SHARP

	Date De	c. 10. 2002
Preliminary Dat		
	DATASHEET	
PRODUCT :	64M (x16) Flash Memory	
MODEL NO :	LH28F640BFE-PTTL60	-
	ject to change without notice.	
	ights reserved. No reproduction or republication without written permission. les office to obtain the latest datasheet.	

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

PAGE

48-Lead TSOP Pinout 3
Pin Descriptions 4
Simultaneous Operation Modes Allowed with Four Planes 5
Memory Map 6
Identifier Codes and OTP Address for Read Operation 7
Identifier Codes and OTP Address for Read Operation on Partition Configuration 7
OTP Block Address Map for OTP Program 8
Bus Operation
Command Definitions 10
Functions of Block Lock and Block Lock-Down 12
Block Locking State Transitions upon Command Write 12
Block Locking State Transitions upon WP# Transition
Status Register Definition 14

Extended Status Register Definition 15
Partition Configuration Register Definition 16
Partition Configuration 16
1 Electrical Specifications 17
1.1 Absolute Maximum Ratings 17
1.2 Operating Conditions 17
1.2.1 Capacitance 18
1.2.2 AC Input/Output Test Conditions 18
1.2.3 DC Characteristics 19
1.2.4 AC Characteristics - Read-Only Operations
1.2.5 AC Characteristics - Write Operations
1.2.6 Reset Operations 28
1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performance
2 Related Document Information

1

PAGE

LH28F640BFE-PTTL60 64Mbit (4Mbit×16) Page Mode Dual Work Flash MEMORY

■ 64M density with 16Bit I/O Interface

- High Performance Reads
 60/25ns 8-Word Page Mode
- Configurative 4-Plane Dual Work
 - Flexible Partitioning
 - Read operations during Block Erase or (Page Buffer) Program
 - Status Register for Each Partition

Low Power Operation

- 2.7V Read and Write Operations
- + $\mathrm{V}_{\mathrm{CCQ}}$ for Input/Output Power Supply Isolation
- Automatic Power Savings Mode Reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 - 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- High Performance Program with Page Buffer
 - 16-Word Page Buffer
 - + 5µs/Word (Typ.) at 12V $V_{\ensuremath{PP}}$
- Operating Temperature 0°C to +70°C
- CMOS Process (P-type silicon substrate)

- Flexible Blocking Architecture
 - Eight 4K-word Parameter Blocks
 - One-hundred and twenty-seven 32K-word Main Blocks
 - Top Parameter Location
- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Absolute Protection with $V_{PP} \leq V_{PPLK}$
 - Block Erase, Full Chip Erase, (Page Buffer) Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 3.0V Low-Power 11µs/Word (Typ.) Programming
 - 12V No Glue Logic 9µs/Word (Typ.) Production Programming and 0.5s Erase (Typ.)
- Cross-Compatible Command Support
 - Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 - Minimum 100,000 Block Erase Cycles
- 48-Lead TSOP
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened

The product, which is 4-Plane Page Mode Dual Work (Simultaneous Read while Erase/Program) Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at V_{CC} =2.7V-3.6V and V_{PP} =1.65V-3.6V or 11.7V-12.3V. Its low voltage operation capability greatly extends battery life for portable applications.

The product provides high performance asynchronous page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states. Furthermore, its newly configurative partitioning architecture allows flexible dual work operation.

The memory array block architecture utilizes Enhanced Data Protection features, and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage.

Fast program capability is provided through the use of high speed Page Buffer Program.

Special OTP (One Time Program) block provides an area to store permanent code such as a unique number.

* ETOX is a trademark of Intel Corporation.

$\begin{array}{c c} A_{15} & \hline & 1 \\ A_{14} & \hline & 2 \end{array}$		48 A16 47 Vccq
A13 3 A12 4 A11 5 A10 6 A9 7 A8 8 A21 9 A20 10 WE# 11 RST# 12 VPP 13 WP# 14 A19 15	48-LEAD TSOP STANDARD PINOUT 12mm x 20mm TOP VIEW	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 1. 48-Lead TSOP (Normal Bend) Pinout

Table 1. Pin Descriptions

~	_	
Symbol	Туре	Name and Function
A ₀ -A ₂₁	INPUT	ADDRESS INPUTS: Inputs for addresses. 64M: A ₀ -A ₂₁
DQ ₀ -DQ ₁₅	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command Use Interface) write cycles, outputs data during memory array, status register, query code identifier code and partition configuration register code reads. Data pins float to high impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
CE#	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sens amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels.
RST#	INPUT	RESET: When low (V_{IL}) , RST# resets internal automation and inhibits write operation which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data ar latched on the rising edge of CE# or WE# (whichever goes high first).
WP#	INPUT	WRITE PROTECT: When WP# is V_{IL} , locked-down blocks cannot be unlocked. Eras or program operation can be executed to the blocks which are not locked and not locked down. When WP# is V_{IH} , lock-down is disabled.
V _{PP}	INPUT	MONITORING POWER SUPPLY VOLTAGE: VPP is not used for power supply pinWith VPP VPLK, block erase, full chip erase, (page buffer) program or OTP programcannot be executed and should not be attempted.Applying 12V±0.3V to VPP provides fast erasing or fast programming mode. In thismode, VPP is power supply pin. Applying 12V±0.3V to VPP during erase/program caonly be done for a maximum of 1,000 cycles on each block. VPP may be connected to 12V±0.3V for a total of 80 hours maximum. Use of this pin at 12V beyond these limit may reduce block cycling capability or cause permanent damage.
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \leq V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see Decomposition of the comparison of the compari
V _{CCQ}	SUPPLY	INPUT/OUTPUT POWER SUPPLY (2.7V-3.6V): Power supply for all input/outpupins.

	-	10010 2.	Jinanan	cous ope				ui i iane	5		
			THEN 7	THE MO	DES ALL	OWED IN	THE OTI	HER PAI	RTITION I	S:	
IF ONE PARTITION IS:	Read Array	Read ID/OTP	Read Status	Read Query	Word Program	Page Buffer Program	OTP Program	Block Erase	Full Chip Erase	Program Suspend	erace
Read Array	Х	Х	Х	Х	Х	Х		Х		Х	Х
Read ID/OTP	Х	Х	Х	Х	Х	Х		Х		Х	Х
Read Status	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х
Read Query	Х	Х	Х	Х	Х	Х		Х		Х	Х
Word Program	Х	Х	Х	Х							Х
Page Buffer Program	Х	Х	Х	Х							Х
OTP Program			Х								
Block Erase	Х	Х	Х	Х							
Full Chip Erase			Х								
Program Suspend	Х	Х	Х	Х							Х
Block Erase Suspend	Х	Х	Х	Х	Х	Х				X	

Table 2. Simultaneous Operation Modes Allowed with Four $Planes^{(1, 2)}$

"X" denotes the operation available.
 Configurative Partition Dual Work Restrictions:

Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. Only one partition can be erased or programmed at a time - no command queuing. Commands must be written to an address within the block targeted by that command.

	134	4K-WORD	3FF000H - 3FFFFFH
	133	4K-WORD	3FE000H - 3FEFFFH
	132	4K-WORD	3FD000H - 3FDFFFH
	131 130	4K-WORD 4K-WORD	3FC000H - 3FCFFFH 3FB000H - 3FBFFFH
	129	4K-WORD	3FA000H - 3FAFFFH
	128	4K-WORD	3F9000H - 3F9FFFH
	127	4K-WORD	3F8000H - 3F8FFFH
	126 125	32K-WORD 32K-WORD	3F0000H - 3F7FFFH 3E8000H - 3EFFFFH
()	123	32K-WORD	3E0000H - 3E7FFFH
Ë	123	32K-WORD	3D8000H - 3DFFFFH
Y	122	32K-WORD	3D0000H - 3D7FFFH 3C8000H - 3CFFFFH
Ы	121 120	32K-WORD 32K-WORD	3C0000H - 3C7FFFH
R	119	32K-WORD	3B8000H - 3BFFFFH
E	118	32K-WORD	3B0000H - 3B7FFFH
Æ	117 116	32K-WORD 32K-WORD	3A8000H - 3AFFFFH 3A0000H - 3A7FFFH
F	115	32K-WORD	398000H - 39FFFFH
^R	114	32K-WORD	390000H - 397FFFH
PLANE3 (PARAMETER PLANE)	113	32K-WORD	388000H - 38FFFFH
3 (112 111	32K-WORD 32K-WORD	380000H - 387FFFH 378000H - 37FFFFH
Ë	110	32K-WORD	370000H - 377FFFH
Ą	109	32K-WORD	368000H - 36FFFFH
PL	108	32K-WORD	360000H - 367FFFH 358000H - 35FFFFH
	107 106	32K-WORD 32K-WORD	350000H - 357FFFH
	105	32K-WORD	348000H - 34FFFFH
	104	32K-WORD	340000H - 347FFFH
	103 102	32K-WORD 32K-WORD	338000H - 33FFFFH 330000H - 337FFFH
	102	32K-WORD	328000H - 32FFFFH
	100	32K-WORD	320000H - 327FFFH
	99	32K-WORD	318000H - 31FFFFH
	98 97	32K-WORD 32K-WORD	310000H - 317FFFH 308000H - 30FFFFH
	96	32K-WORD	300000H - 307FFFH
	05	22K WORD	2F8000H - 2FFFFFH
	95 94	32K-WORD 32K-WORD	2F0000H - 2F7FFFH
	93	32K-WORD	2E8000H - 2EFFFFH
	92	32K-WORD	2E0000H - 2E7FFFH
	91 90	32K-WORD 32K-WORD	2D8000H - 2DFFFFH 2D0000H - 2D7FFFH
	89	32K-WORD	2C8000H - 2CFFFFH
	88	32K-WORD	2C0000H - 2C7FFFH
	87	32K-WORD	2B8000H - 2BFFFFH 2B0000H - 2B7FFFH
() NE	86 85	32K-WORD 32K-WORD	2B0000H - 2B7FFFH 2A8000H - 2AFFFFH
Y	84	32K-WORD	2A0000H - 2A7FFFH
Ы	83	32K-WORD	298000H - 29FFFFH
Σ	82 81	32K-WORD	290000H - 297FFFH 288000H - 28FFFFH
PLANE2 (UNIFORM PLAN	81 80	32K-WORD 32K-WORD	280000H - 287FFFH
Ε	79	32K-WORD	278000H - 27FFFFH
Z	78	32K-WORD	270000H - 277FFFH
C)	77 76	32K-WORD 32K-WORD	268000H - 26FFFFH 260000H - 267FFFH
E	75	32K-WORD 32K-WORD	258000H - 25FFFH
Z	74	32K-WORD	250000H - 257FFFH
ΓA	73	32K-WORD	248000H - 24FFFFH 240000H 247EEEH
Ы	72 71	32K-WORD 32K-WORD	240000H - 247FFFH 238000H - 23FFFFH
	70	32K-WORD 32K-WORD	230000H - 237FFFH
	69	32K-WORD	228000H - 22FFFFH
	68	32K-WORD	220000H - 227FFFH
	67 66	32K-WORD 32K-WORD	218000H - 21FFFFH 210000H - 217FFFH
	65	32K-WORD	208000H - 20FFFFH

	BLC	OCK NUMBER	ADDRESS RANGE
	63	32K-WORD	1F8000H - 1FFFFFH
	62	32K-WORD	1F0000H - 1F7FFFH
	61 60	32K-WORD 32K-WORD	1E8000H - 1EFFFFH 1E0000H - 1E7FFFH
	59	32K-WORD	1D8000H - 1DFFFFH
	58	32K-WORD	1D0000H - 1D7FFFH
	57	32K-WORD	1C8000H - 1CFFFFH
	56 55	32K-WORD 32K-WORD	1C0000H - 1C7FFFH 1B8000H - 1BFFFFH
E)	54	32K-WORD	1B0000H - 1B7FFFH
PLANE1 (UNIFORM PLANE)	53	32K-WORD	1A8000H - 1AFFFFH
Ľ	52 51	32K-WORD	1A0000H - 1A7FFFH 198000H - 19FFFFH
ΙI	50	32K-WORD 32K-WORD	198000H - 197FFFH
R	49	32K-WORD	188000H - 18FFFFH
Q	48	32K-WORD	180000H - 187FFFH
Ę	47 46	32K-WORD	178000H - 17FFFFH 170000H - 177FFFH
5	40	32K-WORD 32K-WORD	168000H - 16FFFFH
1	44	32K-WORD	160000H - 167FFFH
ΈE	43	32K-WORD	158000H - 15FFFFH
A	42	32K-WORD 32K-WORD	150000H - 157FFFH 148000H - 14FFFFH
PL	40	32K-WORD	140000H - 147FFFH
	39	32K-WORD	138000H - 13FFFFH
	38	32K-WORD	130000H - 137FFFH
	37	32K-WORD 32K-WORD	128000H - 12FFFFH 120000H - 127FFFH
	35	32K-WORD	118000H - 11FFFFH
	34	32K-WORD	110000H - 117FFFH
	33	32K-WORD	108000H - 10FFFFH
	32	32K-WORD	100000H - 107FFFH
	31	32K-WORD	0F8000H - 0FFFFFH
	30	32K-WORD	0F0000H - 0F7FFFH
	29	32K-WORD	0E8000H - 0EFFFFH
	28	32K-WORD 32K-WORD	0E0000H - 0E7FFFH 0D8000H - 0DFFFFH
	26	32K-WORD	0D0000H - 0D7FFFH
	25	32K-WORD	0C8000H - 0CFFFFH
	24	32K-WORD	0C0000H - 0C7FFFH
()	23	32K-WORD 32K-WORD	0B8000H - 0BFFFFH 0B0000H - 0B7FFFH
ORM PLANE	21	32K-WORD	0A8000H - 0AFFFFH
Y	20	32K-WORD	0A0000H - 0A7FFFH
Ы	19	32K-WORD	098000H - 09FFFFH
Σ	18 17	32K-WORD 32K-WORD	090000H - 097FFFH 088000H - 08FFFFH
R	16	32K-WORD	080000H - 087FFFH
FO	15	32K-WORD	078000H - 07FFFFH
Z	14	32K-WORD	070000H - 077FFFH
D	13	32K-WORD	068000H - 06FFFFH 060000H - 067FFFH
<u>o</u>	12	32K-WORD 32K-WORD	058000H - 05FFFFH
Ë	10	32K-WORD	050000H - 057FFFH
PLANE0 (UNIF	9	32K-WORD	048000H - 04FFFFH
Ы	8	32K-WORD	040000H - 047FFFH
	76	32K-WORD 32K-WORD	038000H - 03FFFFH 030000H - 037FFFH
	5	32K-WORD	028000H - 02FFFFH
	4	32K-WORD	020000H - 027FFFH
	3	32K-WORD	018000H - 01FFFFH 010000H - 017FFFH
	2	32K-WORD 32K-WORD	010000H - 017FFFH 008000H - 00FFFFH
	0	32K-WORD	0000000H - 007FFFH
			_

Figure 2. Memory Map (Top Parameter)

		-		
	Code	Address [A ₁₅ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	0000H	00B0H	1
Device Code	Top Parameter Device Code	0001H	00B0H	1, 2
Block Lock Configuration	Block is Unlocked		$DQ_0 = 0$	3
Code	Block is Locked	Block	$DQ_0 = 1$	3
	Block is not Locked-Down	Address + 2	$DQ_1 = 0$	3
	Block is Locked-Down		$DQ_1 = 1$	3
Device Configuration Code	Partition Configuration Register	0006H	PCRC	1, 4
OTP	OTP Lock	0080H	OTP-LK	1, 5
	OTP	0081-0088H	OTP	1, 6

1. The address A₂₁-A₁₆ are shown in below table for reading the manufacturer code, device code, device configuration code and OTP data.

2. Top parameter device has its parameter blocks in the plane3 (The highest address).

- Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes/OTP command (90H) has been written. DQ₁₅-DQ₂ are reserved for future implementation.
- 4. PCRC=Partition Configuration Register Code.
- 5. OTP-LK=OTP Block Lock configuration.

6. OTP=OTP Block data.

Partition C	Configuration 1	Register ⁽²⁾	Address (64M-bit device)
PCR.10	PCR.9	PCR.8	[A ₂₁ -A ₁₆]
0	0	0	00H
0	0	1	00H or 10H
0	1	0	00H or 20H
1	0	0	00H or 30H
0	1	1	00H or 10H or 20H
1	1	0	00H or 20H or 30H
1	0	1	00H or 10H or 30H
1	1	1	00H or 10H or 20H or 30H

Table 4. Identifier Codes and OTP Address for Read Operation on Partition Configuration⁽¹⁾ (64M-bit device)

NOTES:

1. The address to read the identifier codes or OTP data is dependent on the partition which is selected when writing the Read Identifier Codes/OTP command (90H).

2. Refer to Table 12 for the partition configuration register.

000088H	
	Customer Programmable Area
000085H	
000084H	
	Factory Programmed Area
000081H	
000080H	Reserved for Future Implementation (DQ15-DQ2)

Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.)

Table 5. Bus Operation										
Mode	Notes	RST#	CE#	OE#	WE#	Address	V _{PP}	DQ ₀₋₁₅		
Read Array	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	Х	Х	D _{OUT}		
Output Disable		V _{IH}	V _{IL}	V _{IH}	V _{IH}	Х	Х	High Z		
Standby		V_{IH}	V _{IH}	Х	Х	Х	Х	High Z		
Reset	3	V _{IL}	Х	Х	Х	Х	Х	High Z		
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Table 3 and Table 4	X	See Table 3 and Table 4		
Read Query	6,7	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Appendix	Х	See Appendix		
Write	4,5,6	V _{IH}	V _{IL}	V _{IH}	V _{IL}	Х	Х	D _{IN}		

Table 5. Bus Operation $^{(1,2)}$

Refer to DC Characteristics. When V_{PP}≤V_{PPLK}, memory contents can be read, but cannot be altered.
 X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PPLK} or V_{PPH1/2} for V_{PP}. See DC Characteristics for V_{PPLK} and V_{PPH1/2} voltages.
 RST# at GND±0.2V ensures the lowest power consumption.

4. Command writes involving block erase, full chip erase, (page buffer) program or OTP program are reliably executed when V_{PP}=V_{PPH1/2} and V_{CC}=2.7V-3.6V.
5. Refer to Table 6 for valid D_{IN} during a write operation.
6. Never hold OE# low and WE# low at the same timing.

7. Refer to Appendix of LH28F640BF series for more information about query code.

	Т	able 6. C	Command	Definitions ⁽¹⁾	1)			
	Bus		1	First Bus Cyc	le	Se	econd Bus C	ycle
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾
Read Array	1		Write	PA	FFH			
Read Identifier Codes/OTP	≥2	4	Write	PA	90H	Read	IA or OA	ID or OD
Read Query	≥2	4	Write	PA	98H	Read	QA	QD
Read Status Register	2		Write	PA	70H	Read	PA	SRD
Clear Status Register	1		Write	PA	50H			
Block Erase	2	5	Write	BA	20H	Write	BA	D0H
Full Chip Erase	2	5,9	Write	Х	30H	Write	Х	D0H
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD
Page Buffer Program	≥4	5,7	Write	WA	E8H	Write	WA	N-1
Block Erase and (Page Buffer) Program Suspend	1	8,9	Write	РА	B0H			
Block Erase and (Page Buffer) Program Resume	1	8,9	Write	PA	D0H			
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	10	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH
OTP Program	2	9	Write	OA	С0Н	Write	OA	OD
Set Partition Configuration Register	2		Write	PCRC	60H	Write	PCRC	04H

- 1. Bus operations are defined in Table 5.
- 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.
 - X=Any valid address within the device.
 - PA=Address within the selected partition.
 - IA=Identifier codes address (See Table 3 and Table 4).
 - QA=Query codes address. Refer to Appendix of LH28F640BF series for details.
 - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
 - WA=Address of memory location for the Program command or the first address for the Page Buffer Program command. OA=Address of OTP block to be read or programmed (See Figure 3).
- PCRC=Partition configuration register code presented on the address A_0 - A_{15} .
- 3. ID=Data read from identifier codes. (See Table 3 and Table 4).
 - QD=Data read from query database. Refer to Appendix of LH28F640BF series for details.
 - SRD=Data read from status register. See Table 10 and Table 11 for a description of the status register bits.
 - WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - N-1=N is the number of the words to be loaded into a page buffer.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code and the data within OTP block (See Table 3 and Table 4). The Read Query command is available for reading CFI (Common Flash Interface) information.
- 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH}.
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. Following the third bus cycle, input the program sequential address and write data of "N" times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H). Refer to Appendix of

LH28F640BF series for details.

- 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
- 9. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.
- 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP# is V_{IL}. When WP# is V_{IH}, lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be
- used.

		Cu	Current State					
State	WP#	$\mathrm{DQ}_{1}^{(1)}$	$\mathrm{DQ}_{0}^{(1)}$	State Name	Erase/Program Allowed ⁽²⁾			
[000]	0	0	0	Unlocked	Yes			
[001] ⁽³⁾	0	0	1	Locked	No			
[011]	0	1	1	Locked-down	No			
[100]	1	0	0	Unlocked	Yes			
[101] ⁽³⁾	1	0	1	Locked	No			
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes			
[111]	1	1	1	Lock-down Disable	No			

Table 7. Functions of Block Lock⁽⁵⁾ and Block Lock-Down

1. $DQ_0=1$: a block is locked; $DQ_0=0$: a block is unlocked.

 $DQ_1=1$: a block is locked-down; $DQ_1=0$: a block is not locked-down.

2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations.

3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#=0) or [101] (WP#=1), regardless of the states before power-off or reset operation. 4. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are

automatically locked.

5. OTP (One Time Program) block has the lock function which is different from those described above.

	Curren	t State		Result after Lock Command Written (Next State)				
State	WP#	DQ ₁	DQ ₀	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾		
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾		
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]		
[011]	0	1	1	No Change	No Change	No Change		
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾		
[101]	1	0	1	No Change	[100]	[111]		
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾		
[111]	1	1	1	No Change	[110]	No Change		

Table 8. Block Locking State Transitions upon Command Write⁽⁴⁾

NOTES:

1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.

2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0=0$), the corresponding block is locked-down and automatically locked at the same time.

3. "No Change" means that the state remains unchanged after the command written.

4. In this state transitions table, assumes that WP# is not changed and fixed V_{IL} or V_{IH} .

		Current S	State		Result after WP# Transition (Next State)		
Previous State	State	WP#	DQ ₁	DQ ₀	WP#= $0 \rightarrow 1^{(1)}$	WP#= $1 \rightarrow 0^{(1)}$	
-	[000]	0	0	0	[100]	-	
-	[001]	0	0	1	[101]	-	
[110] ⁽²⁾	[011]	0	1	1	[110]	-	
Other than $[110]^{(2)}$	[011]	0	1	1	[111]	-	
-	[100]	1	0	0	-	[000]	
-	[101]	1	0	1	-	[001]	
-	[110]	1	1	0	-	[011] ⁽³⁾	
-	[111]	1	1	1	-	[011]	

Table 9. Block Locking State Transitions upon WP# Transition⁽⁴⁾

1. "WP#=0 \rightarrow 1" means that WP# is driven to V_{IH} and "WP#=1 \rightarrow 0" means that WP# is driven to V_{IL}.

2. State transition from the current state [011] to the next state depends on the previous state.

3. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

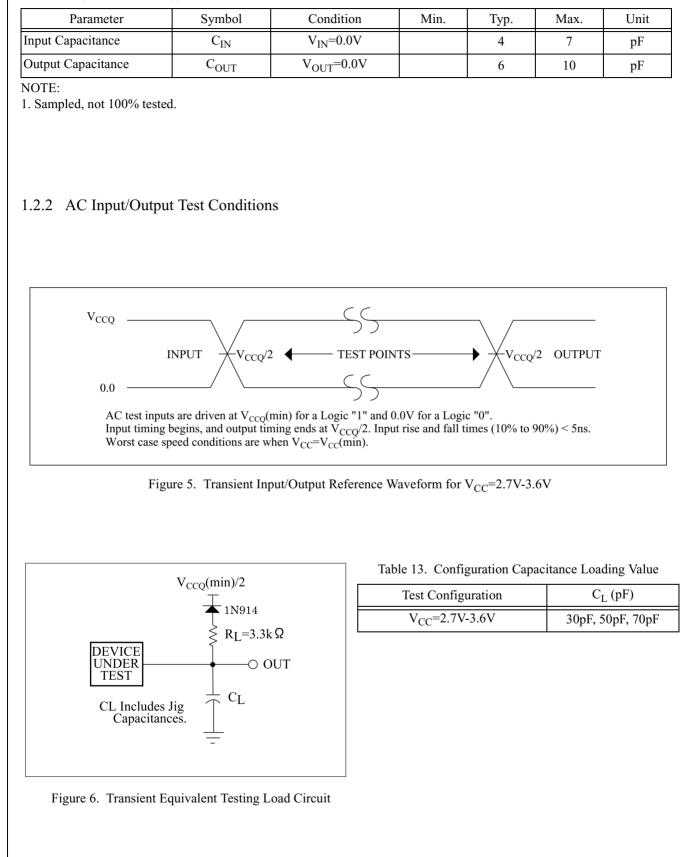
4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

R	R	R	R	R	R	R	R	
15	14	13	12	11	10	9 9	8	
WSMS	BESS	BEFCES	PBPOPS	VPPS	PBPSS	DPS	R	
7	6	5	4	3	2	1	0	
	= RESERVED F MENTS (R)	FOR FUTURE			NOT	ΓES:		
1 = Ready 0 = Busy SR.6 = BLOC	E STATE MACH K ERASE SUS Erase Suspende	PEND STATUS		Status Register (Write State Ma be occupied by 3 or 4 partitions	achine). Even if the other partit s configuration.	the SR.7 is "1" ion when the de	, the WSM ma evice is set to 2	
	Erase in Progres			Check SR.7 to buffer) program invalid while S	n or OTP progra			
 SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES) 1 = Error in Block Erase or Full Chip Erase 0 = Successful Block Erase or Full Chip Erase 				If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, (page buffer) program, set/clear block lock bit, set block lock-down bit, set partition configuration register attempt, an improper command sequence was entered.				
OTP 1 = Error i	BUFFER) PRO PROGRAM ST n (Page Buffer) sful (Page Buffe	ATUS (PBPOP Program or OT	P Program					
	TATUS (VPPS) OW Detect, Ope K	eration Abort						
STAT $1 = (Page)$	2 BUFFER) PRO US (PBPSS) Buffer) Program Buffer) Program	Suspended						
SR.1 = DEVICE PROTECT STATUS (DPS) 1 = Erase or Program Attempted on a Locked Block, Operation Abort 0 = Unlocked			SR.15 - SR.8 and SR.0 are reserved for future use and sh be masked out when polling the status register.					
			CEMENTS (R)					

Table 11. Extended Status Register Definition									
R	R	R	R	R R R R					
15	14	13	12	11 10 9					
SMS	R	R	R	R R R					
7	6	5	4	3	2	1	0		
XSR.15-8 = RESERVED FOR FUTURE ENHANCEMENTS (R) XSR.7 = STATE MACHINE STATUS (SMS) 1 = Page Buffer Program available 0 = Page Buffer Program not available				NOTES: After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not. XSR.15-8 and XSR.6-0 are reserved for future use and					
XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)				should be masked out when polling the extended status					

		Table 12. 1	Partition Config	guration Regis	ter Definition		
R	R	R	R	R	PC2	PC1	PC0
15	14	13	12	11	10	9	8
R	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0
PCR.15-11 = RPCR.10-8 = PA $000 = No$ $001 = Plan$ $(defau)$ $010 = Plan$ $(defau)$ $011 = Plan$ $(defau)$ $011 = Plan$ threeoperation $101 = Plan$ threeoperation $101 = Plan$ threeoperation $0 = 0$ 0 = 0 <td>RESERVED FOR ENHANCEME ARTITION COM partitioning. Du ne1-3 are merge It in a bottom param ne 0-1 and Plane on respectively. ne 0-2 are merge partitions in the ion is available ne 0-1 are merge partitions in the ion is available ne 1-2 are merge partitions in the ion is available ne 1-2 are merge partitions in the ion is available ne 1-2 are merge partitions in the ion is available PARTITION PARTITION PARTITION</td> <td>R FUTURE ENTS (R) IFIGURATION al Work is not a d into one parti- arameter device e2-3 are merged ed into one part is configuration between any twe ed into one part is configuration between any twe ING FOR DUA ARTITION0</td> <td>(PC2-0) allowed. tion. i into one ition. There are on. Dual work o partitions. ition. There are on. Dual work o partitions. ition. There are on. Dual work o partitions. Ition. There are on. Dual work o partitions. IL WORK</td> <td>111 = Th Each tivel two PCR.7-0 = R After power- "001" in a parameter de See Figure 4 PCR.15-11 a should be configuration PC2 PC1PC0 0 1 1 1 1 0 1 0 1 1 1 1 1</td> <td>PARTITION2 PARTITION2 PARTITION3 PARTITIA PARTITION3 PARTITIA PARTITION3 PARTITIA PARTITION3 PARTITIA PARTITIA PARTITION3 PARTITIA P</td> <td>tions in this comods to each peration is available FUTURE JTS (R) TES: Set, PCR10-8 (If partition config partition config partition config Partition config NING FOR DU N2 PARTITION PARTITION1 PAR EAU TEN TEN PARTITION1 PAR TEN TEN TEN TEN TEN TEN TEN TEN TEN TEN</td> <td>AL WORK 1 PARTITIONO AL WORK 1 PARTITIONO PARTITIONO PARTITIONO PARTITIONO PARTITIONO PARTITIONO</td>	RESERVED FOR ENHANCEME ARTITION COM partitioning. Du ne1-3 are merge It in a bottom param ne 0-1 and Plane on respectively. ne 0-2 are merge partitions in the ion is available ne 0-1 are merge partitions in the ion is available ne 1-2 are merge partitions in the ion is available ne 1-2 are merge partitions in the ion is available ne 1-2 are merge partitions in the ion is available PARTITION PARTITION PARTITION	R FUTURE ENTS (R) IFIGURATION al Work is not a d into one parti- arameter device e2-3 are merged ed into one part is configuration between any twe ed into one part is configuration between any twe ING FOR DUA ARTITION0	(PC2-0) allowed. tion. i into one ition. There are on. Dual work o partitions. ition. There are on. Dual work o partitions. ition. There are on. Dual work o partitions. Ition. There are on. Dual work o partitions. IL WORK	111 = Th Each tivel two PCR.7-0 = R After power- "001" in a parameter de See Figure 4 PCR.15-11 a should be configuration PC2 PC1PC0 0 1 1 1 1 0 1 0 1 1 1 1 1	PARTITION2 PARTITION3 PARTITIA PARTITION3 PARTITIA PARTITION3 PARTITIA PARTITION3 PARTITIA PARTITIA PARTITION3 PARTITIA P	tions in this comods to each peration is available FUTURE JTS (R) TES: Set, PCR10-8 (If partition config partition config partition config Partition config NING FOR DU N2 PARTITION PARTITION1 PAR EAU TEN TEN PARTITION1 PAR TEN TEN TEN TEN TEN TEN TEN TEN TEN TEN	AL WORK 1 PARTITIONO AL WORK 1 PARTITIONO PARTITIONO PARTITIONO PARTITIONO PARTITIONO PARTITIONO
		F	igure 4. Partiti	on Configurat	1011		
							Pay 2 11

 Electrical Specifications Absolute Maximum Ratings[*] 	*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond
Operating Temperature	the "Operating Conditions" may affect device
During Read, Erase and Program 0° C to +70°C ⁽¹⁾	reliability.
	NOTES:
Storage Temperature	1. Operating temperature is for commercial temperature
During under Bias10°C to +80°C	product defined by this specification. 2. All specified voltages are with respect to GND.
During non Bias65°C to +125°C	Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} and V_{PP} pins. During transitions,
Voltage On Any Pin	this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is
(except V_{CC} and $V_{PP})_{\cdots}$ -0.5V to $V_{CC}\text{+}0.5V$ $^{(2)}$	V_{CC} +0.5V which, during transitions, may overshoot to V_{CC} +2.0V for periods <20ns.
V_{CC} and V_{CCQ} Supply Voltage0.2V to +3.9V ⁽²⁾	3. Maximum DC voltage on V_{PP} may overshoot to $+13.0V$ for periods <20ns.
V _{CC} and V _{CCQ} Supply voltage	4. V _{PP} erase/program voltage is normally 2.7V-3.6V. Applying 11.7V-12.3V to V _{PP} during erase/program
V_{PP} Supply Voltage0.2V to +12.6V ^(2, 3, 4)	can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. V_{PP} may be connected to 11.7V-12.3V for a total of 80
Output Short Circuit Current 100mA ⁽⁵⁾	hours maximum.5. Output shorted for no more than one second. No more than one output shorted at a time.


Symbol Unit Parameter Min. Тур. Max. Notes **Operating Temperature** T_A °C 0 +25 +70 V_{CC} V_{CC} Supply Voltage 2.7 V 1 3.0 3.6 I/O Supply Voltage V_{CCQ} 2.7 V 1 3.0 3.6 V_{PP} Voltage when Used as a Logic Control V_{PPH1} 1.65 3.0 V 3.6 1 V_{PP} Supply Voltage V_{PPH2} 11.7 12 12.3 V 1, 2 Main Block Erase Cycling: V_{PP}=V_{PPH1} 100,000 Cycles Parameter Block Erase Cycling: V_{PP}=V_{PPH1} 100,000 Cycles Main Block Erase Cycling: V_{PP}=V_{PPH2}, 80 hrs. 1,000 Cycles Parameter Block Erase Cycling: V_{PP}=V_{PPH2}, 80 hrs. 1,000 Cycles Maximum V_{PP} hours at V_{PPH2} 80 Hours

1.2 Operating Conditions

NOTES:

1. See DC Characteristics tables for voltage range-specific specification.

2. Applying V_{pp}=11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. A permanent connection to V_{PP}=11.7V-12.3V is not allowed and can cause damage to the device.

1.2.1 Capacitance⁽¹⁾ (T_A =+25°C, f=1MHz)

Rev. 2.44

1.2.3 DC Characteristics

V_{CC}=2.7V-3.6V

Symbol	Paran	neter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I _{LI}	Input Load Current		1	-1.0		+1.0	μΑ	V _{CC} =V _{CC} Max.,
I _{LO}	Output Leakage Current		1	-1.0		+1.0	μΑ	V _{CCQ} =V _{CCQ} Max., V _{IN} /V _{OUT} =V _{CCQ} or GND
I _{CCS}	V _{CC} Standby Curren	1		4	20	μΑ	$V_{CC}=V_{CC}Max.,$ $CE\#=RST\#=$ $V_{CCQ}\pm0.2V,$ $WP\#=V_{CCQ} \text{ or } GND$	
I _{CCAS}	V _{CC} Automatic Pow	1,4		4	20	μΑ	V _{CC} =V _{CC} Max., CE#=GND±0.2V, WP#=V _{CCQ} or GND	
I _{CCD}	V _{CC} Reset Power-D	1		4	20	μΑ	RST#=GND±0.2V	
T	Average V _{CC} Read Current Normal Mode		1,7		15	25	mA	V _{CC} =V _{CC} Max., CE#=V _{II} ,
Current	Average V _{CC} Read Current Page Mode	8 Word Read	1,7		5	10	mA	OE#=V _{IH} , f=5MHz
т	V _{CC} (Page Buffer) Program Current		1,5,7		20	60	mA	V _{PP} =V _{PPH1}
I _{CCW}			1,5,7		10	20	mA	V _{PP} =V _{PPH2}
т	V _{CC} Block Erase, Fu	ıll Chip	1,5,7		10	30	mA	V _{PP} =V _{PPH1}
I _{CCE}	Erase Current		1,5,7		4	10	mA	V _{PP} =V _{PPH2}
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) P Block Erase Suspend	-	1,2,7		10	200	μA	CE#=V _{IH}
I _{PPS} I _{PPR}	V _{PP} Standby or Read	d Current	1,6,7		2	5	μΑ	V _{PP} ≤V _{CC}
T	V _{PP} (Page Buffer) P	rogram Current	1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPW}	· pp (1 age Duilet) I		1,5,6,7		10	30	mA	V _{PP} =V _{PPH2}
I	V _{PP} Block Erase, Fu	ıll Chip	1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPE}	Erase Current		1,5,6,7		5	15	mA	V _{PP} =V _{PPH2}
Induca	V _{PP} (Page Buffer) P	rogram	1,6,7		2	5	μA	V _{PP} =V _{PPH1}
I _{PPWS}	Suspend Current		1,6,7		10	200	μA	V _{PP} =V _{PPH2}
Innec	V _{PP} Block Erase Sus	spend Current	1,6,7		2	5	μA	V _{PP} =V _{PPH1}
I _{PPES}	v pp block Elase Su	spena Current	1,6,7		10	200	μA	V _{PP} =V _{PPH2}

V _{CC} =2.7V-3.6V								
Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions	
V _{IL}	Input Low Voltage	5	-0.4		0.4	V		
V _{IH}	Input High Voltage	5	2.4		V _{CCQ} + 0.4	V		
V _{OL}	Output Low Voltage	5			0.2	V	V _{CC} =V _{CC} Min., V _{CCQ} =V _{CCQ} Min., I _{OL} =100µA	
V _{OH}	Output High Voltage	5	V _{CCQ} -0.2			V	V _{CC} =V _{CC} Min., V _{CCQ} =V _{CCQ} Min., I _{OH} =-100µA	
V _{PPLK}	V _{PP} Lockout during Normal Operations	3,5,6			0.4	V		
V _{PPH1}	V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program Operations	6	1.65	3.0	3.6	V		
V _{PPH2}	V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program Operations	6	11.7	12	12.3	V		
V _{LKO}	V _{CC} Lockout Voltage		1.5			V		

DC Characteristics (Continued)

NOTES:

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC}=3.0V and T_A=+25°C unless V_{CC} is specified.

2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR} . 3. Block erase, full chip erase, (page buffer) program and OTP program are inhibited when $V_{PP} \leq V_{PPLK}$, and not guaranteed

in the range between V_{PPLK}(max.) and V_{PPH1}(min.), between V_{PPH1}(max.) and V_{PPH2}(min.) and above V_{PPH2}(max.).

4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.

5. Sampled, not 100% tested.

6. V_{PP} is not used for power supply pin. With V_{PP}≤V_{PPLK}, block erase, full chip erase, (page buffer) program and OTP program cannot be executed and should not be attempted.

Applying 12V±0.3V to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.

Applying 12V±0.3V to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12V\pm0.3V$ for a total of 80 hours maximum.

7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.

1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾

Symbol

$v_{\rm CC}$ -2.7 v-3.0 v, $r_{\rm A}$ -0 C to +70 C, $C_{\rm L}$ -30 pr		
Parameter	Notes	Min.
Cycle Time		60

$V = = 2.7 V_{-3}$	$3.6V, T_A = 0^{\circ}C t$	$t_0 + 70^{\circ}C$	$C_{2} = 30 \text{pF}$
V _{CC} -2./V-3	$5.0^{\circ}, 1_{A} = 0^{\circ} C^{\circ}$	10 ± 70 C,	CL-Sobe

•					
t _{AVAV}	Read Cycle Time		60		ns
t _{AVQV}	Address to Output Delay			60	ns
t _{ELQV}	CE# to Output Delay	3		60	ns
t _{APA}	Page Address Access Time			25	ns
t _{GLQV}	OE# to Output Delay	3		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns
t _{AVEL} , t _{AVGL}	Address Setup to CE#, OE# Going Low for Reading Status Register	4, 6	10		ns
t _{ELAX} , t _{GLAX}	Address Hold from CE#, OE# Going Low for Reading Status Register	5, 6	30		ns
t _{EHEL} , t _{GHGL}	CE#, OE# Pulse Width High for Reading Status Register	6	15		ns

NOTES: Refer to NOTE 1 through NOTE 6 on next page.

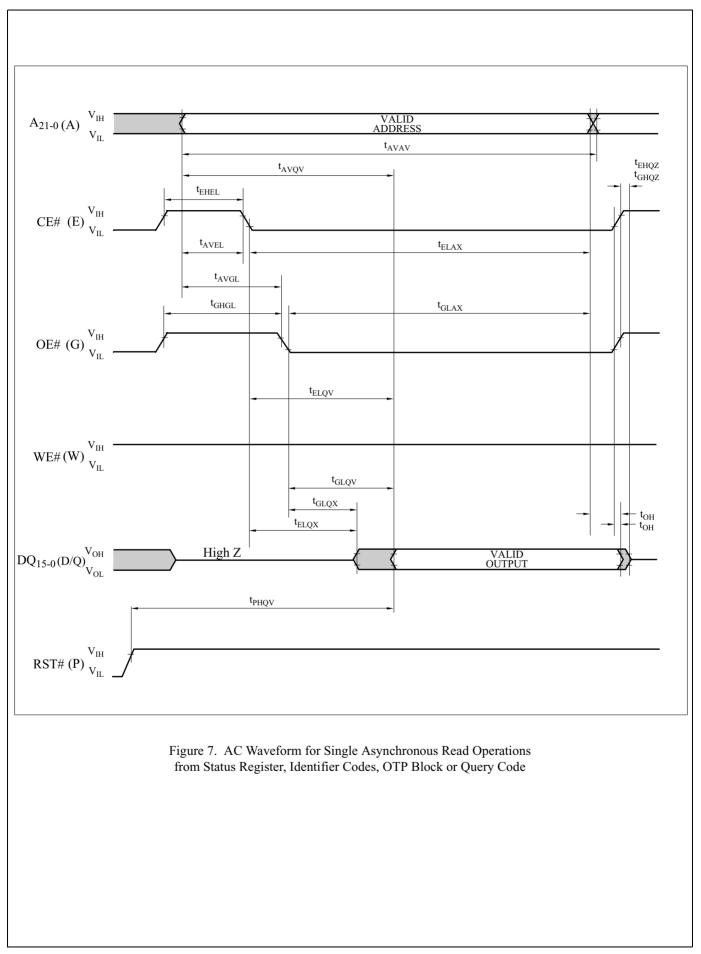
Symbol	Parameter	Notes	Min.	Max.	Uni
t _{AVAV}	Read Cycle Time		65		ns
t _{AVQV}	Address to Output Delay			65	ns
t _{ELQV}	CE# to Output Delay	3		65	ns
t _{APA}	Page Address Access Time			25	ns
t _{GLQV}	OE# to Output Delay	3		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns
t _{AVEL} , t _{AVGL}	Address Setup to CE#, OE# Going Low for Reading Status Register	4, 6	10		ns
t _{ELAX} , t _{GLAX}	Address Hold from CE#, OE# Going Low for Reading Status Register	5, 6	30		ns
t _{EHEL} , t _{GHGL}	CE#, OE# Pulse Width High for Reading Status Register	6	15		ns

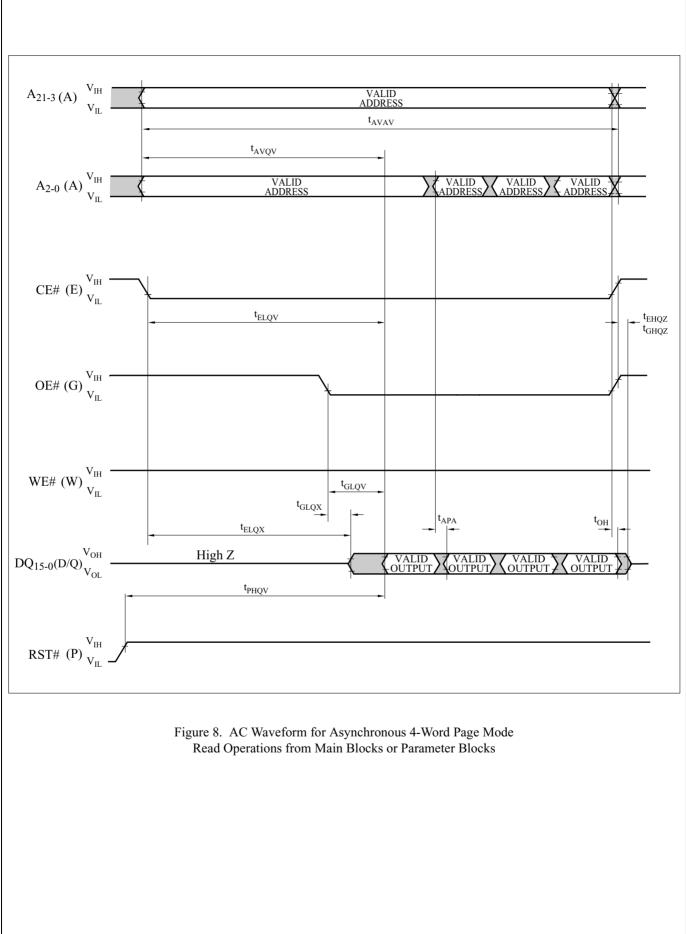
V_{CC} =2.7V-3.6V, T_A =0°C to +70°C, C_L =50pF

Unit

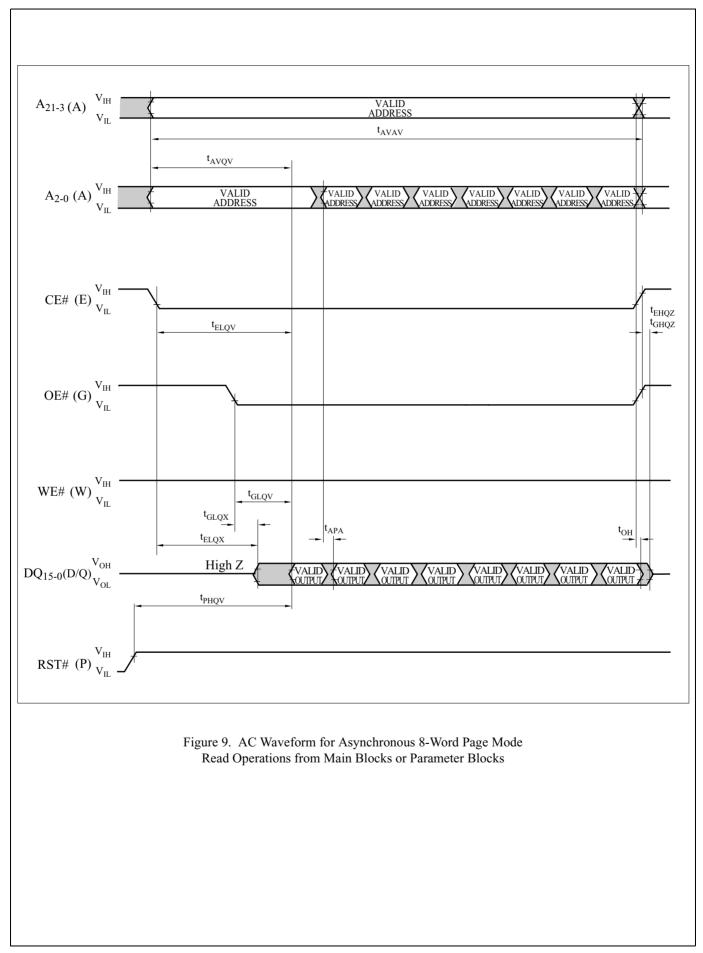
Max.

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time	70		ns	
t _{AVQV}	Address to Output Delay			70	ns
t _{ELQV}	CE# to Output Delay	3		70	ns
t _{APA}	Page Address Access Time			30	ns
t _{GLQV}	OE# to Output Delay	3		25	ns
t _{PHQV}	RST# High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	CE# or OE# to Output in High Z, Whichever Occurs First	2		25	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns
t_{AVEL}, t_{AVGL}	Address Setup to CE#, OE# Going Low for Reading Status Register	4, 6	10		ns
$t_{\rm ELAX}, t_{\rm GLAX}$	Address Hold from CE#, OE# Going Low for Reading Status Register	5, 6	30		ns
t _{EHEL} , t _{GHGL}	CE#, OE# Pulse Width High for Reading Status Register	6	15		ns


$V_{cc}=2.7V-3.6V$ T = 0°C to +70°C C = 70pE


NOTES:

1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.


2. Sampled, not 100% tested.

 3. OE# may be delayed up to t_{ELQV} — t_{GLQV} after the falling edge of CE# without impact to t_{ELQV}.
 4. Address setup time (t_{AVEL}, t_{AVGL}) is defined from the falling edge of CE# or OE# (whichever goes low last).
 5. Address hold time (t_{ELAX}, t_{GLAX}) is defined from the falling edge of CE# or OE# (whichever goes low last).
 6. Specifications t_{AVEL}, t_{AVGL}, t_{ELAX}, t_{GLAX} and t_{EHEL}, t_{GHGL} for read operations apply to only status register read operations. operations.

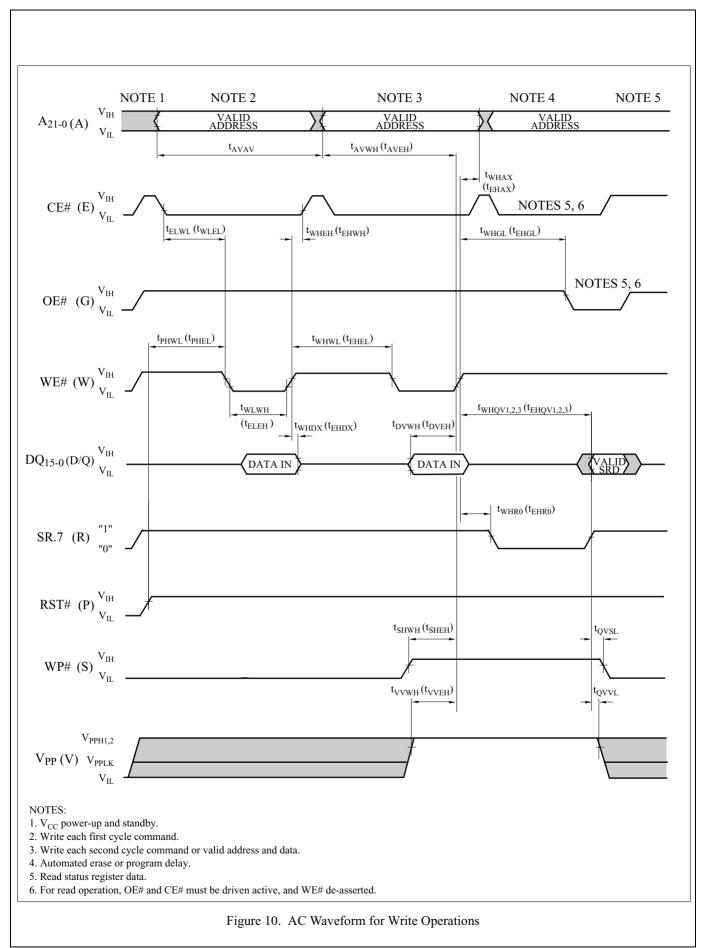
24

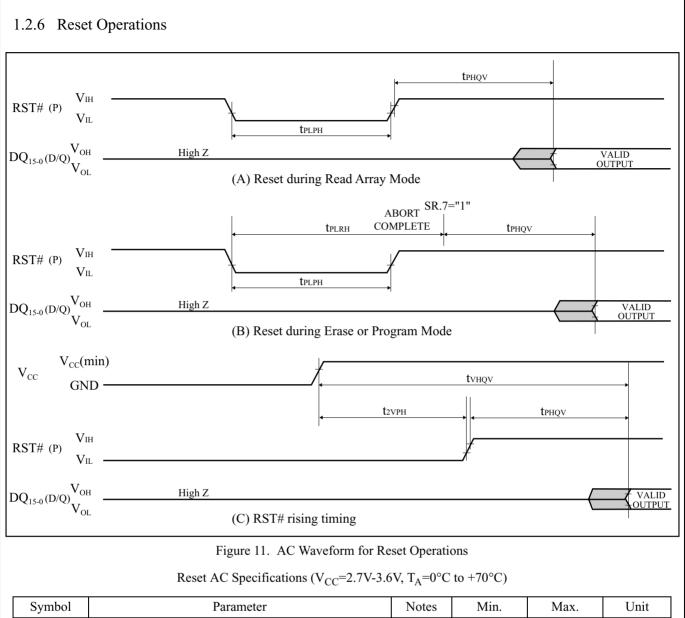
1.2.5 AC Characteristics - Write Operations^{(1), (2)}

Symbol	Parameter		Notes	Min.	Max.	Unit
				60		ns
t _{AVAV}	Write Cycle Time			65		ns
				70		ns
t_{PHWL} (t_{PHEL})	RST# High Recovery to WE# (CE#) Goir	ng Low	3	150		ns
t _{ELWL} (t _{WLEL})	CE# (WE#) Setup to WE# (CE#) Going	Low		0		ns
		t _{AVAV} =60ns		45		ns
$t_{WLWH}(t_{ELEH})$	WE# (CE#) Pulse Width	t _{AVAV} =65ns	4, 9	50		ns
		t _{AVAV} =70ns		55		ns
$t_{\rm DVWH} (t_{\rm DVEH})$	Data Setup to WE# (CE#) Going High	1	8	40		ns
	Address Setup to WE# (CE#) Going High	t _{AVAV} =60ns		45		ns
$t_{AVWH} (t_{AVEH})$		t _{AVAV} =65ns	8, 9	50		ns
		t _{AVAV} =70ns	_	55		ns
$t_{\rm WHEH} (t_{\rm EHWH})$	CE# (WE#) Hold from WE# (CE#) High	1		0		ns
$t_{WHDX} (t_{EHDX})$	Data Hold from WE# (CE#) High			0		ns
$t_{\rm WHAX} \left(t_{\rm EHAX} \right)$	Address Hold from WE# (CE#) High			0		ns
$t_{\rm WHWL} (t_{\rm EHEL})$	WE# (CE#) Pulse Width High		5	15		ns
$t_{\rm SHWH} (t_{\rm SHEH})$	WP# High Setup to WE# (CE#) Going H	igh	3	0		ns
t _{VVWH} (t _{VVEH})	V _{PP} Setup to WE# (CE#) Going High		3	200		ns
t _{WHGL} (t _{EHGL})	Write Recovery before Read			30		ns
t _{QVSL}	WP# High Hold from Valid SRD		3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD		3, 6	0		ns
t _{WHR0} (t _{EHR0})	WE# (CE#) High to SR.7 Going "0"		3, 7		t_{AVQV}^+ 50	ns

$V_{CC}=2.7V-3.6V, T_{A}=0^{\circ}C \text{ to }+70^{\circ}C$

NOTES:


- 1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.
- 2. A write operation can be initiated and terminated with either CE# or WE#.


3. Sampled, not 100% tested.

- 4. Write pulse width (t_{WP}) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of CE# or WE# (whichever goes high first). Hence, $t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}$. 5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling
- edge of CE# or WE# (whichever goes low last). Hence, t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}.
 6. V_{PP} should be held at V_{PP}=V_{PPH1/2} until determination of block erase, full chip erase, (page buffer) program or OTP program success (SR.1/3/4/5=0).

7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command= t_{AVQV} +100ns. 8. Refer to Table 6 for valid address and data for block erase, full chip erase, (page buffer) program, OTP program or lock bit configuration.

9. t_{WLWH} (t_{ELEH}) and t_{AVWH} (t_{AVEH}) values vary depending on the write cycle time (t_{AVAV}).

Symbol	Parameter		Min.	Max.	Unit
t _{PLPH}	RST# Low to Reset during Read (RST# should be low during power-up.)		100		ns
t _{PLRH}	RST# Low to Reset during Erase or Program			22	μs
t _{2VPH}	VPH V _{CC} 2.7V to RST# High		100		ns
t _{VHQV} V _{CC} 2.7V to Output Delay		3		1	ms
NOTES					

1. A reset time, t_{PHQV}, is required from the later of SR.7 going "1" or RST# going high until outputs are valid. Refer to AC Characteristics - Read-Only Operations for t_{PHQV}.

2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.

3. Sampled, not 100% tested.

4. If RST# asserted while a block erase, full chip erase, (page buffer) program or OTP program operation is not executing, the reset will complete within 100ns.

5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performa	$nce^{(3)}$)
--	-------------	---

Symbol	ol Parameter		Page Buffer Command is Used or not	V _{PP} =V _{PPH1} (In System)		V _{PP} =V _{PPH2} (In Manufacturing)			Unit	
			Used	Min.	Тур. ⁽¹⁾	Max. ⁽²⁾	Min.	Тур. ⁽¹⁾	Max. ⁽²⁾	
t _{WPB}	4K-Word Parameter Block	2	Not Used		0.05	0.3		0.04	0.12	S
WPB	Program Time	2	Used		0.03	0.12		0.02	0.06	s
t _{WMB}	32K-Word Main Block	2	Not Used		0.38	2.4		0.31	1.0	s
WMB	Program Time	2	Used		0.24	1.0		0.17	0.5	S
t _{WHQV1} /	Word Program Time	2	Not Used		11	200		9	185	μs
t _{EHQV1}	word Program Time		Used		7	100		5	90	μs
t _{WHOV1} / t _{EHOV1}	OTP Program Time	2	Not Used		36	400		27	185	μs
t _{WHQV2} / t _{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	4		0.2	4	S
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	5		0.5	5	S
	Full Chip Erase Time	2			80	700		65	700	s
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			500			μs

 $V_{CC}=2.7V-3.6V, T_{A}=0^{\circ}C \text{ to }+70^{\circ}C$

NOTES:

1. Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V or 12V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.

2. Excludes external system-level overhead.

3. Sampled, but not 100% tested.

4. A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1".

5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

2 Related Document Information⁽¹⁾

Document No.	Document Name
FUM00701	LH28F640BF series Appendix

NOTE:

1. International customers should contact their local SHARP or distribution sales offices.

LH28F640BFXX-XXXXXX Flash MEMORY ERRATA

1. AC Characteristics

PROBLEM

The table below summarizes the AC characteristics.

AC Characteristics - Write Operations

Page	Symbol	Parameter		Min.	Max.	Unit
		Write Cycle Time		75		ns
26	t _{AVAV}			75		ns
				75		ns
			t _{AVAV} =75ns	50		ns
26	26 $t_{WLWH}(t_{ELEH})$	WE# (CE#) Pulse Width	t _{AVAV} =75ns	50		ns
		t _{AVAV} =75ns	50		ns	
26	t_{WHWL} (t_{EHEL})	WE# (CE#) Pulse Width High		25		ns

V_{CC}=2.7V-3.6V

WORKAROUND

System designers should consider these specifications.

STATUS

This is intended to be fixed in future devices.

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

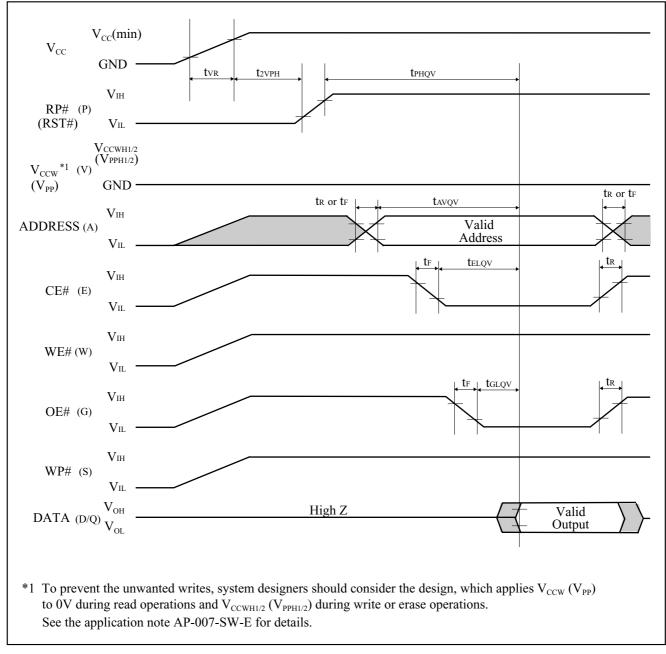


Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter		Min.	Max.	Unit
t _{VR}	V _{CC} Rise Time		0.5	30000	μs/V
t _R	Input Signal Rise Time			1	μs/V
t _F	Input Signal Fall Time			1	μs/V

NOTES:

1. Sampled, not 100% tested.

2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

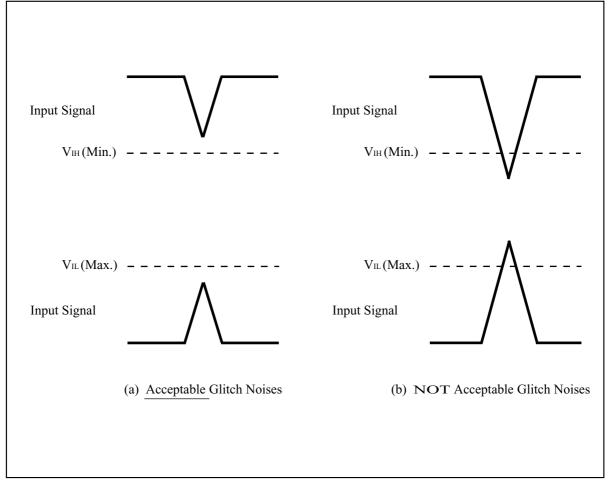


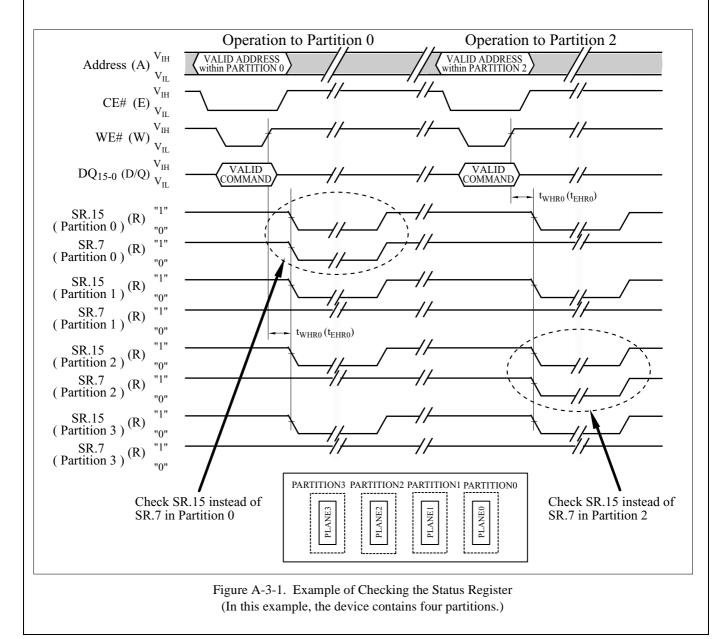
Figure A-2. Waveform for Glitch Noises

See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name
AP-001-SD-E	Flash Memory Family Software Drivers
АР-006-РТ-Е	Data Protection Method of SHARP Flash Memory
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit

NOTE:


1. International customers should contact their local SHARP or distribution sales office.

A-3 STATUS REGISTER READ OPERATIONS

If AC timing for reading the status register described in specifications is not satisfied, a system processor can check the status register bit SR.15 instead of SR.7 to determine when the erase or program operation has been completed.

	NOTES:
SR.15 = WRITE STATE MACHINE STATUS: (DQ ₁₅) 1 = Ready in All Partitions 0 = Busy in Any Partition	SR.15 indicates the status of WSM (Write State Machine). If SR.15="0", erase or program operation is in progress in any partition.
 SR.7 = WRITE STATE MACHINE STATUS FOR EACH PARTITION: (DQ₇) 1 = Ready in the Addressed Partition 0 = Busy in the Addressed Partition 	SR.7 indicates the status of the partition. If SR.7="0", erase or program operation is in progress in the addressed partition. Even if the SR.7 is "1", the WSM may be occupied by the other partition.

Table A-3-1. Status Register Definition (SR.15 and SR.7)

