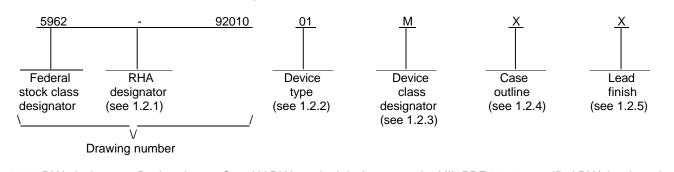
								I	REVISI	IONS										
LTR					[DESCR		N						DATE (/R-MO-D	A)		APPR	OVED	
А	Changes in accordance with NOR 5962-R075-95. – LTG									95-03-30 Mo			Monica L. Poelking							
В	Change AC limits in table I. Correct pin names in figure 2, fig table III. Update boilerplate. Editorial changes throughout. –							gure 3, figure 4, and 01-02-23			-	Thomas M. Hess								
	_			1	1	1	T	[1	I	1	1	[1	1	1		
REV	B	B																		
SHEET REV	55 B	56 B	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
SHEET	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
REV	B	B	B	В	В	B	B	B	В	В	B	B	-т,	B	В	B	В	B	В	B
SHEET	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
REV STATUS		<u> </u>	<u> </u>	REV	/	1	В	В	В	В	В	В	В	В	В	В	В	В	В	В
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A					PARED omas M) BY 1. Hess				DEFENSE SUPPLY CENTER COLUMBUS - COLUMBUS, OHIO 43216										
STAN				-	CKED omas N	BY 1. Hess										HIO cc.dl)		
MICRO DRA					ROVED nica L.) BY Poelkin	g			мс	RUC	IRCU	יים דו		<u> </u>	09.1		211		
THIS DRAWIN	THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE			DRAWING APPROVAL DATE 93-01-22								T, DIGITAL, CMOS, V ONTROLLER, MONO								
DEPAR AND AGEN				REVI	ISION I	LEVEL				SIZE	4		E COD			5	962-	920	10	
AMS	SC N/A					E	3			SHE	ET	1	OF	56						


DSCC FORM 2233

APR 97 <u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function
01	VIC068A	VMEbus interface controller

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class		Device requireme	nts documentation				
М		Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A					
Q or V	Certification	and qualification to	MIL-PRF-38535				
1.2.4 Case outline(s). Th	ne case outline(s) are as desigr	nated in MIL-STD-183	5 and as follows:				
Outline letter	Descriptive designator	Terminals	Package style				
X Y	CMGA7-P145 See figure 1	145 160	Pin grid array Flat pack				
1.2.5 Lead finish. The le	ad finish is as specified in MIL-	PRF-38535 for device	e classes Q and V or MIL-PRF-38535,				

1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	2

1.3 Absolute maximum ratings. 1/

Voltage on any pin with respect to ground	
Power dissipation (P _D)	1.5 W
Storage temperature range (T _{STG})	65°C to +150°C
Lead temperature (soldering, 10 seconds)	+260°C
Thermal resistance, junction-to-case (Θ_{JC}):	
Case outline X	See MIL-STD-1835
Case outline Y	10°C/W
Junction temperature (T _J)	175°C
1.4 <u>Recommended operating conditions</u> .	
Supply voltage range (V _{CC})	5.0 V dc ±10%

Case operating temperature range	(T _C)	55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Methods and Procedures for Microelectronics.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's). MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET
		D	3

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.4 and figure 1 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Block diagram</u>. The block diagram shall be as specified on figure 3.

3.2.4 <u>Timing waveforms</u>. The timimg waveforms shall be as specified on figure 4.

3.2.5 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	4

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-PRF-38535, appendix A.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 105 (see MIL-PRF-38535, appendix A).

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

- 4.2.1 Additional criteria for device class M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	5

		1		1				-
Test	Symbol		ditions <u>1</u> /	Group A subgroups	Device type	Lim	it	Unit
		$\label{eq:constraint} \begin{array}{l} -55^\circ C \leq T_C \leq +125^\circ C \\ 4.5 \ V \leq V_{CC} \leq 5.5 \ V \\ \text{unless otherwise specified} \end{array}$		Subgroups	type	Min	Max	
Input low voltage	VIL			1, 2, 3	All		0.8	V
Input high voltage	VIH			1, 2, 3	All	2.0		
Output low voltage	V _{OL}	$V_{CC} = MIN, I_{OL} = 8 \text{ mA} \ \underline{2}/$ $V_{CC} = MIN, I_{OL} = 48 \text{ mA} \ \underline{3}/$		1, 2, 3	All		0.6	V
							0.6	
Output high voltage	V _{OH}	$V_{CC} = MIN, I_{CC}$	_{он} = -3 mA <u>3</u> /	1, 2, 3	All	2.4		V
		$V_{CC} = MIN, I_{OH} = -8 \text{ mA} \underline{2}/$				2.4		
Input leakage current	I _{IL}	$V_{CC} = MAX$ $0.0 \ V \le V_{IN} \le V_{CC}$		1, 2, 3	All	-10	+10	μA
Output leakage current	ILO	V_{CC} = MAX, VMEbus pins 0.6 V $\leq V_{OUT} \leq 2.4$ V V_{CC} = MAX, other pins		1, 2, 3	All	-10	+10 +10	μΑ
(All output pins disabled)								
						-10		
		$0.0 \ V \leq V_{OUT}$	≤ V _{CC}					
Input clamp voltage	V _{IK}	$V_{CC} = MIN$	I _{IN} = -18 mA	1, 2, 3	All		-1.2	V
			I _{IN} = 18 mA			V _{CC} +1.2		
Power supply current	I _{CC}	$V_{CC} = 5.5 V$		1, 2, 3	All		150	mA
		$V_{IN} = 0.0 V, 5$	5.5 V					
Input capacitance <u>4</u> /	CIN	$V_{CC} = 5.0 V$		4	All		10	pF
Output capacitance <u>4</u> /	COUT	T _C = 25°C, f See 4.4.1c	= 1 MHZ				15	
Functional testing		See 4.4.1b		7, 8	All			

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		В	6

	TABLE I.	Electrical performance char	acteristics -	Conti	nued.			
Test	Symbol	Conditions $1/$ -55°C \leq T _C \leq +125°C	Group subgro		Device type	Li	mit	Unit
		$4.5 \text{ V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{ V}$ unless otherwise specifie	d			Min	Max	
BRi[0] to BBSY[H] 5/	t _{A1}	Arbitration signals	9, 10,	11	All	2.5T+4	3T+31.5	ns
BRi[0] to BBSY[L] 6/	t _{A2}		9, 10,	11	All	3T+7	3.5T+35	ns
BRi[0] to BGiOUT[L] 6/	t _{A3}		9, 10,	11	All	3T+3	4T+28	ns
BRi[0] to BCLR[L]	t _{A4}		9, 10,	11	All	2	19	ns
BGiIN[0] TO BGiOUT[L]	t _{A5}		9, 10,	11	All	2	20	ns
BGilN[0] to BBSY[L] 7/	t _{A6}		9, 10,	11	All	3	25	ns
BGilN[0] to BRi[H] 7/	t _{A7}		9, 10,	11	All	4	3T+31	ns
BGilN[1] to BGiOUT[H]	t _{A8}		9, 10,	11	All	2	23	ns
BBSY[0] to BGiOUT[H] 6/	t _{A9}		9, 10,	11	All	3	24	ns
BBSY[1] to BGiOUT[L]	t _{A10}		9, 10,	11	All	3T+3	4T+29	ns
BBSY[1] to BCLR[H]	t _{A11}		9, 10,	11	All	1T+3	2T+27	ns
BGilN[0] to DENO[L] 7/ 8/	t _{B1}	Master access signals	9, 10,	11	All	6	3T+42	ns
BGilN[0] to LADO[H] 7/	t _{B2}		9, 10,	11	All	12	3T+67	ns
BGilN[0] to AS[L] 7/	t _{B3}		9, 10,	11	All	3T+4	6T+31	ns
BGilN[0] to A[7:1] valid	t _{B4}		9, 10,	11	All	5	3T+37	ns
<u>7</u> /								
BGilN[0] to LWORD[H/L]	t _{B5}		9, 10,	11	All	5	3T+37	ns
<u>7</u> /								
BGilN[0] to WRITE[H/L]	t _{B6}		9, 10,	11	All	5	3T+37	ns
<u>7</u> /								
BGilN[0] to ABEN[L] 7/	t _{B7}		9, 10,	11	All	6	3T+38	ns
PAS[0] & MWB[0] to BRi[L]	t _{B8}		9, 10,	11	All	3	24	ns
PAS[0] & MWB[0] to ISOBE[L]	t _{B9}		9, 10,	11	All	3	25	ns
PAS[0] & MWB[0] to	t _{B10}	-	9, 10,	11	All	12	68	ns
LADO[H]			, ,					
PAS[0] & MWB[0] to BBSY[L]	t _{B11}		9, 10,	11	All	5	36	ns
<u>9</u> /								
See footnotes at end of table.								
STAN MICROCIRCU	DARD	VING	SIZE A				5962-92	2010
DEFENSE SUPPLY (COLUMBUS, O	CENTER C	OLUMBUS		REV	ISION LE B	VEL	SHEET 7	

	TABLE I.	Electrical performance charac	<u>steristics</u> - 0	Continued.			
Test	Symbol	$\begin{array}{l} Conditions \underline{1}/\\ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \end{array}$	Group / subgrou		Li	imit	Unit
		$\begin{array}{l} 4.5 \ V \leq V_{CC} \leq 5.5 \ V \\ \text{unless otherwise specified} \end{array}$			Min	Max	
PAS[0] & MWB[0] to ABEN[L]	t _{B12}	Master access signals	9, 10, 1	1 All	1.5T+6	2.5T+41	ns
<u>9</u> /		-					
PAS[0] & MWB[0] to A(7:1) <u>9</u> /	t _{B13}		9, 10, 1	1 All	1.5T+5	2.5T+41	ns
PAS[0] & MWB[0] to	t _{B14}		9, 10, 1	1 All	1.5T+5	2.5T+41	ns
LWORD[H/L] <u>9</u> /							
PAS[0] & MWB[0] to	t _{B15}		9, 10, 1	1 All	1.5T+5	2.5T+41	ns
WRITE[H/L] <u>9</u> /							
PAS[0] & MWB[0] & DS[0]	t _{B16}		9, 10, 1	1 All	4.5T+9	5.5T+57	ns
to DS1/0[L] <u>9</u> /							
PAS[0] & MWB[0] to SWDEN[L]	t _{B17}		9, 10, 1	1 All	3	14	ns
PAS[0] & MWB[0] to	t _{B18}	-	9, 10, 1	1 All	2	22	ns
LWDENIN[L] <u>10</u> /							
PAS[0] & MWB[0] to	t _{B19}		9, 10, 1	1 All	3	23	ns
UWDENIN[L] <u>10</u> /							
PAS[0] & MWB[0] & DS[0]	t _{B20}		9, 10, 1	1 All	4.5T+5	5.5T+32	ns
to AS[L] <u>9</u> /							
R/W[0]to DDIR[H] <u>8</u> /	t _{B21}		9, 10, 1	1 All	2	25	ns
R/W[1] to DDIR[L] <u>8</u> /	t _{B22}		9, 10, 1	1 All	1	15	ns
D(7:0) to LD(7:0) valid <u>10</u> /	t _{B23}		9, 10, 1	1 All	2	22	ns
DTACK[0] to LEDI[H] <u>10</u> /	t _{B24}	-	9, 10, 1	1 All	3T+4	4T+32	ns
DTACK[0] to DSACKi[L]	t _{B25}		9, 10, 1	, 10, 11 All	3	36	ns
PAS[1] & DS[1] to	t _{B26}		9, 10, 1	1 All	2	27	ns
DSACKi[H]							
PAS[1] to AS[H]	t _{B27}		9, 10, 1	1 All	5	41	ns
DS[1] to ISOBE[H]	t _{B28}		9, 10, 1	1 All	3	26	ns
DS[1] to SWDEN[H]	t _{B29}	1	9, 10, 1	1 All	2	13	ns
DS[1] to UWDENIN[H]	t _{B30}	1	9, 10, 1	1 All	2	22	ns
<u>10</u> /							
See footnotes at end of table.							
STAN MICROCIRC			ize A			5962-92	2010
DEFENSE SUPPLY	CENTER C	OLUMBUS		REVISION LE	EVEL	SHEET	
COLUMBUS, C	HIO 43216	-5000		В		8	

Test	Symbol	Conditions $\frac{1}{-55^{\circ}C} \le T_{C} \le +125^{\circ}C$	Group A subgroups	Device type	Li	mit	Unit
		$4.5 \text{ V} \le \text{V}_{\text{CC}} \le 5.5 \text{ V}$ unless otherwise specified		51	Min	Max	-
DS[1] to LWDENIN[H] <u>10</u> /	t _{B31}	Master access signals	9, 10, 11	All	2	22	ns
DS[1] to LD(7:0) invalid	t _{B32}	-	9, 10, 11	All	2	28	ns
<u>10/</u> DS[1] to LD(7:0) Hi-Z <u>10</u> /	t _{B33}		9, 10, 11	All	2	28	ns
DS[0] to DSACKi[L] <u>11</u> /	t _{B34}		9, 10, 11	All	5	T+35	ns
DS[0] to LADO[H] <u>11</u> /	t _{B35}		9, 10, 11	All	7	43	ns
DS[0] to LEDO[H] <u>11</u> /	t _{B36}		9, 10, 11	All	3	T+20	ns
LBG[0] to PAS[L]	t _{C1}	Local bus timing signals	9, 10, 11	All	5T+5	6T+44	ns
LBG[0] to LA(7:0) valid	t _{C2}		9, 10, 11	All	3T+6	4T+46	ns
LBG[0] to SIZ(1:0) valid	t _{C3}		9, 10, 11	All	1T+2	2T+28	ns
LBG[0] to FC(2:1) valid	t _{C4}		9, 10, 11	All	1T+2	2T+27	ns
LBG[0] to LD(7:0) driven <u>8</u> /	t _{C5}		9, 10, 11	All	3T+7	4T+48	ns
LBG[0] to LAEN[H]	t _{C6}		9, 10, 11	All	3T+8	4T+48	ns
LBG[0] to ISOBE[L]	t _{C7}		9, 10, 11	All	3T+7	4T+42	ns
LBG[0] to SWDEN[L]	t _{C8}		9, 10, 11	All	3T+7	4T+45	ns
LBG[0] to DDIR[H] <u>8</u> /	t _{C9}		9, 10, 11	All	3T+7	4T+42	ns
LBG[0] to UWDENIN[L] 8/	t _{C10}	-	9, 10, 11	All	3T+6	4T+42	ns
LBG[0] to LWDENIN[L] 8/	t _{C11}		9, 10, 11	All	3T+5	4T+38	ns
LBG[0] & DS1/0[0] & WRITE[0] to R/W[L] <u>8</u> /	t _{C12}	-	9, 10, 11	All	3T+7	4T+47	ns
LBG[0] & DS1/0[0] to DS[L]	t _{C13}		9, 10, 11	All	5T+7	6T+56	ns
PAS[0] to DS[L] <u>12</u> /	t _{C14}	1	9, 10, 11	All	0	15	ns
LBR[H] to LBG[1] <u>4</u> /	t _{C15}		9, 10, 11	All		Т	ns
See footnotes at end of table.							

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	9

Test	Symbol	Conditions $\frac{1}{-55^{\circ}C} \le T_{C} \le +125^{\circ}C$	Group A subgroups	Device type	Li	mit	Unit
		$4.5 \text{ V} \le V_{CC} \le 5.5 \text{ V}$ unless otherwise specified	Subgroups	type	Min	Max	-
SLSELi[0] & AS[0] to LBR[L]	t _{D1}	Slave access signals	9, 10, 11	All	6	40	ns
SLSELi[0] & AS[0] & DS1/0 to LADI[H]	t _{D2}		9, 10, 11	All	4	29	ns
LD(7:0) to D(7:0) <u>10</u> /	t _{D3}		9, 10, 11	All	2	18	ns
DSACKI[0] to LEDO[H] <u>10</u> /	t _{D4}	-	9, 10, 11	All	SAT+6	SAT+39 + 0.5T	ns
DSACKI[0] to DTACK[L]	t _{D5}		9, 10, 11	All	SAT+9	SAT+53 + 0.5T	ns
DS1/0[0] to DTACK[L]	t _{D6}	Slave access signals	9,10,11	All	2T+4	3.5T+33	ns
DS1/0[0] to LEDI[H]	t _{D7}	Slave write post only	9, 10, 11	All	8	47	ns
AS[1] to LA(7:0), R/W invalid	t _{D8}	Slave access signals	9, 10, 11	All	4	55	ns
AS[1] to LA(7:0), R/W Hi-Z	t _{D9}		9, 10, 11	All	4	55	ns
AS[1] to FC2/1 invalid	t _{D10}		9, 10, 11	All	8	56	ns
AS[1] & DSACKi[1] to FC2/1 Hi-Z	t _{D11}		9, 10, 11	All	8	56	ns
AS[1] to SIZ1/0 invalid	t _{D12}		9, 10, 11	All	6	37	ns
As[1] & DSACKi[1] to SIZ1/0, Hi-Z	t _{D13}		9, 10, 11	All	2	1T+24	ns
AS[1] to ISOBE[H]	t _{D14}	-	9, 10, 11	All	5	34	ns
AS[1] to SWDEN[H]	t _{D15}	-	9, 10, 11	All	3	27	ns
AS[1] to UWDENIN[H] 8/	t _{D16}	-	9, 10, 11	All	4	30	ns
AS[1] to LWDENIN[H] 8/	t _{D17}	-	9, 10, 11	All	4	30	ns
AS[1] & DSACKi[1] to LBR[H]	t _{D18}	-	9, 10, 11	All	4	30	ns
AS[1] to LAEN[L]	t _{D19}		9, 10, 11	All	7	56	ns
DS1/0[1] to LD(7:0) invalid <u>8</u> /	t _{D20}		9, 10, 11	All	2	39	ns
 DS1/0[1] to LD(7:0) Hi-Z <u>8</u> /	t _{D21}		9, 10, 11	All	2	39	ns
See footnotes at end of table.	_		_				
STAN MICROCIRCU	DARD JIT DRAV		ZE A			5962-92	2010
			RE	VISION LE	VEL	SHEET	

В

10

COLUMBUS, OHIO 43216-5000

Test	Symbol	$\begin{array}{l} Conditions \underline{1}/\\ -55^{\circ}C \leq T_{C} \leq +125 \end{array}$			Device type	Li	mit	Unit
		$4.5 \text{ V} \le \text{V}_{\text{CC}} \le 5.5$ unless otherwise spe				Min	Max	
DSACKi[0] to PAS[H]	t _{D22}	Slave access signals	9, 10,	11	All	SAT+8	SAT+56 + 0.5T	ns
DSACKi[0] to DS[H]	t _{D23}		9, 10,	11	All	SAT+7	SAT+48 + 0.5T	ns
DSACKi[1] to DTACK[H]	t _{D24}		9, 10,	11	All	3	35	ns
IACKIN[0] to IACKOUT[L]	t _{E1}	Interrupt signals	9, 10,	11	All	2	18	ns
IACKIN[1] to IACKOUT[H]	t _{E2}		9, 10,	11	All	2	20	ns
FCIACK[0] & PAS[0] to BRi[L]	t _{E3}		9, 10,	11	All	5T+7	6T+48	ns
FCIACK[0] & PAS[0] to IACK[L] <u>9</u> /	t _{E4}		9, 10,	11	All	7.5T+6	8.5T+39	ns
FCIACK[0] & PAS[0] to LD(7:0) driven <u>13</u> /	t _{E5}		9, 10,	11	All	5T+10	6T+57	ns
FCIACK[0] & PAS[0] to LD(7:0) valid <u>14</u> /	t _{E6}	-	9, 10,	11	All	9T+4	10T+37	ns
FCIACK[0] & PAS[0] to LIACKO[L] <u>15</u> /	t _{E7}		9, 10,	11	All	5T+5	6T+36	ns
IRQi[0] to IPL	t _{E8}		9, 10,	11	All	4	37	ns
BGiIN[0] to BBSY[L]	t _{E9}		9, 10,	11	All	5	36	ns
BGiiN[0] to AS[L]	t _{E10}		9, 10,	11	All	3T+4	4T+31	ns
BGiIN[0] to DS1/0[L]	t _{E11}		9, 10,	11	All	3T+8	4T+55	ns
BGiIN[0] to IACK[L] 14/	t _{E12}		9, 10,	11	All	44		ns
PAS[0] to ISOBE[L]	t _{E13}		9, 10,	11	All	5T+7	6T+44	ns
PAS[0] to SWDEN[L]	t _{E14}		9, 10,	11	All	5T+6	6T+42	ns
IPLi to IPLi <u>4</u> / <u>12</u> /	t _{E15}		9, 10,	11	All		12	ns
MWB[0] & PAS[0] & DS[0] to BRi[L]	t _{F1}	Master block transfer with local DMA signals	9, 10,	11	All	T+5	2T+38	ns
	t _{E2}	(Initiation cycle)	9, 10,	11	All	4T+8	5T+50	ns
to BRi[L] BGiIN[0] to LBR[L] See footnotes at end of table.	t _{F2}	(initiation cycle)	9, 10,	11	All	4T+8	5T+50	n
STAI MICROCIRC		VING	SIZE A				5962-92	2010
DEFENSE SUPPLY				RE∖	ISION LE	VEL	SHEET	

AII AII AII AII AII	Min 5T+8 T+6 T+4 MBAT0+7 MBAT0+6	Max 6T+50 2T+39 2T+37 MBAT0+ 0.5T+52	ns ns ns ns
AII AII AII AII	T+6 T+4 MBAT0+7	2T+39 2T+37 MBAT0+ 0.5T+52	ns
All All All	T+4 MBAT0+7	2T+37 MBAT0+ 0.5T+52	ns
All	MBAT0+7	MBAT0+ 0.5T+52	
All		0.5T+52	ns
	MBAT0+6		
All		MBAT0+ 0.5T+40	ns
	MBAT0+T+ 9	MBAT0+ 1.5T+40	ns
All	MBAT0+3T +5	MBAT0+ 3.5T+42	ns
All	6	38	ns
All	9	56	ns
All	9	64	ns
			ns
	1.5T-15	1.5T-4	
All	MBAT1+7	MBAT1+ 0.5T+52	ns
All	MBAT1+6	MBAT1+ 0.5T+40	ns
All	MBAT1+T+ 9	MBAT1+ 1.5T+40	ns
All	MBAT1+3T +5	MBAT1+ 3.5T+38	ns
All	6	38	ns
	AII AII AII AII AII AII	AII9AII9AIIDST+1.5T-15AIIMBAT1+7AIIMBAT1+6AIIMBAT1+6AIIMBAT1+3T+5	All 9 56 All 9 64 All DST+ DST+ 1.5T-15 1.5T-4 All MBAT1+7 MBAT1+ All MBAT1+6 MBAT1+ All MBAT1+6 MBAT1+ All MBAT1+7 MBAT1+ All MBAT1+7 MBAT1+ All MBAT1+7 MBAT1+ All MBAT1+7 MBAT1+ All MBAT1+3T MBAT1+ All MBAT1+3T MBAT1+ All MBAT1+3T MBAT1+

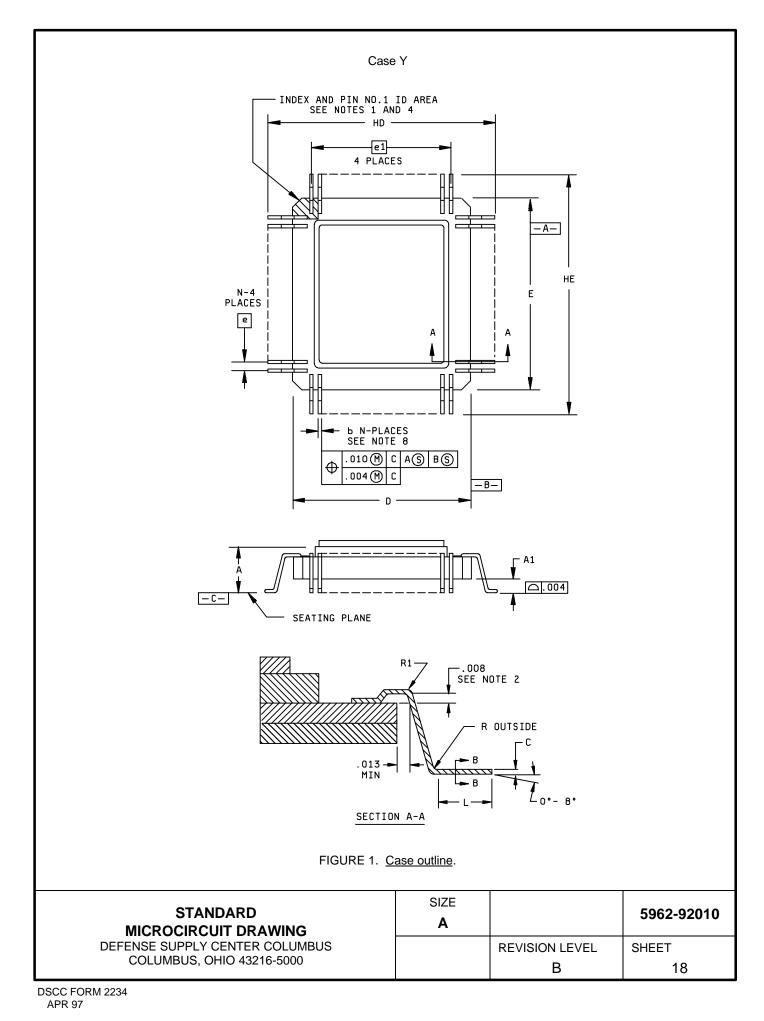
	TABLE I	. Electrical performance cha	racteristics - (Continued			
Test	Symbol	Conditions $1/$ -55°C ≤ T _C ≤ +125°C	Group A Device subgroups type		Limit		Unit
		$4.5 \text{ V} \le \text{V}_{CC} \le 5.5 \text{ V}$ unless otherwise specified			Min	Max	
DTACK[0] to DSi[H]	t _{G14}	Master block transfer	9, 10, 11	All	9	59	ns
DTACK[0] to A(7:0)	t _{G15}	with local DMA signals (write cycle)	9, 10, 11	All	9	64	ns
valid DTACK[0] to DS[H] (Slow Slave) <u>4</u> /	t _{G16}		9, 10, 11	All	T+13	1.5T+47	ns
LEDO[L] to LEDO[H] (Slow Slave) <u>4</u> /	t _{G17}		9, 10, 11	All	T+9	1.5T+27	ns
DTACK[0] to LEDi[H]	t _{H1}	Master block transfer	9, 10, 11	All	2.0T+4	3T+27	ns
DTACK[0] to DSi[H]	t _{H2}	with local DMA signals (read cycle)	9, 10, 11	All	2.0T+7	3T+32	ns
DTACK[0] to A(7:0) valid	t _{H3}		9, 10, 11	All	1.5T+8	2.5T+53	ns
DTACK[0] to DS[L]	t _{H4}		9, 10, 11	All	1.5T+7	2.5T+47	ns
DSACKi[0] & DS[L] to DS[H]	t _{H5}		9, 10, 11	All	MBAT0+7	MBAT0+ 0.5T+45	ns
DSACKi[0] & DS[L] to LEDI[L]	t _{H6}		9, 10, 11	All	MBAT0+7	MBAT0+ 0.5T+55	ns
DSACKi[0] & DS[0] to LA(7:0) valid	t _{H7}		9, 10, 11	All	MBAT0+T+ 9	MBAT0+ 1.5T+35	ns
DSACKi[0] & DS[0] to DSi[L]	t _{H8}		9, 10, 11	All	MBAT0+ 10	MBAT0+ 0.5T+83	ns
DTACK[0] to LEDI[H]	t _{H9}		9, 10, 11	All	2T+4	3T+27	ns
DTACK[0] to DSi[H]	t _{H10}		9, 10, 11	All	2T+7	3T+32	ns
DTACK[0] to A(7:0) valid	t _{H11}		9, 10, 11	All	8	53	ns

See footnotes at end of table.

STANDARD	SIZE		5000 00040
MICROCIRCUIT DRAWING	Α		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		В	13

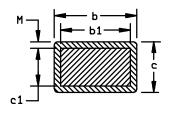
Test	Symbol	Conditions <u>1</u> / -55°C \leq T _C \leq +125°C	Group A subgroups	Device type	Lin	nit	Unit
		$4.5 \ V \leq V_{CC} \leq 5.5 \ V$ unless otherwise specified			Min	Max	
DTACK[0] to DS[L]	t _{H12}	Master block transfer with local DMA signals	9,10,11	All	7	47	ns
DSACKi[0] & DS[0] to DS[H]	t _{H13}	(read cycle)	9, 10, 11	All	MBAT1+7	MBAT1+ 0.5T+45	ns
DSACKi[0] & DS[0] to LEDI[L]	t _{H14}		9, 10, 11	All	MBAT1+7	MBAT1+ 0.5T+55	ns
DSACKi[0] & DS[0] to LA(7:0) valid	t _{H15}	-	9, 10, 11	All	MBAT1+T+ 9	MBAT1+ 1.5T+35	ns
DSACKi[0] & DS[0] to DSi[L]	t _{H16}		9, 10, 11	All	MBAT1+ 10	MBAT1+ 0.5T+83	ns
DS[L] to BLT[H]	t _{J1}	Master block transfer with local DMA signals (boundary cycle)	9, 10, 11	All	2	35	ns
DS[L] to BLT[L]	t _{J2}		9, 10, 11	All	2	21	ns
DSi[L] to LEDO[H/L]	t _{J3}		9, 10, 11	All	2	25	ns
DSi[L] to LADO[L/H]	t _{J4}		9, 10, 11	All	2	20	ns
DSi[0] to LEDI[H]	t _{K1}	Slave block transfer	9, 10, 11	All	4	24	ns
DSi[0] to DS[L]	t _{K2}	signals (write cycle)	9, 10, 11	All	5	39	ns
DSACKi[0] & DS[L] to DTACK[H]	t _{K3}		9, 10, 11	All	SBAT+7	SBAT+ 0.5T+52	ns
DSACKi[0] & DS[L] to DTACK[L]	t _{K4}		9, 10, 11	All	SBAT+10	SBAT+ 0.5T+67	ns
DSACKi[0] & DS[L] to ISOBE[H]	t _{K5}		9, 10, 11	All	SBAT+11	SBAT+ 0.5T+62	ns
DSACKi[0] & DS[L] to SWDEN[H]	t _{K6}		9, 10, 11	All	SBAT+10	SBAT+ 0.5T+61	ns

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	14


Test	Symbol	Conditions $1/$ -55°C \leq T _C \leq +125°C	Group A subgroups	Device type	Lin	nit	Unit
		$4.5 \ V \leq V_{CC} \leq 5.5 \ V$ unless otherwise specified			Min	Max	1
DSACKi[0] & DS[L] to LA(7:0) valid	t _{K7}	Slave block transfer signals (write cycle)	9, 10, 11	All	SBAT+T+8	SBAT+ 1.5T+40	ns
DSACKi[0] & DS[L] to LEDI[L]	t _{K8}		9, 10, 11	All	SBAT+6	SBAT+ 0.5T+53	ns
DS1/0[1] to DTACK[H]	t _{K9}		9, 10, 11	All	4	35	ns
DS1/0[1] to LEDO[L] <u>4</u> /	t _{L1}	Slave block transfer signals (read cycle)	9, 10, 11	All	3	30	ns
DS[H] to DS[L] <u>4</u> /	t _{L2}		9, 10, 11	All	DST+ 1.5T-15	DST+ 1.5T-4	ns
DS1/0[0] to DENO[L]	t _{L3}]	9, 10, 11	All	3	24	ns
DSACKi[0] & DS[0] to LEDO[H]	t _{L4}		9, 10, 11	All	SBAT+6	SBAT+ 0.5T+41	ns
DSACKi[0] & DS[0] to DS[H]	t _{L5}		9, 10, 11	All	SBAT+7	SBAT+ 0.5T+52	ns
DSACKi[0] & DS[0] to DTACK[L]	t _{L6}		9, 10, 11	All	SBAT+9	SBAT+ 0.5T+53	ns
DSACKi[0] & DS[0] to LA(7:0) valid	t _{L7}		9, 10, 11	All	SBAT+T+8	SBAT+ 0.5T+40	ns
DS1/0[1] to DENO[H]	t _{L8}	-	9, 10, 11	All	2	22	ns
DS1/0[1] to DTACK[H]	t _{L9}	-	9, 10, 11	All	3	24	ns
LEDO[L] to LEDO[H] (Slow Master) <u>4</u> /	t∟10	-	9, 10, 11	All	1.5+9	1.5+27	ns
DTACK[0] to DS[H] (Slow Master) <u>4</u> /	t _{L11}		9, 10, 11	All	1.5+13	1.5+47	ns
PAS[0] & DS[0] & CS[0] to DSACKi[L]	t _{M1}	Register access signals	9, 10, 11	All	4T+4	5T+38	ns
PAS[0] & DS[0] & CS[0] to LD(7:0) valid <u>10</u> /	t _{M2}	-	9, 10, 11	All	3T+4	4T+37	ns
See footnotes at end of tabl	е.						
ST. MICROCIR		WING	SIZE A			5962-92	2010
DEFENSE SUPPL		COLUMBUS		REVISIO	N LEVEL B	SHEET 15	

Test	Symbol	Conditions $1/$ -55°C \leq T _C \leq +125°C	Group A subgroups	Device type	Limit		Unit
		$\begin{array}{l} 4.5 \ V \leq V_{CC} \leq 5.5 \ V \\ \text{unless otherwise specified} \end{array}$			Min	Max	
AS[0] & ICFSEL[0] to DTACK[L]	t _{M3}	Register access signals	9, 10, 11	All	4T+5	4T+34	ns
LBG[0] to HALT[L], RESET[L]	t _{N1}	Reset signals	9, 10, 11	All	6	48	ns
IRESET[0] to LBR[L]	t _{N2}		9, 10, 11	All	5	33	ns
IRESET[0] to IPL0[Z]	t _{N3}		9, 10, 11	All	2	20	ns
LA, ASIZ(1:0) valid to PAS[0] <u>4</u> /	t _{P1}	Setup times	9, 10, 11	All	-2T		ns
SIZ(1:0), WORD, FC(2:1) valid to PAS[0] <u>4</u> /	t _{P2}	-	9, 10, 11	All	-2T		ns
LD(7:0) valid to DS[0] <u>4</u> /	t _{P3}	-	9, 10, 11	All	0		ns
PAS[1] to LA, ASIZ(1:0) invalid <u>4</u> /	t _{Q1}	Hold times	9, 10, 11	All	0		ns
PAS[1] to SIZ(1:0), WORD, FC(2:1) invalid <u>4</u> /	t _{Q2}	-	9, 10, 11	All	0		ns
 DS[1] to LD(7:0) invalid _ <u>4</u> /	t _{Q3}		9, 10, 11	All	0		ns
 DS1/0[1] to DTACK[H] _ <u>4</u> /	t _{Q4}		9, 10, 11	All	0		ns
Frequency of operation		Clock inputs	9, 10, 11	All	1	64	MH
Cycle time	1		9, 10, 11	All	15.6	1000	ns
Clock pulse width (measured from 1.5 V to 1.5 V)	2, 3		9, 10, 11	All	<u>16</u> /	<u>16</u> /	ns
Rise and fall time	4, 5	-	9, 10, 11	All		5	ns
See footnotes on next sheet.							
STA MICROCIR		WING	SIZE A			5962-9	2010
DEFENSE SUPPL	Y CENTER	COLUMBUS		REVISION	LEVEL	SHEET	
COLUMBUS,							

TABLE I. Electrical performance characteristics - Continued.


- 1/ All testing to be performed using worst-case test conditions. The following pins are active low: CS, PAS, DSACK0, LBG, IPL1, IPL2, BLT, DSACK1, LBERR, W, RMC, IRESET, ABEN, LIACKO, DEDLK, RESET, HALT, LBR, SCON, LIRQ2, IPL0, LIRQ5, LIRQ1, UWDENIN, LIRQ4, LIRQ3, LWDENIN, SWDEN, LIRQ6, LIRQ7, DENO, ISOBE, SLSEL1, ICFSEL, WORD, MWB, SLSEL0, FCIACK, BG0OUT, BG10UT, IRQ1, BG2IN, BG30UT, IRQ2, IRQ5, SYSFAIL, IACKIN, BERR, BR2, BBSY, BG0IN, BG3IN, BG20UT, IRQ3, IRQ6, SYSRESET, IACK, AS, DS, LWORD, WRITE, DS1, BR1, BR3, BG1IN, IRQ4, IRQ7, ACFAIL, IACKOUT, DTACK, DS0, BR0, BCLR.
- 2/ VMEbus signals (Low Drive, all VMEbus Daisy Chain Signals) and all non-VMEbus signals.
- 3/ VMEbus signals (AS, DS1, DS0, BCLR, SYSCLK) and VMEbus signals (Medium Drive, all non-High, non-Low Drive Signals).
- 4/ Tested initially and at process and design changes. Thereafter guaranteed, if not tested, to the limits specified in table I.
- 5/ ROR mode.
- 6/ While VMEbus system controller.
- <u>7</u>/ Synchronous delay depends on speed in which BGilN is returned. If BGilN is returned in zero time after request, synchronous delay will be maximum.
- 8/ Write operation only.
- 9/ While VMEbus master.
- 10/ Read operation only.
- 11/ Master write post only.
- <u>12</u>/ Skew.
- 13/ VMEbus interrupt only.
- <u>14</u>/ Local interrupt (LICR[4] = 1) only.
- <u>15</u>/ Local interrupt (LICR[4] = 0) only.
- 16/ A 60/40 to 40/60 duty cycle must be maintained.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		В	17

Downloaded from **Elcodis.com** electronic components distributor

Case Y - Continued

				Variations			
Symbol		Millimeters				Note	
	Min	Nom	Max	Min	Nom	Max	Note
А	2.04		2.80	.080		.110	
A1	0.05	0.25	0.51	.002	.010	.020	
b	0.15		0.33	.006		.015	3
b1	0.15		0.38	.006		.013	3
С	0.11		0.26	.004		.010	3
c1	0.10		0.20	.004		.008	3
D/E	27.72	28.05	28.33	1.091	1.102	1.115	
е		0.65 BSC			.0256 BSC		
e1		25.35 BSC			.998 BSC		
HD/HE	31.00	31.26	31.51	1.218	1.228	1.238	
L	0.31	0.51	0.71	.012	.020	.028	
М			0.038			.0015	
Ν		160			160		4
ND/NE		40			40		5
R	0.28		0.64	.011		.025	
R1	2.55			.010			
Note				6			

NOTES:

- 1. A terminal 1 identification mark shall be located at the index corner in the shaded area shown. Terminal 1 is located immediately adjacent to and counterclockwise from the index corner. Terminal numbers increase in a counterclockwise direction when viewed as shown.
- 2. Generic lead attach dogleg depiction. May be flat configuration.
- 3. Dimensions b and c include lead finish; dimensions b1 and c1 apply to base metal only. Dimension M applies to plating thickness.
- 4. Dimension N: Number of terminals.
- 5. Dimensions ND/NE: Number of terminals per package edge.
- 6. The leads of this package style shall be protected from mechanical distortion and damage such that dimensions pertaining to relative lead/body "true positions" and lead "coplanarity" are always maintained until the next higher level package attachment process is complete. Package lead protection mechanisms (tie bars, carriers, etc.) are not shown on the drawing; however, when microcircuit devices contained in this package style are shipped for use in Government equipment, or shipped directly to the Government as spare parts or mechanical qualification samples, lead "true position" and "coplanarity" protection shall be in place.

FIGURE 1. Case outline - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	19

		(Case X		
Terminal number	Symbol	Terminal number	Symbol	Terminal number	Symbol
A1	V _{SS}	B10	LBERR	D4	LOCATOR PIN
A2	LD6	B11	R/\overline{W}	D13	CLK64M
A3	LD2	B12	RMC	D14	LEDI
A4	LD1	B13	SIZ0	D15	LEDO
A5	LA7	B14	IRESET	E1	LIRQ5
A6	LA3	B15	ABEN	E2	LIRQ1
A7	LA2	C1	LIACKO	E3	LAEN
A8	LA1	C2	IPL1	E13	LADI
A9	CS	C3	DEDLK	E14	DDIR
A10	PAS	C4	LD7	E15	UWDENIN
A11	DSACK0	C5	LD4	F1	ASIZ1
A12	HALT	C6	LA6	F2	LIRQ4
A13	FC2	C7	V _{SS}	F3	LIRQ3
A14	SIZ1	C8	V _{DD}	F13	V _{SS}
A15	LBG	C9	DS	F14	LWDENIN
B1	IPL2	C10	RESET	F15	SWDEN
B2	BLT	C11	FC1	G1	ASIZ0
B3	LD5	C12	LBR	G2	LIRQ6
B4	LD3	C13	SCON	G3	LIRQ7
B5	LD0	C14	LADO	G13	V _{DD}
B6	LA5	C15	V _{DD}	G14	DENO
B7	LA4	D1	LIRQ2	G15	ISOBE
B8	LA0	D2	V _{DD}	H1	SLSEL1
B9	DSACK1	D3	IPL0	H2	ICFSEL

FIGURE 2. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	20

Terminal number	Symbol	Terminal number	Symbol	Terminal number	Symbol
H3	V _{SS}	M13	BGIN2	P8	AM2
H13	V _{SS}	M14	BGOUT0	P9	LWORD
H14	D6	M15	BGOUT3	P10	WRITE
H15	D7	N1	V _{DD}	P11	DS1
J1	WORD	N2	A7	P12	BR1
J2	MWB	N3	IRQ2	P13	BR3
J3	SLSEL0	N4	IRQ5	P14	BGIN1
J13	V _{DD}	N5	SYSFAIL	P15	SYSCLK
J14	D3	N6	IACKIN	R1	IRQ4
J15	D5	N7	V _{SS}	R2	IRQ7
K1	FCIACK	N8	V _{SS}	R3	ACFAIL
K2	A1	N9	V _{DD}	R4	IACKOUT
К3	V _{SS}	N10	BERR	R5	DTACK
K13	D0	N11	BR2	R6	AM0
K14	D1	N12	BBSY	R7	AM1
K15	D4	N13	BGIN0	R8	AM3
L1	A2	N14	BGIN3	R9	AM4
L2	A3	N15	BGOUT2	R10	AM5
L3	A6	P1	V _{SS}	R11	DS0
L13	BGOUT1	P2	IRQ3	R12	BRO
L14	V _{SS7}	P3	IRQ6	R13	V _{SS}
L15	D2	P4	V _{DD}	R14	BCLR
M1	A4	P5	SYSRESET	R15	V _{SS}
M2	A5	P6	IACK		
M3	IRQ1	P7	ĀS		
	FIGL	IRE 2. <u>Termina</u>	al connections – Co	ontinued.	

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000SIZE
A5962-92010REVISION LEVEL
BSHEET
21

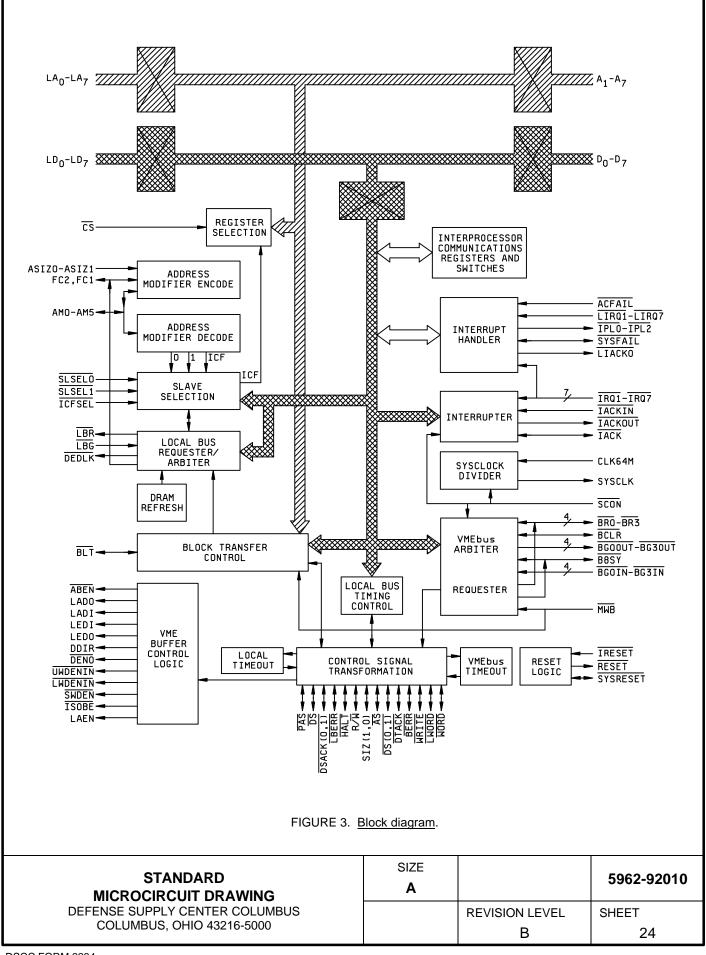
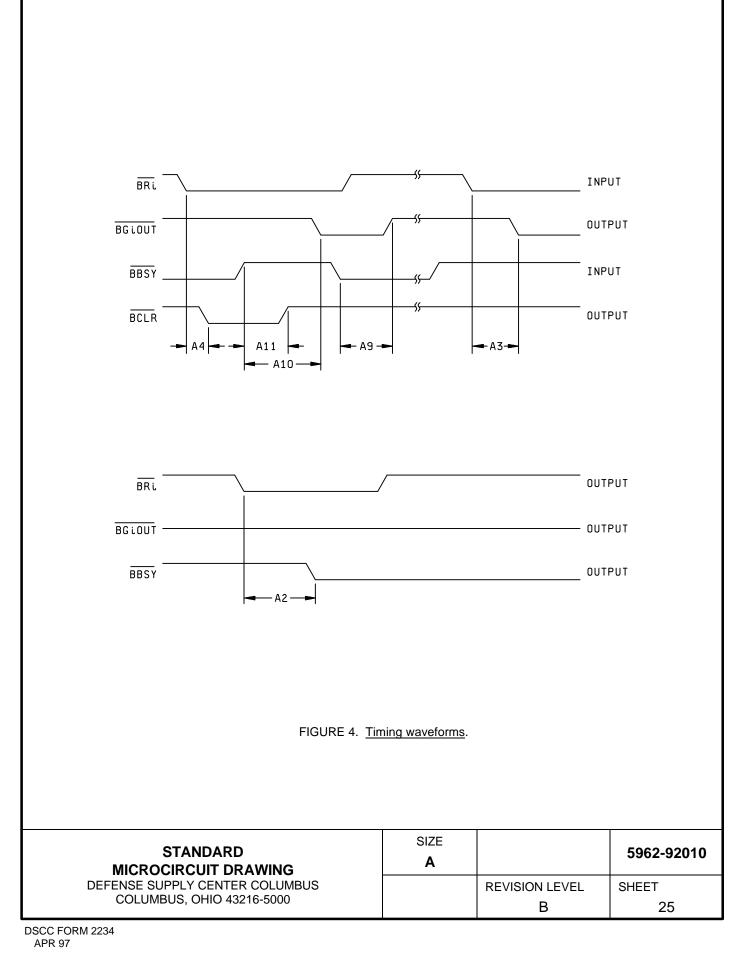
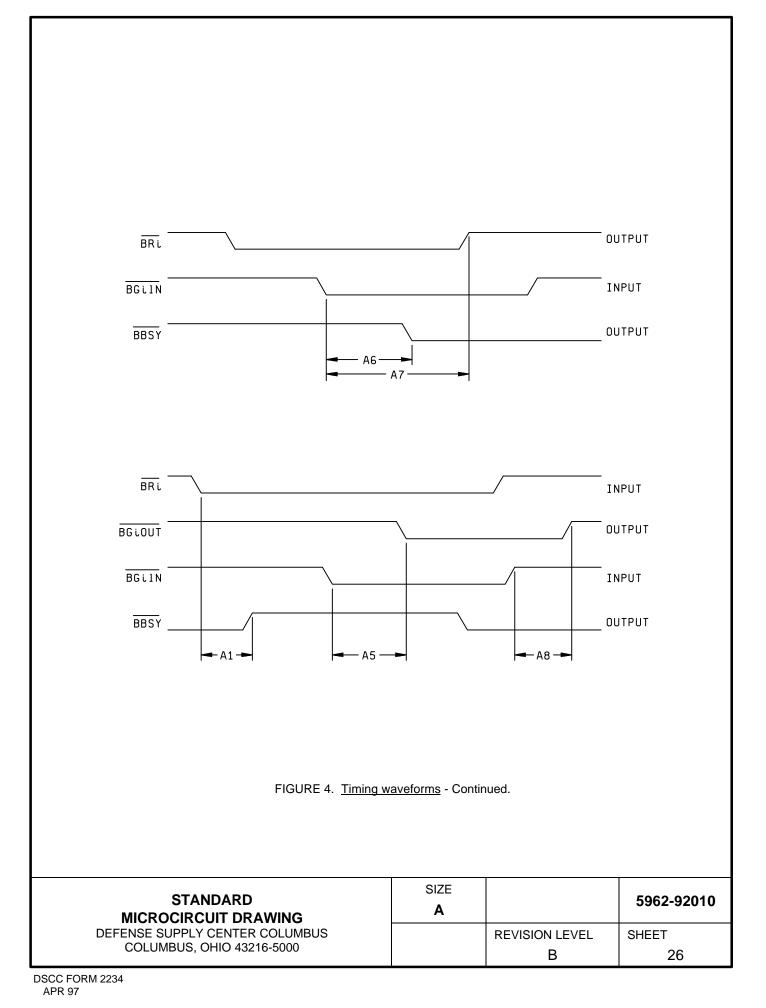
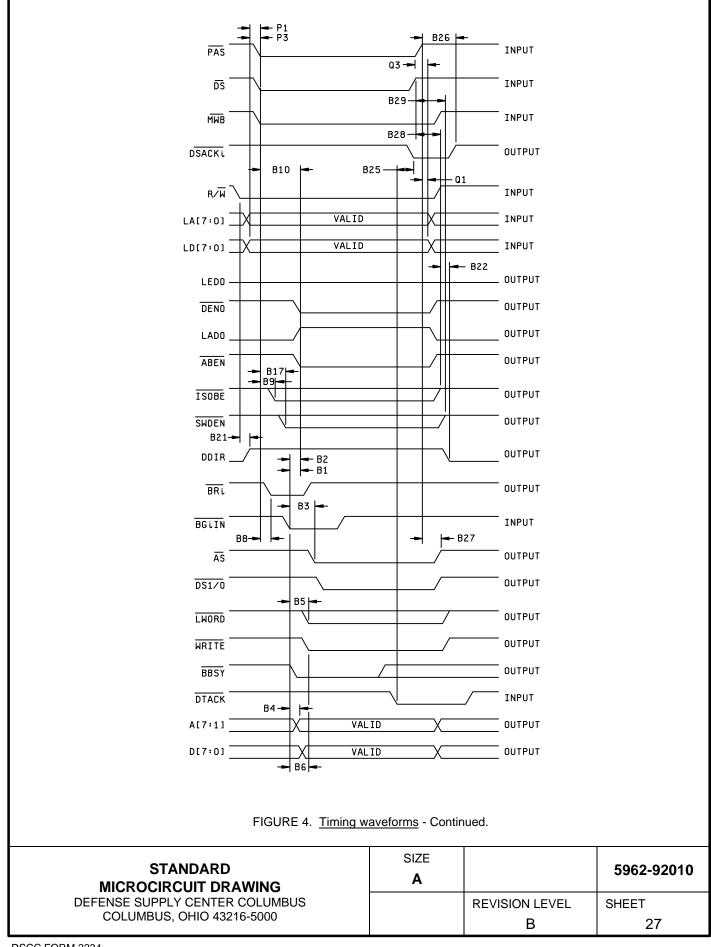

Terminal	Symbol	Terminal	Case Y Symbol	Terminal	Symbol
number	Gymbol	number	Cynlool	number	Cymbol
1	V _{SS}	28	A3	55	V _{SS}
2	V _{SS}	29	A4	56	AM0
3	IPL0	30	V _{DD}	57	AM1
4	IPL1	31	A5	58	AM2
5	IPL2	32	A6	59	AM3
6	V _{DD}	33	A7	60	V _{SS}
7	LAEN	34	V _{SS}	61	V _{DD}
8	LIACKO	35	IRQ1	62	AM4
9	LIRQ1	36	IRQ2	63	AM5
10	LIRQ2	37	IRQ3	64	LWORD
11	LIRQ3	38	IRQ4	65	WRITE
12	LIRQ4	39	V _{SS}	66	BERR
13	LIRQ5	40	V _{SS}	67	DS0
14	LIRQ6	41	V _{DD}	68	DS1
15	LIRQ7	42	V _{DD}	69	BR0
16	ASIZ1	43	IRQ5	70	V _{SS}
17	ASIZ0	44	IRQ6	71	BR1
18	ICFSEL	45	IRQ7	72	BR2
19	SLSEL1	46	V _{DD}	73	BR3
20	V _{SS}	47	SYSFAIL	74	BCLR
21	SLSEL0	48	ACFAIL	75	BBSY
22	WORD	49	SYSRESET	76	BGIN0
23	FCIACK	50	IACKOUT	77	BGIN1
24	MWB	51	IACKIN	78	V _{SS}
25	A1	52	IACK	79	V _{DD}
26	V _{SS}	53	DTACK	80	V _{DD}
27	A2	54	ĀS	81	Vss

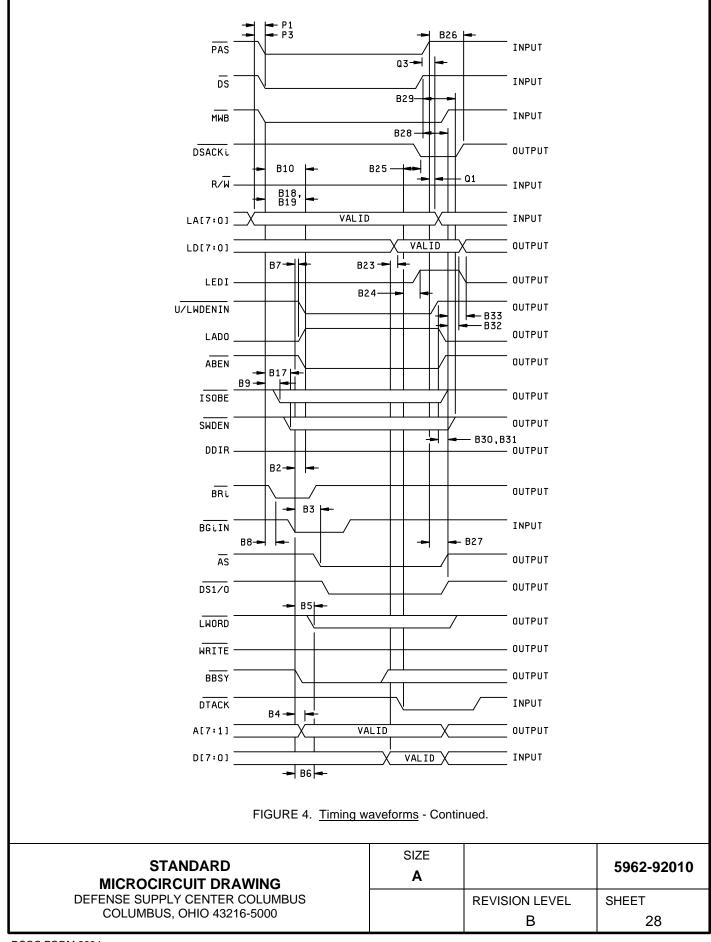
FIGURE 2. <u>Terminal connections</u> - Continued.

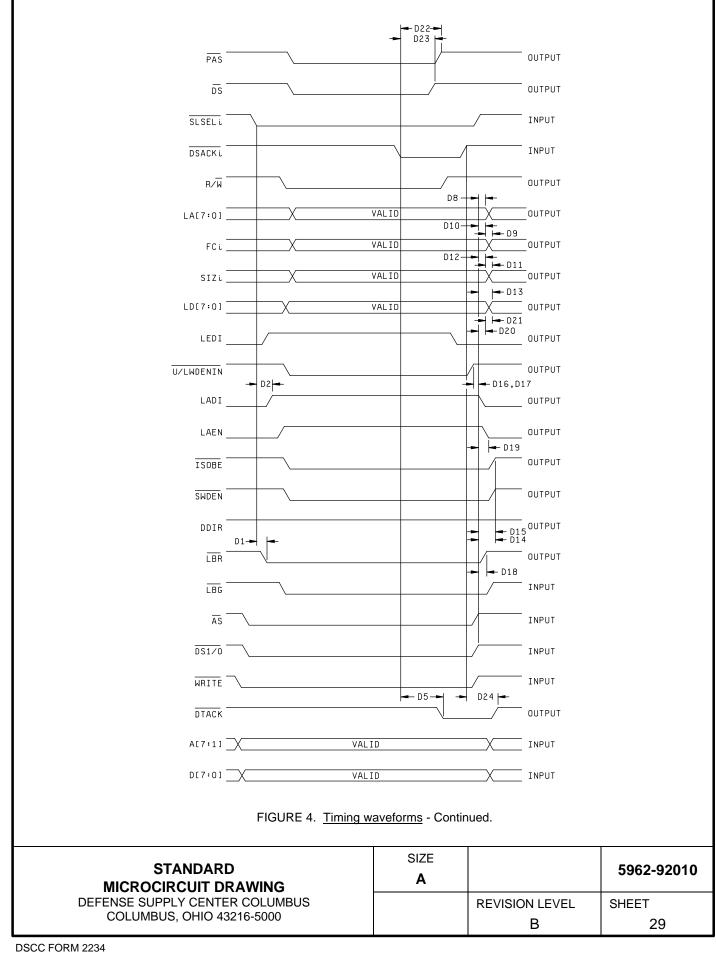

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	22

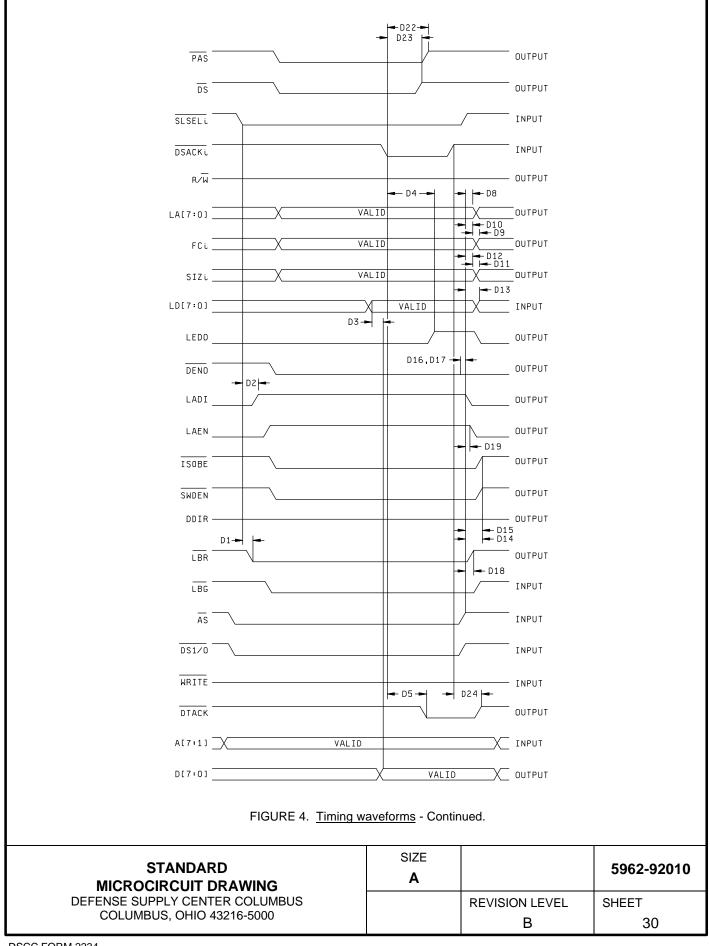

⁻ erminal number	Symbol	Terminal number	Symbol	Terminal number	Symbol
82	V _{SS}	109	LEDO	136	PAS
83	BGIN2	110	V _{DD}	137	CS
84	BGIN3	111	LEDI	138	LA0
85	SYSCLK	112	LADI	139	LA1
86	BGOUT 0	113	LADO	140	V_{DD}
87	BGOUT1	114	ABEN	141	V _{SS}
88	BGOUT2	115	CLK64M	142	LA2
89	V _{SS}	116	SCON	143	LA3
90	BGOUT3	117	IRESET	144	LA4
91	D0	118	LBG	145	LA5
92	D1	119	V _{SS}	146	LA6
93	D2	120	V _{SS}	147	LA7
94	D3	121	V _{DD}	148	LD0
95	V _{DD}	122	V _{DD}	149	LD1
96	D4	123	LBR	150	LD2
97	D5	124	SIZ0	151	LD3
98	D6	125	SIZ1	152	LD4
99	D7	126	RMC	153	LD5
100	V _{SS}	127	FC1	154	LD6
101	V _{DD}	128	FC2	155	LD7
102	ISOBE	129	R/\overline{W}	156	DEDLK
103	SWDEN	130	HALT	157	BLT
104	DENO	131	RESET	158	V _{SS}
105	LWDENIN	132	LBERR	159	V _{DD}
106	V _{SS}	133	DSACK0	160	V _{DD}
107	UWDENIN	134	DSACK1		
108	DDIR	135	DS		
		RE 2. <u>Termina</u>			

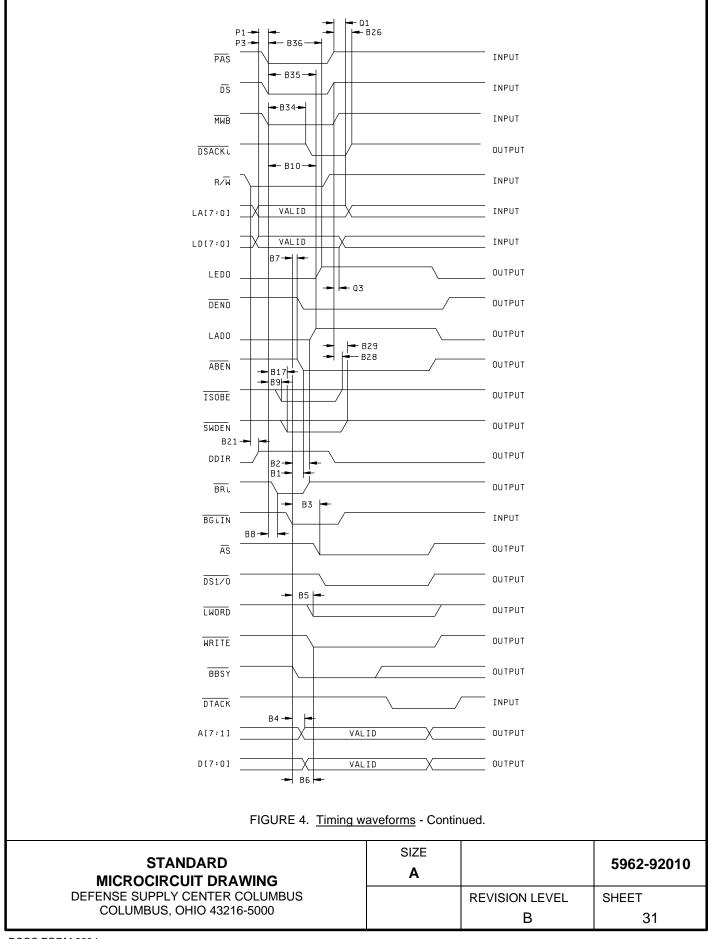
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	23

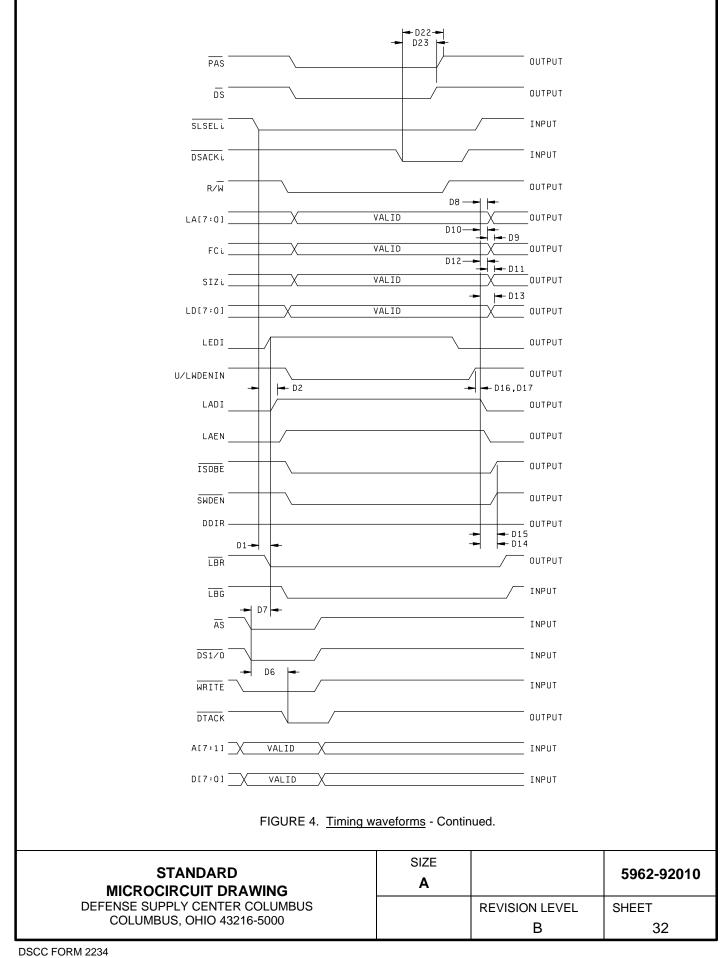


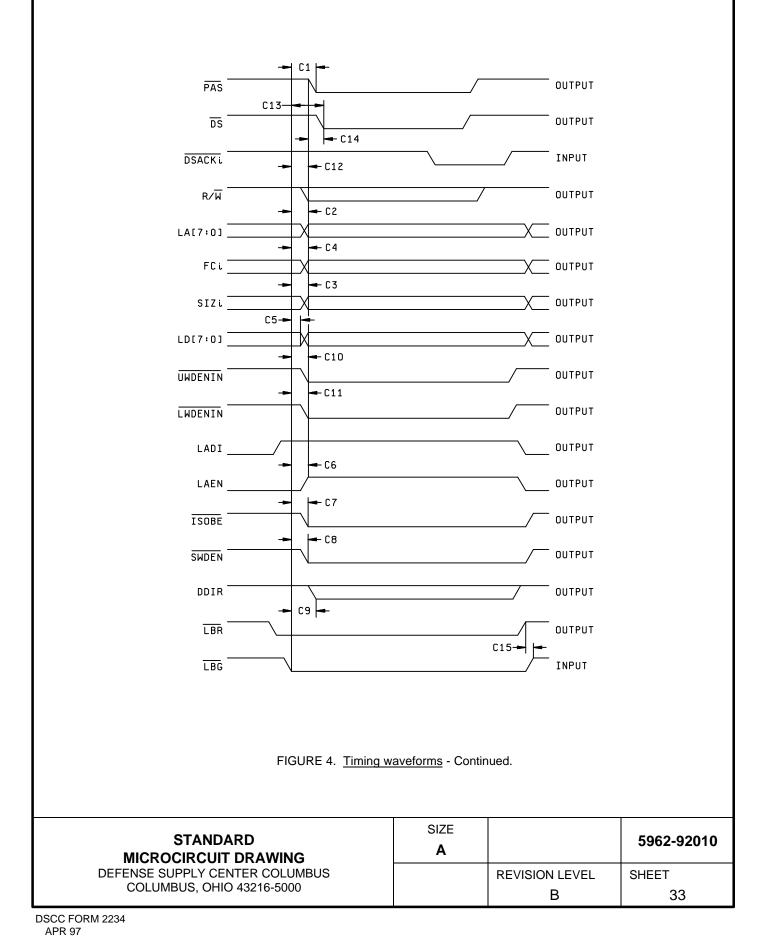

DSCC FORM 2234 APR 97

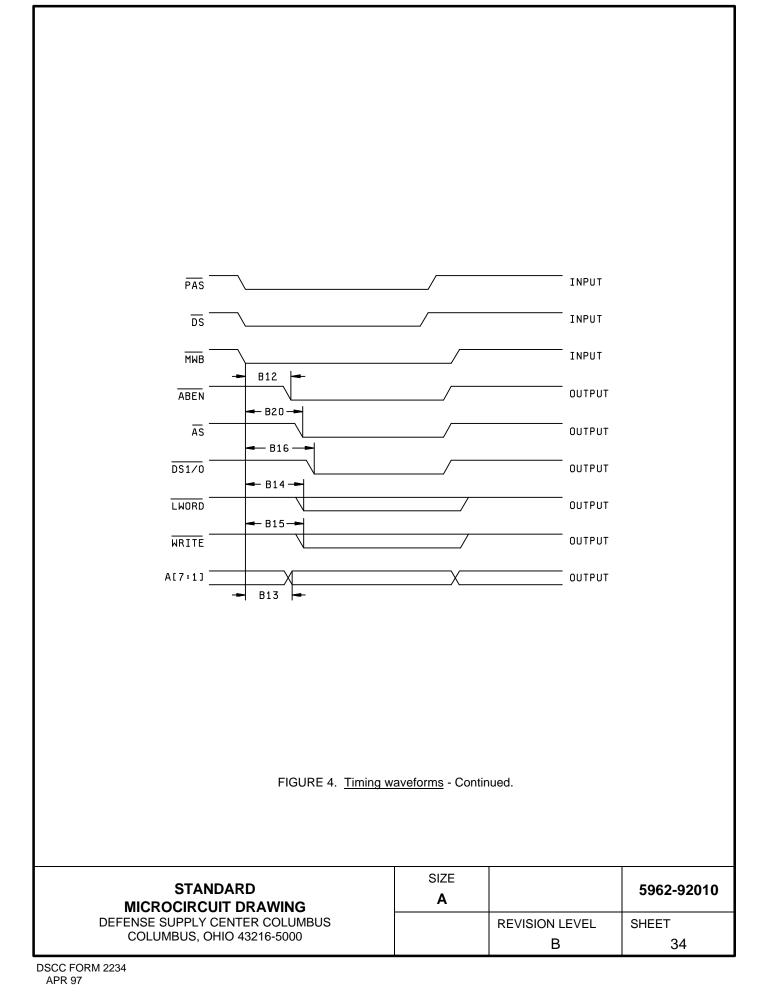


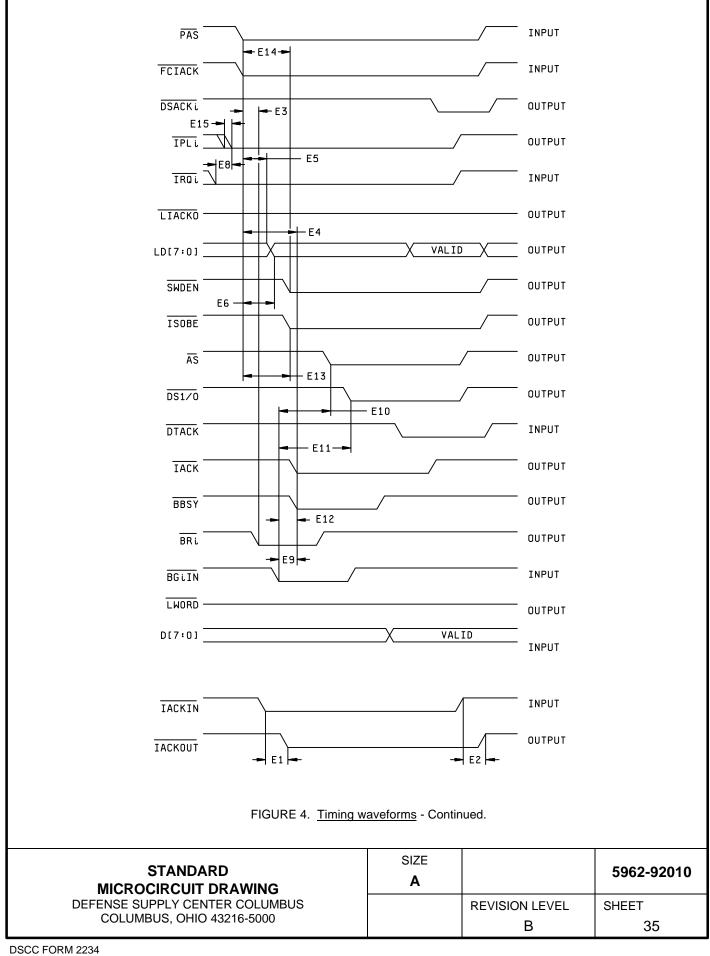

Downloaded from **Elcodis.com** electronic components distributor

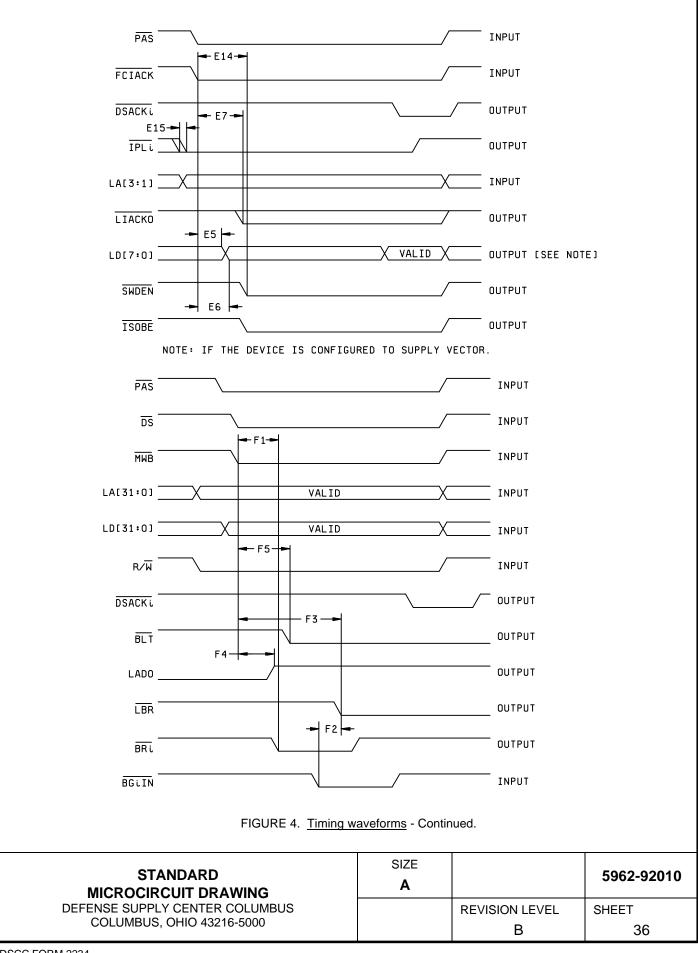


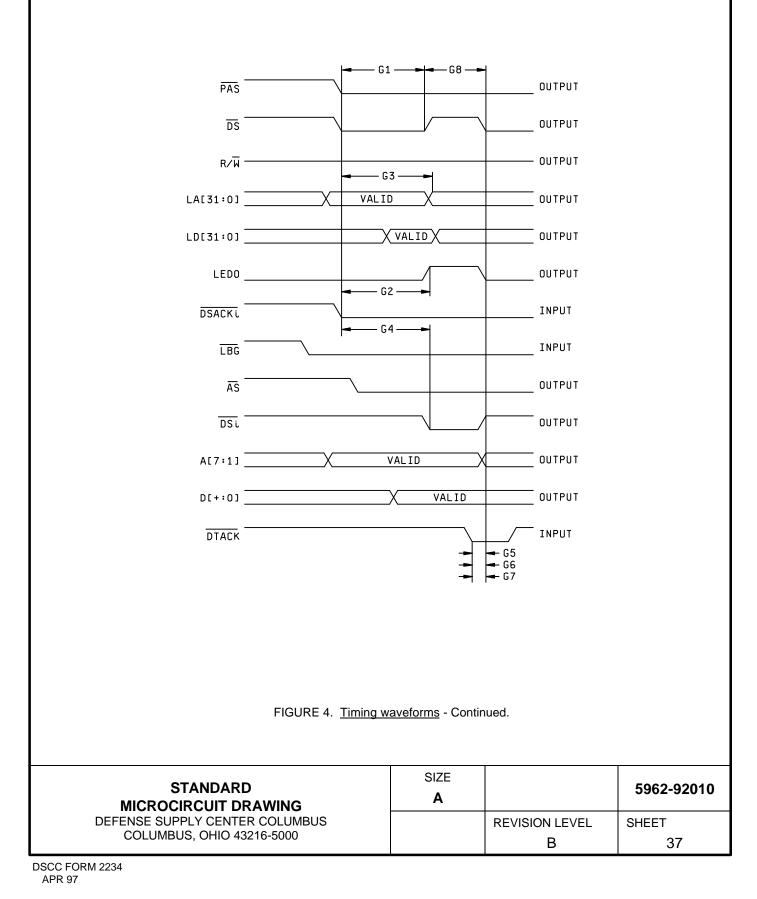


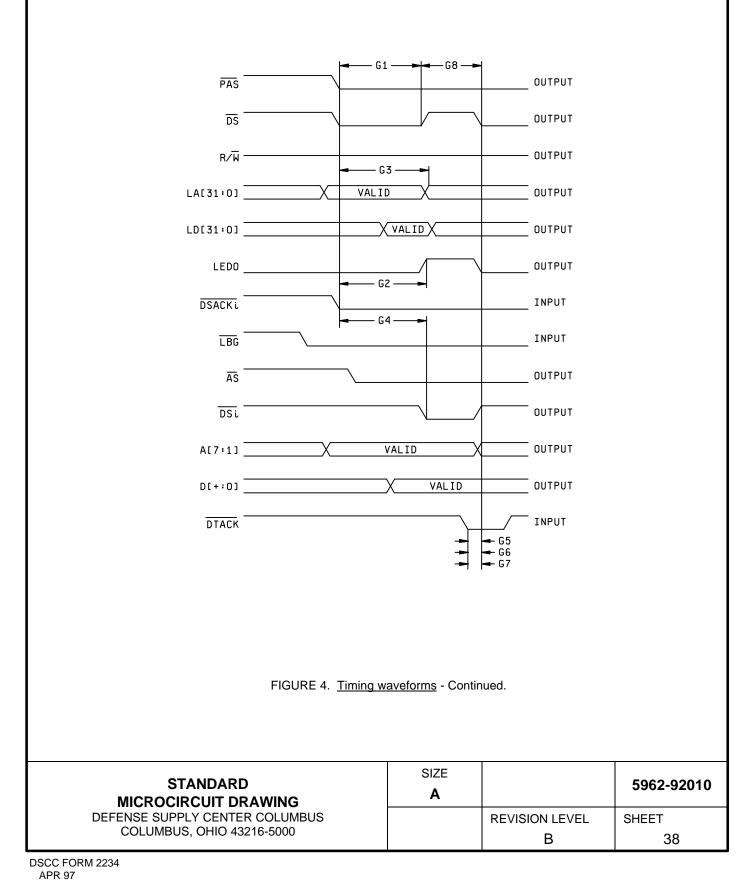

DSCC FORM 22 APR 97

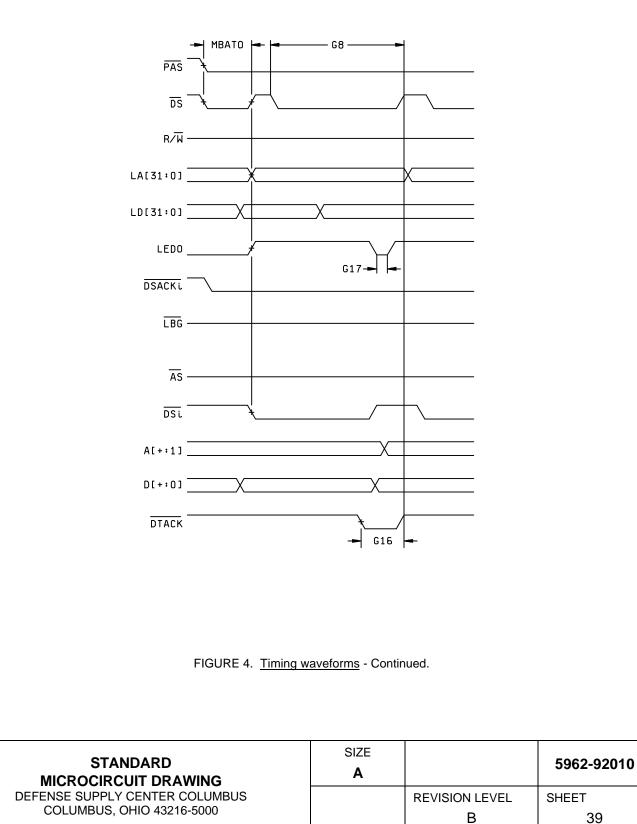


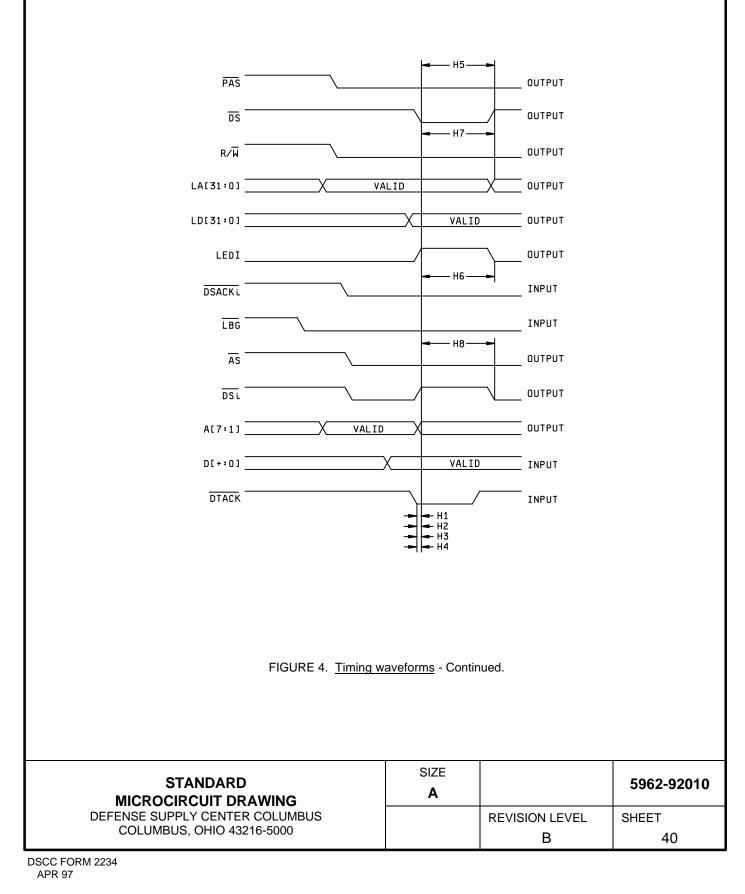


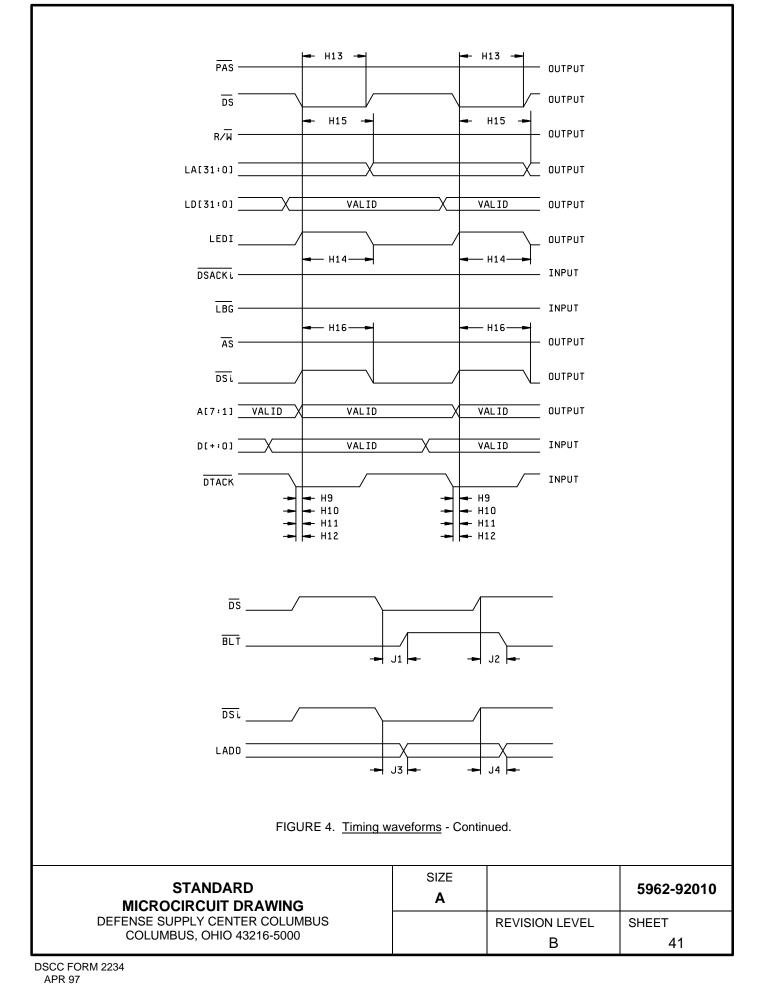

APR 97

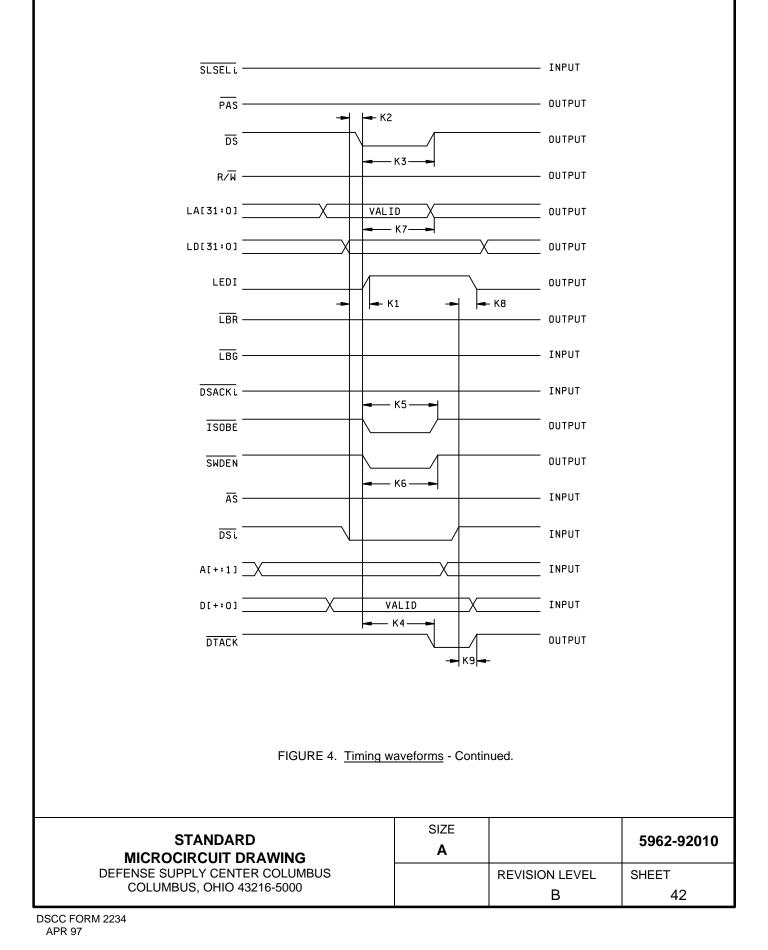



Downloaded from Elcodis.com electronic components distributor

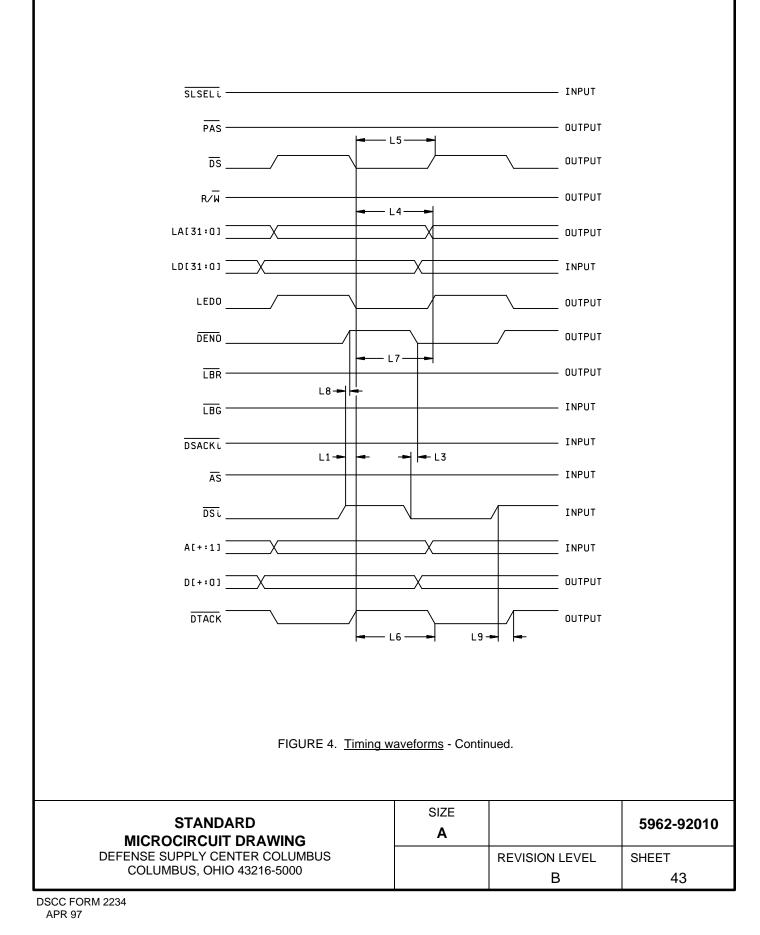


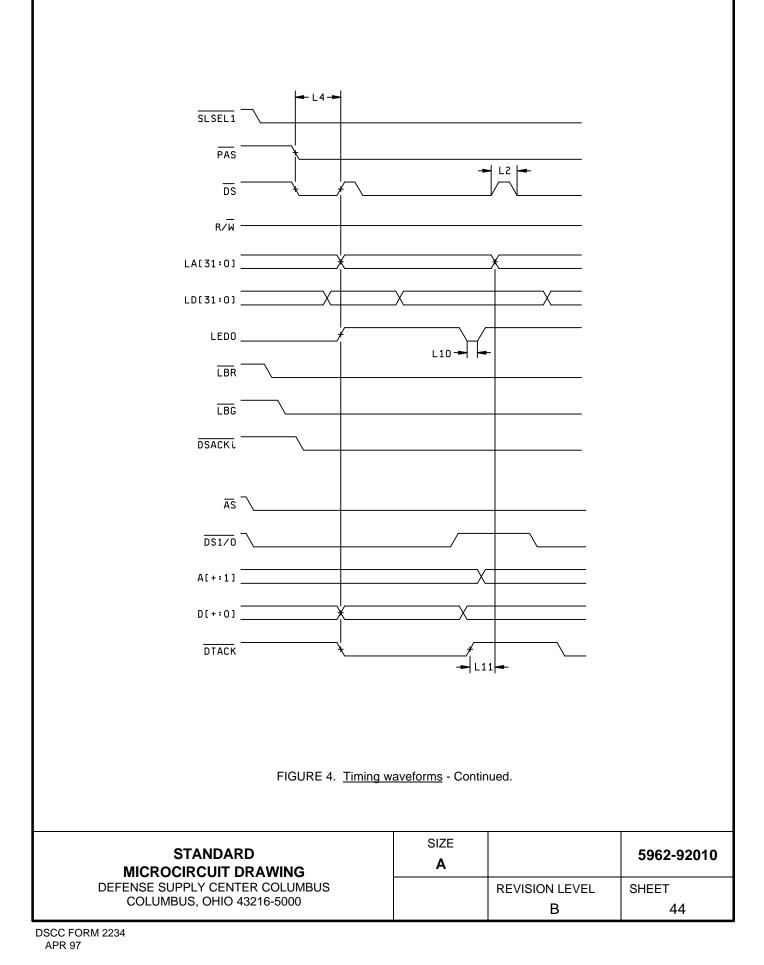


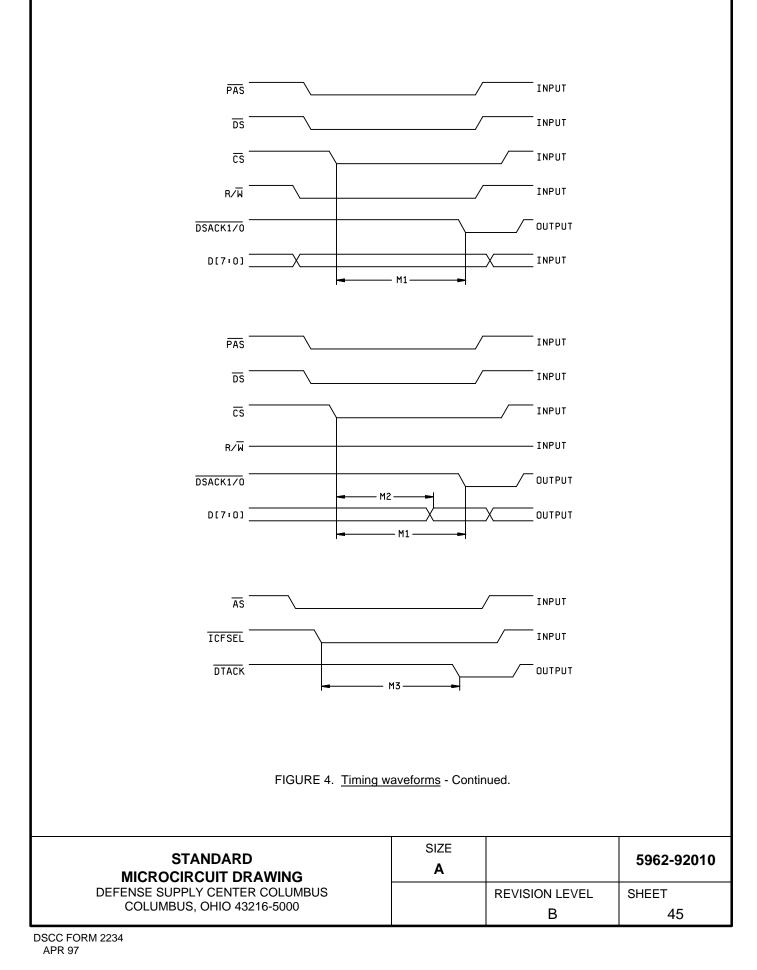


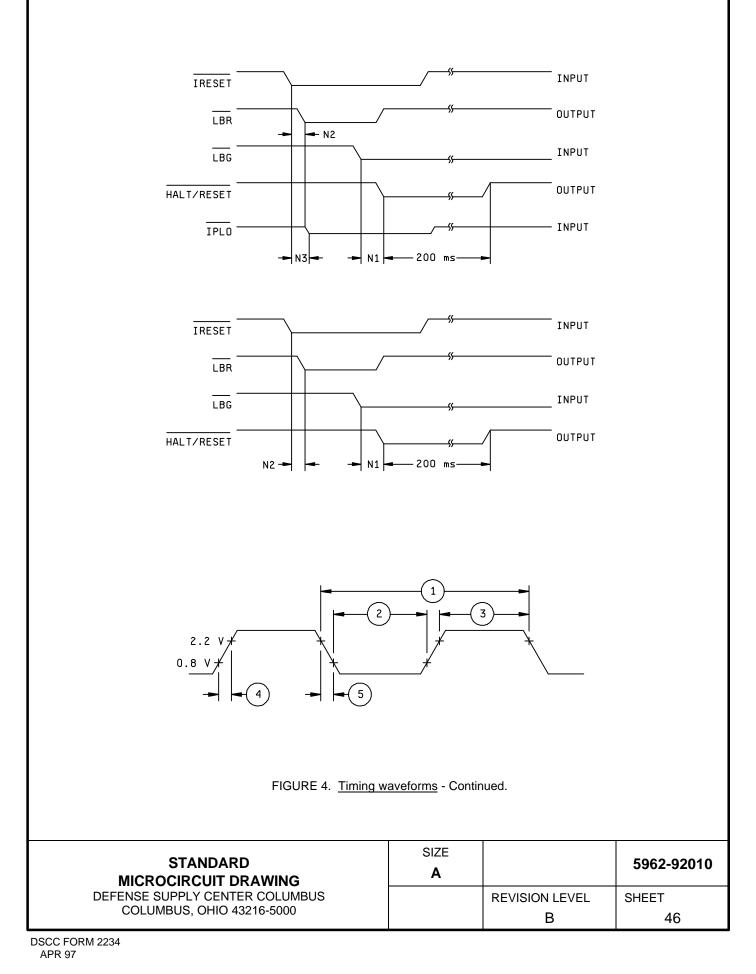


DSCC FORM 2234






Downloaded from Elcodis.com electronic components distributor


Downloaded from **Elcodis.com** electronic components distributor

Downloaded from Elcodis.com electronic components distributor

Downloaded from Elcodis.com electronic components distributor

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the functionality of the device. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
 - c. Subgroup 4 (C_{IN} and C_{OUT} measurements) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample of five devices with zero failures shall be required.

4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.
- c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	47

DSCC FORM 2234 APR 97

T,	ABLE II. <u>Electrical test re</u>	<u>quirements</u> .	
Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	(in accord	roups lance with 535, table III)
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)			1, 7
Final electrical parameters (see 4.2)	1, 2, 3, 7, 8, 9, 10, 11 <u>1</u> /	1, 2, 3, 7, 8, 9, 10, 11 <u>1</u> /	1, 2, 3, 7, 8, 9, 10, 11 <u>2</u> /
Group A test requirements (see 4.4)	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11
Group C end-point electrical parameters (see 4.4)	2, 8A, 10	2, 8A, 10	2, 8A, 10
Group D end-point electrical parameters (see 4.4)	2, 8A, 10	2, 8A, 10	2, 7, 8A, 10
Group E end-point electrical parameters (see 4.4)	2, 8A, 10	2, 8A, 10	2, 8A, 10

<u>1</u>/ PDA applies to subgroup 1.

2/ PDA applies to subgroups 1 and 7.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	48

DSCC FORM 2234 APR 97 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA , Columbus, Ohio 43216-5000, or telephone (614) 692-0674.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and table III herein.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-92010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	49

DSCC FORM 2234 APR 97

	TABLE III. <u>Pin</u>	description.				
Symbol	Na	ame and function				
SYSRESET	The VMEbus system reset signal is both an input and an open collector output. A LOW level on this signal resets the internal logic of the device and asserts the signals HALT and RESET. These signals remain asserted for a minimum of 200 ms. If the device is configured as VMEbus system controller, a LOW level on IRESET asserts SYSRESET for a minimum of 200 ms.					
ACFAIL	The VME AC fail signal is an input. This should be driven by the VMEbus power monitor (if installed). The device can be enabled to provide a local interrupt on the assertion of this signal.					
SYSFAIL	The VMEbus system fail signal is both an input and an open collector output. As an output the $\overrightarrow{SYSFAIL}$ signal is asserted when \overrightarrow{HALT} has been detected asserted for more than 6 µs (by a source other than the device). This signal is asserted by the device after a global reset. It may be masked by clearing ICR6[6] or by setting ICR7[7]. The device can also be enabled to provide a local interrupt on the assertion of this signal.					
SYSCLK	The VMEbus system clock is a three-state output. This signal is driven by the device when configured as system controller (SCON asserted). The frequency driven is 1/4 of the frequency delivered to the device CLK64M signal. To deliver the required 16 MHz on this signal, the device must run at 64 MHz. The device does not use this signal internally for any purpose.					
BR3 - BR0	The VMEbus bus request signals are both inputs and open collector outputs.					
BGIN3 - BGIN0	The VMEbus daisy-chained bus-grant-in signals are inputs.					
BGOUT3 - BGOUT0	The VMEbus daisy-chained bus-grant-out signals are outputs.					
BBSY	The VMEbus bus-busy signal is both an input	and a rescinding	output.			
BCLR	The VMEbus bus-clear signal is both an input	and a three-state	e output.			
D7 – D0	The VMEbus low-order data lines are both inputs and three-state outputs.					
A7 – A1	The VMEbus low-order address lines are both	n inputs and three	-state outputs.			
ĀS	The VMEbus address strobe signal is both an	input and rescine	ding output.			
DS1 - DS0	The VMEbus data strobe signals are both inp	uts and rescinding	g outputs.			
DTACK	The VMEbus data-transfer-acknowledge signal is both an input and a rescinding output.					
BERR	The VMEbus bus-error signal is both an input and a rescinding output.					
WRITE	The VMEbus data-direction signal is both an input and a three-state output.					
LWORD	The VMEbus long-word signal is both an input and a three-state output.					
AM5 - AM0	The VMEbus address-modifier signals are bo	th inputs and thre	e-state outputs.			
IACK	The VMEbus interrupt acknowledge signal is	both an input and	a three-state output.			
IACK IN	The VMEbus daisy-chained interrupt-acknowl	edge-in signal is a	an input.			
<u> </u>						
	STANDARD ICROCIRCUIT DRAWING ISE SUPPLY CENTER COLUMBUS	SIZE A	REVISION LEVEL	5962-92010 SHEET		
	OLUMBUS, OHIO 43216-5000		B	50		

Symbol	Na	me and function	ı		
IACKOUT	The VMEbus daisy-chained interrupt-acknowl				
	The VMEbus interrupt request signals are both inputs and open collector outputs.				
IRQ7 - IRQ1					
LD7 – LD0	The local data 7 - 0 signals are both inputs ar connected to the local processor data lines D are also made through these data signals.				
LA7 - LA0	The local address 7 - 0 signals are both input connected to the local processor address line signals. When acting as the local bus master supply the local address.	s. VIC068A reg	isters are also addressed	through these	
CS	The device chip select signal is an input. This internal registers is required.	s signal should b	be asserted whenever acc	ess to the device	
PAS	The physical/processor address strobe signal is both an input and a rescinding output. This signal is used to qualify an incoming address when performing VMEbus master operations or register operations. This signal is driven when becoming the local bus master and performing slave transfers, DRAM refresh, slave block transfers, and block transfers with local DMA. When acting as an output, the minimum assertion and negation timing for this signal is directed by the Local Bus Timing Register.				
DS	The local data strobe signal is both an input and a rescinding output. This signal is used to qualify incoming data when performing VMEbus master operations or register operations. This signal is driven when becoming the local bus master and performing slave transfers, DRAM refresh, slave block transfers, and block transfers with local DMA. When acting as an output, the minimum assertion and negation timing for this signal is directed by the Local Bus Timing Register.				
DSACK1, DSACK0	The local data-size-acknowledge signals are of these signals should be asserted to the dev acknowledge the successful completion of ea transfers with local DMA. The device asserts successful completion of a VMEbus master o	vice whenever th ich cycle of a sla one or both of t	ne device is local bus mas ave transfer, slave block tr hese signals to acknowled	ter to ansfer, or block dge_the	
	following should be noted about the DSACK1			ACK Signal. The	
	* The device only asserts a 16 bit DSACK i c	• _	ORD signal is asserted i	ndicating access	
	to a D16 VMEbus resource is complete. * The device treats the assertion of any DSAG			ave accesses.	
	* The device does not directly support 16 or 8 * The device always asserts both DSACKs for cycles.	•		pt acknowledge	
LBERR	The local bus-error signal is both an input and the device whenever the device is local bus n cycle of a slave transfer, slave block transfer, device asserts the VMEbus BERR signal. Th	naster to acknow and block trans	vledge the unsuccessful co fers with local DMA in wh	ompletion of a ich case the	
	unsuccessful completion of a VMEbus maste			<u> </u>	
RESET	The local reset indication signal is an open co	-	-		
	is in a reset condition. An internal global, or s minimum of 200 ms. If the reset condition co 200 ms timeouts until all reset conditions are	ontinues for long			
	STANDARD	SIZE		5962-9201	
	ICROCIRCUIT DRAWING	A			
	ISE SUPPLY CENTER COLUMBUS OLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET	
U			В	51	

Symbol	Name and function					
R/W	The local data direction signal is both an input and a rescinding output. This signal is driven while device is a local bus master to indicate local data direction. As an input, R/\overline{W} indicates data direction for VMEbus master cycles. In this case, \overline{WRITE} reflects the value of R/\overline{W} . An asserted condition indicates a write operation.					
HALT	with RESET, is assudevice to assert HAL 200 ms, HALT begi HALT for greater the	erted during T for a mini ns an additic an 4 ms by a gured to asse	reset condition mum of 200 onal 200 ms the anything othe ert during de	ons. An interna ms. If the rese timeouts until al er than the devic	ollector output. This sign I, global and system rese t condition continues for I I reset conditions are clea e causes the device to as ns along with LBERR to	t causes the onger than ared. Assertion of ssert SYSFAIL.
SIZ1, SIZ0	identify the width of t the physical port size outputs, they are driv <u>SIZ1</u>	he VMEbus e of the slave ven by the de <u>SIZ0</u>	data to be tra e device (D16 evice as loca <u>Data Widt</u>	ansferred. The 6 or D32). This Il bus master to <u>h</u>	tputs. As inputs, these since SIZi signals should not be is done with the WORD identify the width of the in	e used to indicate signal. As
	0	0	Long Word	d		
	0	1	Byte			
	1	0	Word			
FC2, FC1	1	1	3-Byte			
					g outputs. These signals	
	User/Supervisory Co 30 processors. For t	de/Data. Th he 68040, F may be req	ey may be c C2/1 inputs r	ould reflect the t connected direct may be connect	ype of operations in terms ly to the Motorola FC2/1 o ed to the TM2/1 outputs, since the 68040 uses pre	s of outputs for 68000- respectively.
	User/Supervisory Co 30 processors. For t Addition qualification	de/Data. Th he 68040, F may be req	ey may be c C2/1 inputs r	ould reflect the t connected direct may be connect 40 applications	ype of operations in terms ly to the Motorola FC2/1 o ed to the TM2/1 outputs,	s of outputs for 68000- respectively.
	User/Supervisory Co 30 processors. For the Addition qualification reserved/unused fun	de/Data. Th the 68040, F may be req ction codes.	ey may be c C2/1 inputs r uired for 680	ould reflect the t connected direct may be connect 140 applications <u>n</u>	ype of operations in terms ly to the Motorola FC2/1 o ed to the TM2/1 outputs,	s of outputs for 68000- respectively.
	User/Supervisory Co 30 processors. For the Addition qualification reserved/unused function FC2	de/Data. The 68040, F may be req ction codes. <u>FC1</u>	ey may be c C2/1 inputs r uired for 680 <u>Descriptio</u>	ould reflect the t connected direct may be connect 040 applications <u>n</u>	ype of operations in terms ly to the Motorola FC2/1 o ed to the TM2/1 outputs,	s of outputs for 68000- respectively.
	User/Supervisory Cc 30 processors. For t Addition qualification reserved/unused fun <u>FC2</u> 0	bde/Data. Th the 68040, F may be req ction codes. <u>FC1</u> 0	ey may be c C2/1 inputs r uired for 680 <u>Descriptio</u> User Data	ould reflect the t connected direct may be connect 40 applications <u>n</u> ram	ype of operations in terms ly to the Motorola FC2/1 o ed to the TM2/1 outputs,	s of outputs for 68000- respectively.
	User/Supervisory Co 30 processors. For the Addition qualification reserved/unused fun <u>FC2</u> 0 0	de/Data. Th the 68040, F may be req ction codes. <u>FC1</u> 0 1	ey may be c C2/1 inputs r uired for 680 <u>Descriptio</u> User Data User Prog Superviso	ould reflect the t connected direct may be connect 40 applications <u>n</u> ram	ype of operations in terms ly to the Motorola FC2/1 o ed to the TM2/1 outputs,	s of outputs for 68000- respectively.
	User/Supervisory Co 30 processors. For the Addition qualification reserved/unused function <u>FC2</u> 0 0 1 1 1	de/Data. Th the 68040, F may be req ction codes. <u>FC1</u> 0 1 0 1 0 1 ce drives the	ey may be c C2/1 inputs r uired for 680 User Data User Prog Superviso Superviso se signals wi	ould reflect the t connected direct may be connect 040 applications <u>n</u> ram ry Data ry Program henever local bu	ype of operations in terms ly to the Motorola FC2/1 of ed to the TM2/1 outputs, since the 68040 uses pre- us master to indicate the t	s of butputs for 68000- respectively. eviously
	User/Supervisory Co 30 processors. For the Addition qualification reserved/unused function <u>FC2</u> 0 0 1 1 1 As outputs, the device	de/Data. Th the 68040, F may be req ction codes. <u>FC1</u> 0 1 0 1 0 1 ce drives the	ey may be c C2/1 inputs r uired for 680 User Data User Prog Superviso Superviso se signals wi	ould reflect the t connected direct may be connect 40 applications <u>n</u> ram ry Data ry Program henever local bu device is perform	ype of operations in terms ly to the Motorola FC2/1 of ed to the TM2/1 outputs, since the 68040 uses pre- us master to indicate the t	s of butputs for 68000- respectively. eviously
	User/Supervisory Co 30 processors. For the Addition qualification reserved/unused function FC2 0 0 1 1 1 As outputs, the device master to indicate the	de/Data. The the 68040, F may be req ction codes. <u>FC1</u> 0 1 0 1 0 1 ce drives the e type of loca	ey may be c C2/1 inputs r uired for 680 User Data User Prog Superviso Superviso se signals wh al cycle the c <u>Descriptio</u>	ould reflect the t connected direct may be connect 40 applications <u>n</u> ram ry Data ry Program henever local bu device is perform	ype of operations in terms ly to the Motorola FC2/1 of ed to the TM2/1 outputs, since the 68040 uses pre- us master to indicate the t	s of butputs for 68000- respectively. eviously
	User/Supervisory Cc 30 processors. For t Addition qualification reserved/unused fun 0 0 1 1 As outputs, the devic master to indicate th <u>FC2</u>	de/Data. The the 68040, F may be req ction codes. <u>FC1</u> 0 1 0 1 0 1 ce drives the e type of loce <u>FC1</u>	ey may be c C2/1 inputs r uired for 680 User Data User Prog Superviso Superviso se signals wh al cycle the c <u>Descriptio</u>	ould reflect the t connected direct may be connect 040 applications <u>n</u> ram ry Data ry Program henever local bu device is perform <u>n</u> ck Transfer	ype of operations in terms ly to the Motorola FC2/1 of ed to the TM2/1 outputs, since the 68040 uses pre- us master to indicate the t	s of butputs for 68000- respectively. eviously
	User/Supervisory Cc 30 processors. For the Addition qualification reserved/unused function 0 0 1 1 As outputs, the device master to indicate the <u>FC2</u> 0	de/Data. The the 68040, F may be req ction codes. <u>FC1</u> 0 1 0 1 ce drives the e type of loca <u>FC1</u> 0	ey may be c C2/1 inputs r uired for 680 User Data User Prog Superviso Superviso se signals wh al cycle the c <u>Descriptio</u> Slave Bloc	ould reflect the t connected direct may be connect 40 applications <u>n</u> ram ry Data ry Program henever local bu device is perform <u>n</u> ck Transfer	ype of operations in terms ly to the Motorola FC2/1 of ed to the TM2/1 outputs, since the 68040 uses pre- us master to indicate the t	s of butputs for 68000- respectively. eviously
	User/Supervisory Cc 30 processors. For 1 Addition qualification reserved/unused fun 0 1 1 As outputs, the device master to indicate th <u>FC2</u> 0 0 0	de/Data. The the 68040, F may be req ction codes. FC1 0 1 0 1 2 e drives the e type of loca FC1 0 1	ey may be c C2/1 inputs r uired for 680 User Data User Prog Superviso Superviso se signals wh al cycle the c <u>Descriptio</u> Slave Bloc Local DMA	ould reflect the t connected direct may be connect 140 applications <u>n</u> ram ry Data ry Program henever local bu device is perform <u>n</u> ck Transfer A ess	ype of operations in terms ly to the Motorola FC2/1 of ed to the TM2/1 outputs, since the 68040 uses pre- us master to indicate the t	s of butputs for 68000- respectively. eviously
	User/Supervisory Co 30 processors. For the Addition qualification reserved/unused function 0 1 1 As outputs, the device master to indicate the FC2 0 0 1 1 1 1	de/Data. The the 68040, F is may be req ction codes. FC1 0 1 0 1 0 1 ce drives the e type of loc: FC1 0 1 0 1 0	ey may be c C2/1 inputs r uired for 680 User Data User Prog Superviso Superviso se signals wi al cycle the c <u>Descriptio</u> Slave Bloc Local DMA	ould reflect the t connected direct may be connect 140 applications <u>n</u> ram ry Data ry Program henever local bu device is perform <u>n</u> ck Transfer A ess	ype of operations in terms ly to the Motorola FC2/1 of ed to the TM2/1 outputs, since the 68040 uses pre- us master to indicate the t	s of butputs for 68000- respectively. eviously
	User/Supervisory Cc 30 processors. For the Addition qualification reserved/unused function 0 1 1 As outputs, the device master to indicate the FC2 0 0 1	de/Data. The the 68040, F is may be req ction codes. FC1 0 1 0 1 0 1 ce drives the e type of loc: FC1 0 1 0 1 0 1	ey may be c C2/1 inputs r uired for 680 User Data User Prog Superviso Superviso se signals wi al cycle the c <u>Descriptio</u> Slave Bloc Local DMA	build reflect the t connected direct may be connect 140 applications in ram ry Data ry Program henever local build device is perform n ck Transfer A ess resh	ype of operations in terms ly to the Motorola FC2/1 of ed to the TM2/1 outputs, since the 68040 uses pre- us master to indicate the t	s of butputs for 68000- respectively. eviously

enever the device desires ire bus tenure. Local bus sired: ignal is used to indicate that the CF registers and the ICF switch /Supervisory for global switches I in response to the assertion of owledge protocol so the LBG al resources to begin a VMEbus ne VMEbus BRi signal. This si d be asserted (qualified by PAS a selected to perform a SLSELO AM codes, the device requests rted by VMEbus-to- local address ch other to provide unique slave be driven to indicate the ASIZO e information is issued on the ction. The assertion of ASIZ1
CF registers and the ICF switch /Supervisory for global switches l in response to the assertion of owledge protocol so the LBG al resources to begin a VMEbus he VMEbus BRi signal. This si d be asserted (qualified by PAS a selected to perform a SLSELO AM codes, the device requests rted by VMEbus-to- local address ch other to provide unique slave be driven to indicate the ASIZO e information is issued on the ction. The assertion of ASIZ1
CF registers and the ICF switch /Supervisory for global switches l in response to the assertion of owledge protocol so the LBG al resources to begin a VMEbus he VMEbus BRi signal. This si d be asserted (qualified by PAS a selected to perform a SLSELO AM codes, the device requests rted by VMEbus-to- local address ch other to provide unique slave be driven to indicate the ASIZO e information is issued on the ction. The assertion of ASIZ1
CF registers and the ICF switch /Supervisory for global switches l in response to the assertion of owledge protocol so the LBG al resources to begin a VMEbus he VMEbus BRi signal. This si d be asserted (qualified by PAS a selected to perform a SLSELO AM codes, the device requests rted by VMEbus-to- local address ch other to provide unique slave be driven to indicate the ASIZO e information is issued on the ction. The assertion of ASIZ1
CF registers and the ICF switch /Supervisory for global switches l in response to the assertion of owledge protocol so the LBG al resources to begin a VMEbus he VMEbus BRi signal. This si d be asserted (qualified by PAS a selected to perform a SLSELO AM codes, the device requests rted by VMEbus-to- local address ch other to provide unique slave be driven to indicate the ASIZO e information is issued on the ction. The assertion of ASIZ1
CF registers and the ICF switch /Supervisory for global switches l in response to the assertion of owledge protocol so the LBG al resources to begin a VMEbus he VMEbus BRi signal. This si d be asserted (qualified by PAS a selected to perform a SLSELO AM codes, the device requests rted by VMEbus-to- local address ch other to provide unique slave be driven to indicate the ASIZO e information is issued on the ction. The assertion of ASIZ1
owledge protocol so the LBG al resources to begin a VMEbus he VMEbus BRi signal. This si d be asserted (qualified by PAS a selected to perform a SLSELO AM codes, the device requests rted by VMEbus-to- local addres ch other to provide unique slave be driven to indicate the ASIZO e information is issued on the ction. The assertion of ASIZ1
the VMEbus BRi signal. This since VMEbus BRi signal. This since d be asserted (qualified by PAS) a selected to perform a SLSELO AM codes, the device requests and codes, the device requests and codes, the device requests be driven to provide unique slave be driven to indicate the ASIZO e information is issued on the ction. The assertion of ASIZ1
AM codes, the device requests AM codes, the device requests rted by VMEbus-to- local addres the other to provide unique slave be driven to indicate the ASIZ0 e information is issued on the ction. The assertion of ASIZ1
AM codes, the device requests rted by VMEbus-to- local addres ch other to provide unique slave be driven to indicate the ASIZ0 e information is issued on the ction. The assertion of ASIZ1
e information is issued on the ction. The assertion of ASIZ1
nsaction. User-defined address case, the AM codes are issued ter.
module-based DMA transfers. data-transfer acknowledge sign gnal (analogous to BERR).
module-ba data-trans

Symbol	Na	ame and functior	า		
WORD	The VMEbus data-width control signal is an in VMEbus transaction should be treated as a D assumed to be D32. This signal should be us Data-width for slave cycles is configured in the to configure the data-width for block transfers block transfer initiation cycle, the block transfer be changed dynamically for individual transfer operation. If WORD is strapped LOW at por independent of the slave configuration in the used to indicate data size (i.e., byte, word, or	016 data path. V sed to configure he Slave Select with local DMA er is assumed to ers, or strapped I wer-up, the devio Slave Select Co	Vhen negated, the VMEbus VMEbus data-width for m Control Registers. This s . When this signal is asso be a D16 block transfer. _OW at power-up for perm ce is configured as a D16 ntrol Registers. WORD	us data path is naster cycles only. ignal is also used erted during the This signal may nanent D16 slave should not be	
LIRQ7 - LIRQ1	The local interrupt request signals are inputs with LIRQ2 also available as an output. These LIRQi signals serve as local interrupt request signals for the device. If enabled to handle the particular local interrupt, the device in turn issues a processor interrupt with the IPLi signals at the assertion of a LIRQi. Extensive configuration of local interrupts is allowed through the Local Interrupt Configuration Registers. LIRQ2 may also be configured to issue periodic interrupts at user defined intervals.				
IPL2 , IPL1 , IPL0	The local priority encoded interrupt request signals are outputs with IPL0 also available as an input. These signals are asserted to interrupt the local processor. All local device interrupts are issued with these signals. These signals are meant to emulate the Motorola 68K interrupt algorithms. The assertion of one or more of these signals indicate a single interrupt with a priority given by the negative- logic value of the IPLi signals. Level 7 is the highest priority. These signals are open-collector to allow				
	logic value of the IPLi signals. Level 7 is the the wire-O Ring of multiple interrupt sources. During the assertion of IRESET, IPLO becc reset is performed.				
LIACKO	The autovectoring indication signal is an input allow the interrupting device to place its statu handled local interrupt acknowledge. This sig acknowledge cycle for 68020/30/40 processo signal for these processors.	s/ID vector on th gnal may be use	ne local data bus in respon to signal a autovectored	nse to a device-	
IRESET	The Internal reset signal is an input. This sig device. If asserted with IPL0, a global reset performed. All internal state machines and so IRESET. HALT and RESET are both asse system controller, SYSRESET is also assert IRESET contains internal hysteresis to allow power-up resets.	is performed. If elected register erted during the a ted during the as	asserted without IPLO, and bits are rese during the as assertion of IRESET. If of assertion of IRESET.	n internal reset is ssertion of configured as	
SCON	The system controller enabling signal is an in VMEbus system controller. This signal must to reliably assume the role of VMEbus system	be strapped low			
	STANDARD	SIZE A		5962-9201	
	MICROCIRCUIT DRAWING NSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET	

Symbol		Name and function	ו	
BLT	The block transfer with local DMA indication signal is used to indicate that a block transfer asserted for the entire block transfer include boundary crossings. $\overline{\text{BLT}}$ toggles during a counters. The $\overline{\text{BLT}}$ signal is asserted simultaneously with the $\overline{\text{MWB}}$ simpler formed.	sfer with local DMA ling interleave perio local boundary cros ultaneously with th	is in progress. This sign ods with the exception of ssings to increment the e $\overline{\text{MWB}}$ signal and BTC	al remains local page xternal LA(+:8) R signal is
DEDLK	The dead-lock indication signal is an output occured. This signal should be used by lo remains asserted until the slave transaction	cal logic to remove		
	DEDLK is also asserted to indicate that a interleave period of a block transfer with lo DEDLK is asserted while MWB signal is asserted after the VMEbus has been re-ob burst.	cal DMA, without the asserted. If, during	ne dual path feature enab g the interleave period, th	bled. In this case, $\overline{\text{MWB}}$ signal is
CLK64M	The device master clock is an input. This timing, and delay functions within the devi		t is used to clock internal	arbitration,
ABEN	The VMEbus address bus enable signal is address drivers for VMEbus master operate address transceiver.			
LAEN	The local address enable signal is an inpudrivers for slave accesses. It is typically cuthrough an inverter. This signal is an activ	onnected to the OE		
LADO	The latch address out signal is an output. VMEbus master operations. When this sig latched state. When negated, the latches connection to the '543 address driver LEA master write posting and block transfers w LADO in combination with LADI and ABEI during intervening slave accesses.	gnal is asserted (HI should be in a fall- B input. LADO is v ith interleave perior	GH), it is assumed that the through state. This allow ery important for proper ods. For these operations	he latches are in a s direct operation of , device may use
LADI	The latch address in signal is an input. The slave accesses. When this signal is asser latched state. When negated, the latches connection to the '543 address driver LEA store outgoing VMEbus master transaction	ted (HIGH), it is as should be in a fall- B input. LADI is us	sumed that the latches s through state. This allow ed in conjunction with LA	hould be in a s direct \DO to temporarily
	STANDARD	SIZE A		5962-9201
	MICROCIRCUIT DRAWING		REVISION LEVEL	SHEET

Symbol		Name and function	1		
LWDENIN	The lower word data enable in signal is an local data bus LD[15:8] for master read and OEBA input of the '543 lower data latch.				
UWDENIN	The upper word data enable in signal is an local data bus LD[31:16] for master read ar OEBA input of the upper '543 data latches.	nd slave write cycl			
LEDO	The latch data out signal is an output. This signal latches the outgoing VMEbus data for master write slave read cycles. When this signal is asserted (HIGH), it is assumed that the latches are in a latched state. When negated, the latches should be in a fall-through state. This allows direct connection to the '543 address driver LEAB input. This signal is used in conjunction with LEDI to temporarily store outgoing master write post data (data switch-back).				
LEDI	The latch data in signal is an output. This s slave write cycles. When this signal is ass state. When negated, the latches should b '543 address driver LEBA input. This signa outgoing master write post data.	erted (HIGH), it is be in a fall-through	assumed that the latches state. This allows direct	are in a latched connection to the	
ISOBE	The isolation buffer enable signal. This sig switching. This signal is typically connecte		•	•	
SWDEN	The swap data enable signal is an output. switching. It provides for swapping LD[31: input of the '245 swap buffer.				
DDIR	The data direction signal is an output. This information to the isolation and swap buffer to-VME-bus (A-to-B) direction. This signal swap buffers.	rs. When asserted	d, buffers should be confi	gured in the local-	
RMC	This is the read-modify-write control signal. VMEbus. Its operation is controlled with th			ible cycles on the	
DENO	The Data Enable Out signal is an output. T Master Write and Slave Read cycles. The data latches.				
		SIZE		5962-9201	
	STANDARD	Α			

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 01-02-23

Approved sources of supply for SMD 5962-92010 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-9201001MXC	65786	VIC068A-GMB
5962-9201001MYC	65786	VIC068A-UMB

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed, contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

65786

Cypress Semiconductor 3901 North First Street San Jose, CA 95134

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.