

Table 7. DC Electrical Characteristics: 3.3V-LVTTL/LVCMOS Input

Parameter	Description	Condition		Min	Тур	Max	Unit
V _{IH}	Input High Voltage	Guaranteed Logic High Level		2			V
V _{IL}	Input Low Voltage	Guaranteed Logic Low Level				0.8	V
I _{IH}	Input High Current	V _{DD} = Max.	$V_{IN} = 2.7V$			1	μΑ
I _{IL}	Input Low Current	V _{DD} = Max.	V _{IN} = 0.5V			-1	μΑ
I _I	Input High Current	V_{DD} = Max., V_{IN} = V_{DD} (max.)				20	μΑ
V _{IK}	Clamp Diode Voltage	V _{DD} = Min., I _{IN} = –18 mA			-0.7	-1.2	V
V _H	Input Hysteresis				80		mV

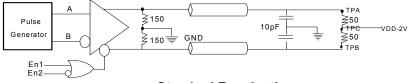
Table 8. DC Electrical Characteristics: 3.3V-LVPECL Output

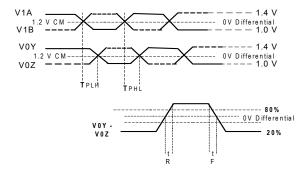
Parameter	Description	Condition	Min	Тур	Max	Unit
I V _{OD} I	Driver Differential Output Voltage p-p	V_{DD} = Min., V_{IN} = V_{IH} or V_{IL} RL = 50 ohm	1000	-	3600	mV
I V _{OC} I	Driver common-mode p-p	V_{DD} = Min., V_{IN} = V_{IH} or V_{IL} RL = 50 ohm	_	_	226	mV
Rise Time	Differential 20% to 80%	CL-10 pF RL and CL to RL = 50 ohm	300		800	ps
Fall Time		GND				
V _{OH}	Output High Voltage	V_{DD} = Min., V_{IN} = V_{IH} or V_{IL} I_{OH} = -12 mA	2.1	_	3.0	V
V_{OL}	Output Low Voltage	User-defined (see Figure 1)	_	-		V
I _{OS}	Short Circuit Current	V _{DD} = Max., V _{OUT} = G _{ND}	-125	-	-150	mA


Table 9. AC Switching Characteristics @ 3.3V V_{DD} = 3.3V $\pm 5\%$, Temperature = $-40^{\circ}C$ to $+85^{\circ}C$

Parameter	Description	Conditions	Min	Тур	Max	Unit
IN [+,-] to (Q[A,B] Data & Clock Speed					
t _{PLH}	Propagation Delay—Low to High	V _{OD} = 100 mV	3	4	5	ns
t _{PHL}	Propagation Delay—High to Low]	3	4	5	ns
t _{PD}	Propagation Delay		3	4	5	ns
EN [1,2] to	Q[A,B] Control Speed					
t _{PE}	Enable (EN) to functional operation		-	-	6	ns
Tpd	Functional operation to Disable		-	-	5	ns
t _{SK(0)}	Output Skew: Skew between outputs of the same package (in phase)		-	0.085	0.2	ns
t _{SK(p)}	Pulse Skew: Skew between opposite transitions of the same output $(t_{PHL} - t_{PLH})$		-	0.2	-	ns
t _{SK(t)}	Package Skew: Skew between outputs of different packages at the same power supply voltage, temperature and package type. Same input signal level and output load.	V _{ID} = 100 mV	ı	_	1	ns

Document Number: 38-07060 Rev. *F Page 4 of 9


Figure 2. Differential PECL Output


Table 10. High-frequency Parametrics

Parameter	Description	Conditions	Min	Тур	Max	Unit
Fmax	Maximum Frequency V _{DD} = 3.3V	50% Duty Cycle tW(50–50) Standard Load Circuit			450	MHz
Fmax(20)	Maximum Frequency V _{DD} = 3.3V	20% Duty Cycle tW(20–80) LVPECL Input Vin = V _{IH} (Max.)/V _{IL} (Min.) Vout = V _{OH} (Min.)/V _{OL} (Max.) (Limit)			175	MHz
TW	Minimum Pulse V _{DD} = 3.3V	LVPECL Input Vin = $V_{IH}(Max.)/V_{IL}(Min.)$ F = 100 MHz Vout = $V_{OH}(Min.)/V_{OL}(Max.)$.(Limit)	900			ps

Figure 3. Differential Receiver to Driver Propagation Delay and Driver Transition Time^[3, 4, 5, 6, 7]

Standard Termination

- 3. RL = 50 ohm \pm 1%; Zline = 50 ohm 6 = \acute{O} .
- CL includes instrumentation and fixture capacitance within 6 mm of the UT.

- TPA and B are used for prop delay and rise/fall measurements. T_{PC} is used for V_{OC} measurements only and otherwise connected to $V_{DD}-2$. When measuring T_{I}/T_{I} , t_{I} , $t_$

Document Number: 38-07060 Rev. *F

Figure 4. Test Circuit and Voltage Definitions for the Driver Common-mode Output Voltage ${}^{[3,\,4,\,5,\,7,\,8]}$

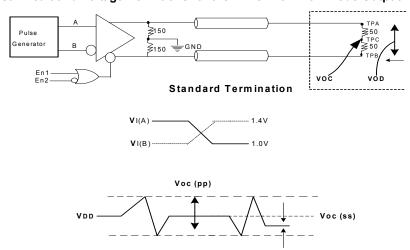
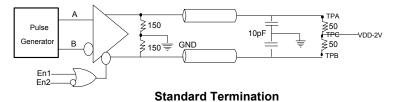
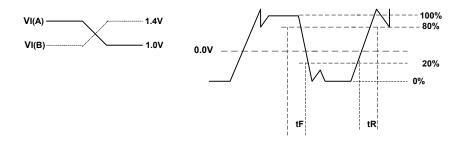




Figure 5. Test Circuit and Voltage Definitions for the Differential Output Signal $^{[3,\ 4,\ 5,\ 6,\ 7]}$

Document Number: 38-07060 Rev. *F

Figure 6. Test Circuit and Voltage Definitions for the Driver Common-Mode Output Voltage^[3, 4, 5, 8, 9]

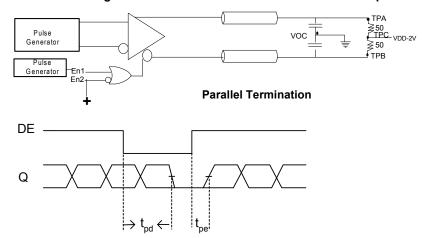


Figure 7. LVTTL/LVCMOS

LVPECL & LVDS

InConfig

InConfig

1 LVTTL/LVCMOS

Figure 8. LVDS/LVPECL

Ordering Information

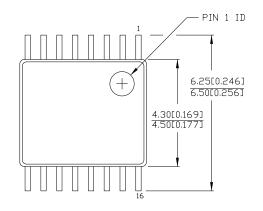
Part Number	Package Type	Product Flow
Pb free		
CY2DP814ZXC	16-pin TSSOP	Commercial, 0°C to 70 °C
CY2DP814ZXCT	16-pin TSSOP-Tape and Reel	Commercial, 0°C to 70 °C
CY2DP814ZXI	16-pin TSSOP	Industrial, –40°C to 85 °C
CY2DP814ZXIT	16-pin TSSOP-Tape and Reel	Industrial, –40°C to 85 °C

Notes

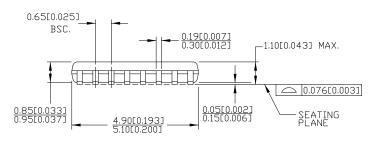
Document Number: 38-07060 Rev. *F

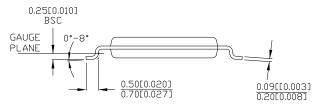
[+] Feedback

^{8.} V_{OC} measurement requires equipment with a 3-dB bandwidth of at least 300 MHz.


^{9.} All input pulses are supplied by a frequency generator with the following characteristics: t_R and t_F ≤ 1 ns; pulse re-rate = 50 Mpps; pulse width = 10 ± 0.2 ns.

Package Drawing and Dimensions


Figure 9. 16-Pin TSSOP 4.40 mm Body Z16.173


16 Lead TSSOP 4.40 MM BODY

DIMENSIONS	IN	MME	INCHES]	MIN. MAX
REFERENCE	JEI	DEC	M□-153	
PACKAGE WI	EIG	HT (0.05gms	

PART #			
Z16.173	STANDARD PKG.		
ZZ16.173	LEAD FREE PKG.		

51-85091 *B

Note

10. LVPECL or LVDS differential input value.

Document Number: 38-07060 Rev. *F

[+] Feedback

Document History Page

Document Title: CY2DP814 1:4 Clock Fanout Buffer Document Number: 38-07060				
REV.	ECN No.	Submission Date	Orig. of Change	Description of Change
**	10785	06/07/01	IKA	Convert from IMI to Cypress
*A	115610	07/02/02	CTK	Range of VCM
*B	122746	12/15/02	RBI	Added power-up requirements to maximum ratings information.
*C	382376	See ECN	RGL	Added Lead-free device for TSSOP commercial Removed pruned parts Added typical values
*D	403374	See ECN	RGL	Added Lead-free for TSSOP Industrial
*E	2595534	10/23/08	CXQ	Removed CY2DP814ZC from the Ordering Information Updated template
*F	2904795	04/05/2010	TSV	Removed inactive part number CY2DP814ZCT from the Ordering Information table. Updated package diagram.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Products

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

PSoC	psoc.cypress.com
Clocks & Buffers	clocks.cypress.com
Wireless	wireless.cypress.com
Memories	memory.cypress.com
Image Sensors	image.cypress.com

PSoC Solutions

General	psoc.cypress.com/solutions
Low Power/Low Voltage	psoc.cypress.com/low-power
Precision Analog	psoc.cypress.com/precision-analog
LCD Drive	psoc.cypress.com/lcd-drive
CAN 2.0b	psoc.cypress.com/can
USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2005-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-07060 Rev. *F All products and company names mentioned in this document may be the trademarks of their respective holders

Revised April 05, 2010

Page 9 of 9