To our customers,

## Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

## Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

## 1/2, 1/3, 1/4-DUTY LCD CONTROLLER/DRIVER

## DESCRIPTION

The $\mu$ PD16431A is an LCD controller/driver that enables display of segment type LCDs of $1 / 2,1 / 3$, or $1 / 4$ duty cycle. This controller/driver has 56 segment output lines of which eight can also be used as LED output lines. Because the LCD driver contained in the $\mu \mathrm{PD} 16431 \mathrm{~A}$ has separate logic and power supply, up to 6.5 V of LCD driver voltage can be set. In addition, key source output lines for key scanning and key input data lines are also provided, so that the $\mu$ PD16431A is ideal for applications in the front panel of an automobile stereo system.

## FEATURES

- Various display modes
$1 / 2$ duty: 112 segment outputs or 96 segment outputs +8 LED outputs
$1 / 3$ duty: 168 segment outputs or 144 segment outputs +8 LED outputs
$1 / 4$ duty: 224 segment outputs or 192 segment outputs +8 LED outputs
- Key scan circuit (key source outputs are shared with LCD driver outputs)
- Independent LCD driver power supply VLCD (can be set to VDD to 6.5 V )
- Serial data input/output (SCK, STB, DATA)
- On-chip oscillator incorporated
- Power-ON reset circuit


## ORDERING INFORMATION

| Part Number | Package |
| :---: | :---: |
| $\mu$ PD16431AGC-7ET | $80-$ PIN PLASTIC LQFP $(14 \times 14), 0.65$ pitch |

[^0]
## CONTENT

1. BLOCK DIAGRAM ..... 3
2. PIN CONFIGURATION ..... 4
3. PIN DESCRIPTIONS ..... 5
4. PIN FUNCTION ..... 6
4.1 Configuration of Shift Register ..... 6
4.2 Configuration of Output Latch ..... 6
4.3 Key Matrix Configuration ..... 7
4.4 Configuration of Key Data Latch. ..... 9
4.4.1 Key input equivalent circuit. ..... 9
5. COMMAND ..... 10
6. OUTPUT SELECT VOLTAGE ..... 12
7. OUTPUT WAVEFORM ..... 13
7.1 1/2 Duty (1/2 bias) ..... 13
7.2 1/3 Duty (1/3 bias) ..... 16
7.3 1/4 Duty ( $1 / 3$ bias) ..... 20
7.4 Serial Communication Format ..... 24
8. APPLICATION ..... 25
8.1 Example of Initial Setting + Display Data Write ..... 25
8.2 Example of Display Data Write (Rewrite, 1/4) ..... 26
8.3 Example of Display Data Read ..... 26
9. ELECTRICAL SPECIFICATIONS ..... 27
10. APPLICATION CIRCUIT EXAMPLE (with LED, $1 / 4$ duty, $1 / 3$ bias) ..... 30
11. PACKAGE DRAWING ..... 31
12. RECOMMENDED SOLDERING CONDITIONS ..... 32
13. BLOCK DIAGRAM


## 2. PIN CONFIGURATION

- $\mu$ PD16431AGC-7ET


Note Though Vss and Vee are internally connected, be sure to connect all the power supply pins (Vdd, Vss, Vlcd, and $\mathrm{V}_{\mathrm{EE}}$ ).

## 3. PIN DESCRIPTIONS

| Symbol | Pin Name | Pin No. | I/O | Function |
| :--- | :--- | :---: | :---: | :--- |, | O |
| :--- |

Note At OE = L, the key data cannot be written correctly, even when the display ON/OFF of the status command is set to the 'normal operation' (10). Also, in this state, unnecessary waveforms are generated from between $\mathrm{SEG}_{1} / \mathrm{KS}_{1}$ to $\mathrm{SEG}_{8} / \mathrm{KS}_{8}$ during the key scanning period (the display is OFF).

## 4. PIN FUNCTION

### 4.1 Configuration of Shift Register

Two shift registers, an 8 -bit command register and a 56 -bit display register, are provided. The first 8 bits of input data are recognized as a command and are sent to the command register, and the 9th bit and those that follow are recognized as display data and are sent to the display register.


The meaning of the display data is as follows:
LCD: $0 \rightarrow$ OFF, $1 \rightarrow$ ON
LED: $0 \rightarrow$ ON, $1 \rightarrow$ OFF
Be sure to transfer 56 bits of display data.

### 4.2 Configuration of Output Latch

| MSB | LSB |  |
| :---: | :---: | :---: |
| SEG56/LED8 | SEG1 | $\mathrm{COM}_{1}$ (latch address ${ }^{\text {Note }}: 00$ ) |
| SEG56/LED8 | SEG1 | $\mathrm{COM}_{2}$ (latch address ${ }^{\text {Note }}: 01$ ) |
| SEG56/LED8 | SEG 1 | $\mathrm{COM}_{3}$ (latch address ${ }^{\text {Note }}$ : 10 ) |
| SEG56/LED8 | SEG1 | COM4 (latch address ${ }^{\text {Note }}$ : 11 ) |

Note Bits b3 and b4 of status command (Refer to 5. COMMAND (2) Status Command).

### 4.3 Key Matrix Configuration

An example of key matrix configurations is shown below.
(1) When pressing three or more times is assumed:

In this configuration, it is assumed that three or more switches are pressed simultaneously.
Note, however, that if three or more switches are pressed per KS (Key source output), the switches may not be recognized correctly.



## (2) When pressing twice or more times is assured:

A configuration example is shown below. In this configuration, 0 to 2 ON switches can be recognized.


In this configuration, pressing three or more switches simultaneously may cause OFF switches to be determined to be ON.
For example, if SW2 to SW4 are ON and KS 1 has been selected (high level) as shown below, SW3 in which current $I_{1}$ is running is supposed to be detected to be ON. However, since SW2 and SW4 are ON, current $\mathrm{I}_{2}$ runs thus resulting in SW1 to be recognized as being ON.



If diode $A$ is not available, not only the key data may not be read correctly, but the LCD display may be affected or IC may be damaged or deteriorated.
For example, if SW1 and SW2 are ON and $\mathrm{KS}_{1}$ has been selected (high level) as shown below, this will cause not only current $I_{1}$ which is supposed to run but also short-circuited current $\mathrm{I}_{2}$ of $K S_{1}$ and $K S_{2}$ to run. It is possible that this will then cause the following three problems:
(1) Since the level to $\mathrm{KEY}_{2}$ is not correctly sent, the key data cannot be latched correctly.
(2) If $K S_{2}$ is used as $\mathrm{SEG}_{2}$ as well, the LCD display may be distorted (such as causing unintended segments to light up).
(3) Since the short-circuited current (current $\mathrm{I}_{2}$ ) of $\mathrm{KS}_{2}$ (high level) to KS 2 (low level) runs, IC may be damaged or deteriorated.


### 4.4 Configuration of Key Data Latch

The key data is latched as illustrated below and is read by a read command, starting from the most significant bit. Key data is read once a frame and latched when coinciding with the immediately preceding data. In other words, it requires at least 2 frames from the time the key is pressed till data is confirmed to be the key data (the key request becoming H ).


The key data is 0 when off and 1 when on.

### 4.4.1 Key input equivalent circuit



- The pull-down control signal goes high only during key source output and turns on the pull-down transistor.
- The on-resistance of the pull-down transistor is several $\mathrm{k} \Omega$.


## 5. COMMAND

A command sets a display mode and a status.
The first 1 byte input after the STB pin has fallen is regarded as a command.
If the STB pin is made low while a command/data is transferred, serial communication is initialized, and the command/data being transferred is made invalid (the command/data that has been already transferred remains valid, however).

## (1) Display setting command

This command initializes the $\mu$ PD16431A and sets a duty cycle, frame frequency, drive voltage supply method, test mode, and whether the $\mu \mathrm{PD} 16431 \mathrm{~A}$ operates as the master or a slave.
When this command is executed, display is forcibly turned off and key scanning is stopped. To resume the display, the normal operation of the 'status command' must be executed. Note, however, that nothing is executed if the same mode is selected.


Values when power is applied

|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## (2) Status command

This command sets a data write/read mode, turns ON/OFF display, and sets a latch address.


Value when power is applied

|  | x | x | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## 6. OUTPUT SELECT VOLTAGE

(1) COM

| Parameter | Power supply | + | - | Bias |
| :---: | :---: | :---: | :---: | :---: |
| When selected | Internal | VLCD | GND | 1/2 bias |
|  | External | VLCD | GND |  |
| When not selected | Internal | 1/2VLCD | 1/2VLCD |  |
|  | External | VLC2 | VLC2 |  |
| When key scanned | Internal | 1/2VLCD | 1/2VLCD |  |
|  | External | VLC2 | VLC2 |  |
| When selected | Internal | VlCd | GND | 1/3 bias |
|  | External | VLCD | GND |  |
| When not selected | Internal | 1/3VLCD | 2/3VLCD |  |
|  | External | VLC3 | VLC1 |  |
| When key scanned | Internal | 1/2VLCD | 1/2VLCD |  |
|  | External | VLC2 | VLC2 |  |

(2) SEG

| Parameter | Power supply | + | - | Bias |
| :---: | :---: | :---: | :---: | :---: |
| When selected | Internal | GND | VLCD | 1/2 bias |
|  | External | GND | VLCD |  |
| When not selected | Internal | VLCD | GND |  |
|  | External | VLCD | GND |  |
| When key scanned | Internal | GND | VLCd |  |
|  | External | GND | VLCD |  |
| When key not scanned | Internal | Vlcd | GND |  |
|  | External | VLCD | GND |  |
| When selected | Internal | GND | VLCD | 1/3 bias |
|  | External | GND | VLCd |  |
| When not selected | Internal | 2/3VLCD | 1/3VLCD |  |
|  | External | VLC1 | VLC3 |  |
| When key scanned | Internal | GND | VLCd |  |
|  | External | GND | VLCd |  |
| When key not scanned | Internal | VLCD | GND |  |
|  | External | VLCD | GND |  |

## 7. OUTPUT WAVEFORM

### 7.1 1/2 Duty ( $1 / 2$ bias)



Remark *: Key scan period (16/fc)
(1) Key scan period (K0) expansion

(2) Key scan period (K1) expansion


### 7.2 1/3 Duty (1/3 bias)



Remark * $=$ key scan period (16/fc)
(1) Key scan period (K0) expansion

(2) Key scan period (K1) expansion

(3) Key scan period (K2) expansion

7.3 1/4 Duty (1/3 bias)


Remark *: Key scan period (16/fc)
(1) Key scan period (K0) expansion

(2) Key scan period (K1) expansion


Remark
= Key source output
(3) Key scan period (K2) expansion

(4) Key scan period (K3) expansion


### 7.4 Serial Communication Format

(1) Receive (command/data write)

(2) Transmit (command/data read)

STB


DATA


SCK


## 8. APPLICATION

### 8.1 Example of Initial Setting + Display Data Write

| Parameter | STB | Command/data |  |  |  |  |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |  |
| Start | H |  |  |  |  |  |  |  |  |  |
| Set display command | L | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/4duty, frame frequency $=$ fosc $/ 128 \times 1 / 4$, internal drive voltage, master |
|  | H |  |  |  |  |  |  |  |  |  |
| Status command | L | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Display data write, display OFF, latch address: COM1 |
| Display data 1 <br> Display data 7 | L | x <br> x | x <br> x | x <br> x | $x$ x | x <br> x | x <br> x | x <br> x | x <br> x | $\} \text { COM1 data (7bytes) }$ |
|  | H |  |  |  |  |  |  |  |  |  |
| Status command | L | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | Display data write, display OFF, latch address: COM2 |
| Display data 1 <br> Display data 7 | L $\mathrm{L}$ | $x$ x | $x$ x | x x | x <br> X | x x | $x$ x | x x | x x | $\} \text { COM2 data (7 bytes) }$ |
|  | H |  |  |  |  |  |  |  |  |  |
| Status command | L | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Display data write, display OFF, latch address: COM3 |
| Display data 1 <br> Display data 7 | $\mathrm{L}$ | x x | x x | $x$ x | $x$ x | x <br> x | x x | x x | x x | $\} \text { COM3 data (7 bytes) }$ |
|  | H |  |  |  |  |  |  |  |  |  |
| Status command | L | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | Display data write, display OFF, latch address: COM4 |
| Display data 1 <br> Display data 7 | L $\mathrm{L}$ | x x | x x | $x$ x | $x$ x | x <br> X | x x | $x$ <br> x | x <br> x | $\} \mathrm{COM}_{4} \text { data (7 bytes) }$ |
|  | H |  |  |  |  |  |  |  |  |  |
| Status command | L | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | Display data write, display ON |
| End | H |  |  |  |  |  |  |  |  |  |

### 8.2 Example of Display Data Write (Rewrite, 1/4)

| Parameter | STB | Command/data |  |  |  |  |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |  |
| Start | H |  |  |  |  |  |  |  |  |  |
| Status command | L | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | Display data write, display ON, latch address: COM1 |
| Display data 1 <br> Display data 7 | L | x | $x$ <br> x | x | x | x | x | x | x | $\} \text { COM1 data (7bytes) }$ |
|  | H |  |  |  |  |  |  |  |  |  |
| Status command | L | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | Display data write, display ON, latch address: COM2 |
| Display data 1 <br> Display data 7 | L | x | $x$ <br> x | x | x x | x | x | x <br> x | x <br> x | $\} \mathrm{COM} 2 \text { data ( } 7 \text { bytes) }$ |
|  | H |  |  |  |  |  |  |  |  |  |
| Status command | L | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | Display data write, display ON, latch address: COM3 |
| Display data 1 <br> Display data 7 | L | x <br> x | x <br> x | x <br> X | x x | x <br> x | x <br> x | x <br> x | x x | $\} \text { COM3 data (7 bytes) }$ |
|  | H |  |  |  |  |  |  |  |  |  |
| Status command | L | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | Display data write, display ON, latch address: COM4 |
| Display data 1 <br> Display data 7 | L | x | x | x | x | x | $x$ | x | x | $\} \mathrm{COM}_{4} \text { data (7 bytes) }$ |
| End | H |  |  |  |  |  |  |  |  |  |

### 8.3 Example of Display Data Read



## 9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ( $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

| Parameter | Symbol | Ratings | Unit |
| :---: | :---: | :---: | :---: |
| Logic supply voltage | Vdd | -0.3 to + 7.0 | V |
| Logic input voltage | Vin | -0.3 to $+V_{\text {DD }}+0.3$ | V |
| Logic output voltage (DATA) | Vout | -0.3 to +7.0 | V |
| LCD drive supply voltage | VLCd | -0.3 to +7.0 | V |
| LCD drive supply input voltage | VLC1 to VLC3 | -0.3 to VLCD +0.3 | V |
| Drive output voltage (segment, common, LED) | Vout2 | -0.3 to VLCD +0.3 | V |
| LED output current | lo | 20 | mA |
| Package allowable dissipation | $\mathrm{P}_{\text {T }}$ | 1000 | mW |
| Operating ambient temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature range | $\mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

## Recommended Operating Conditions

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Logic supply voltage | $V_{D D}$ |  | 2.7 | 5.0 | 5.5 | V |
| LCD drive supply voltage | $\mathrm{V}_{\mathrm{LCD}}$ |  | $\mathrm{V}_{\mathrm{DD}}$ | 5.0 | 6.5 | V |
| Logic input voltage | $\mathrm{V}_{\mathrm{IN}}$ |  | 0 |  | $\mathrm{~V}_{\mathrm{DD}}$ | V |
| Drive output voltage | $\mathrm{V}_{\mathrm{LC} 1}$ to $\mathrm{V}_{\mathrm{LC}}$ |  | 0 |  | $\mathrm{~V}_{\text {LCD }}$ | V |

Electrical Characteristics (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LCD}}=\mathbf{5 V} \pm 10 \%$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input voltage, high | $\mathrm{V}_{\mathrm{IH}}$ |  | 0.7 VDD |  | VdD | V |
| Input voltage, low | VIL |  | 0 |  | 0.3 Vod | V |
| Input current, high | $\mathrm{liH}^{\text {H}}$ | SCK, STB, LCD/ $\overline{\text { LED }}$, OE |  |  | 1 | $\mu \mathrm{A}$ |
| Input current, low | IIL | SCK, STB, LCD/ $\overline{\text { LED }}$, OE |  |  | -1 | $\mu \mathrm{A}$ |
| Output voltage, low | Vol1 | $L^{\text {LED }}$ 1 to LED ${ }_{8}$, lol1 $=15 \mathrm{~mA}$ |  |  | 1.0 | V |
| Output voltage, high | Voh2 | OSCout, $\mathrm{Ioh2}=-1 \mathrm{~mA}$ | 0.9 VDD |  |  | V |
| Output voltage, low | Vol2 | DATA, OSCout, SYNC, Iol2 $=4 \mathrm{~mA}$ |  |  | 0.1 Vod | V |
| Leakage current, high | ILOH2 | DATA, SYNC, VIn/out = VDD |  |  | 1 | mA |
| Leakage current, low | ILOL2 | DATA, SYNC, Vin/out = Vss |  |  | -1 | mA |
| Common output ON resistance | Rсом | $\mathrm{COM}_{1}$ to $\mathrm{COM}_{4},\|\mathrm{lo}\|=100 \mu \mathrm{~A}$ |  |  | 2.4 | $\mathrm{k} \Omega$ |
| Segment output ON resistance | Rseg | $\mathrm{SEG}_{1}$ to SEG56, $\mid$ Io $\mid=100 \mu \mathrm{~A}$ |  |  | 4.0 | $\mathrm{k} \Omega$ |
| Logic current dissipation | IDD | $\mathrm{fosc}=250 \mathrm{kHz}$ |  |  | 250 | $\mu \mathrm{A}$ |
| LCD drive current consumption | ILCD | With internal bias and no load |  |  | 500 | $\mu \mathrm{A}$ |

Remark TYP. values are reference values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=-40$ to ${ }^{2} 85^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=\mathrm{VLCD}=5 \mathrm{~V} \pm 10 \%$, $R_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: |
| Oscillation frequency | fosc | $\mathrm{R}=100 \mathrm{k} \Omega$ | 175 | 250 | 325 | kHz |
|  |  | $\mathrm{R}=200 \mathrm{k} \Omega$ | 105 | 150 | 195 | kHz |
|  | tpzL | SCK $\downarrow \rightarrow$ DATA $\downarrow$ |  |  | 100 | ns |
|  | tpLz | SCK $\downarrow \rightarrow$ DATA $\uparrow$ |  |  | 300 | ns |
|  | tosYnc |  |  |  | 1.5 | $\mu \mathrm{~s}$ |

Timing Requirements (Unless otherwise specified, $T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LCD}}=5 \mathrm{~V} \pm 10 \%$, $R_{L}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ )

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock frequency | fc | OSCin external clock | 50 |  | 325 | kHz |
| High-level clock pulse width | twhc | OSCIn external clock | 1.5 |  | 16 | $\mu \mathrm{s}$ |
| Low-level clock pulse width | twLC | OSCin external clock | 1.5 |  | 16 | $\mu \mathrm{s}$ |
| Shift clock cycle | tcyk | SCK | 900 |  |  | ns |
| High-level shift clock pulse width | twнк | SCK | 400 |  |  | ns |
| Low-level shift clock pulse width | twLK | SCK | 400 |  |  | ns |
| Shift clock hold time | thstbk | STB $\downarrow \rightarrow$ SCK $\downarrow$ | 1.5 |  |  | $\mu \mathrm{s}$ |
| Data setup time | tos | DATA $\rightarrow$ SCK $\uparrow$ | 100 |  |  | ns |
| Data hold time | tD | SCK $\uparrow \rightarrow$ DATA | 200 |  |  | ns |
| STB hold time | thkstb | SCK $\uparrow \rightarrow$ STB $\uparrow$ | 1 |  |  | $\mu \mathrm{s}$ |
| STB pulse width | twstb |  | 1 |  |  | $\mu \mathrm{s}$ |
| Wait time | twalt | CLK $\uparrow \rightarrow$ CLK $\downarrow$ | 1 |  |  | $\mu \mathrm{s}$ |
| SYNC removal time | tsrem |  | 250 |  |  | ns |

## Output road



## Switching Characteristic Waveform



Internal reset

sck

10. APPLICATION CIRCUIT EXAMPLE (with LED, $1 / 4$ duty, $1 / 3$ bias)


Note Example of external source circuit (when $1 / 2$ bias)


## 11. PACKAGE DRAWING

80-PIN PLASTIC LQFP (14x14)


## NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS |
| :---: | :--- |
| A | $16.0 \pm 0.2$ |
| B | $14.0 \pm 0.1$ |
| C | $14.0 \pm 0.1$ |
| D | $16.0 \pm 0.2$ |
| F | 0.825 |
| G | 0.825 |
| H | $0.30 \pm 0.10$ |
| I | 0.13 |
| J | $0.65($ T.P. $)$ |
| K | $1.0 \pm 0.2$ |
| L | $0.5 \pm 0.2$ |
| M | $0.125_{-0.05}^{+0.10}$ |
| N | 0.10 |
| P | $1.4 \pm 0.1$ |
| Q | $0.125 \pm 0.075$ |
| $R$ | $3^{\circ+7^{\circ}}$ |
| S | 1.7 MAX. |
|  | S80GC-65-7ET-3 |

## 12. RECOMMENDED SOLDERING CONDITIONS

The $\mu$ PD16431A should be soldered and mounted under the following recommended conditions.
For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual(C10535E).
For soldering methods and conditions other than those recommended below, contact your NEC sales representative.
$\mu$ PD16431AGC-7ET $: 80-$ PIN PLASTIC LQFP $(14 \times 14)$

| Soldering Method | Soldering Conditions | Recommended Soldering Condition Symbol |
| :---: | :---: | :---: |
| Infrared reflow | Package peak temperature : $235^{\circ} \mathrm{C}$, Time : 30 sec . MAX. (at 210 or higher), <br> Count : 2 times or less. <br> Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours) | IR35-107-2 |
| VPS | Package peak temperature : $215^{\circ} \mathrm{C}$, Time : 40 sec . MAX. (at 210 or higher), <br> Count : 2 times or less. <br> Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours). | VP15-107-2 |
| Wave soldering | Solder bath temperature : $260^{\circ} \mathrm{C}$ MAX., Time : 10 sec. MAX., Count : once, Preheating temperature: $120^{\circ} \mathrm{C}$ MAX. (package surface temperature) Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours) | WS60-107-1 |
| Partial heating | Pin temperature: $300^{\circ} \mathrm{C}$ MAX., Time: 3 seconds MAX. (per side of device) | - |

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ ro less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

## Caution Do not use different soldering methods together (except the partial heating).

## [MEMO]

## [MEMO]

## NOTES FOR CMOS DEVICES

## (1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

## (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

# REFERENCE DOCUMENTS 

NEC Semiconductor Device Reliability/Quality Control System
(IEI-1212)
Semiconductor Device Mounting Technology Manual

- The information in this document is current as of December, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).


[^0]:    The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
    Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

