TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T6A39

COLUMN DRIVER FOR A DOT MATRIX LCD

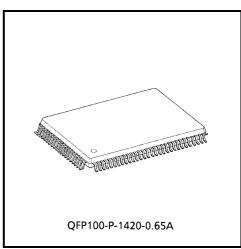
The T6A39 is an 80-channel-output column driver for an STN dot matrix LCD.

The T6A39 features a 28-V LCD drive voltage and a 4-MHz maximum operating frequency. The T6A39 is able to drive LCD panels with a duty ratio of up to 1/240. It is recommended for use with the T6A40.

Features

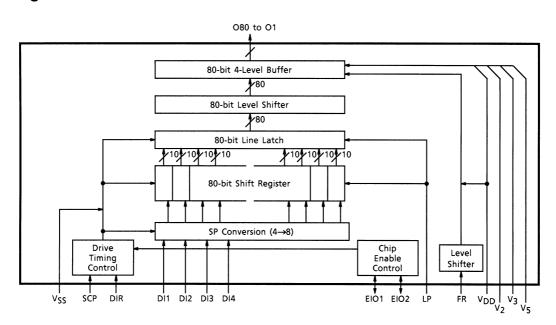
Display duty application : to 1/240LCD drive signal : 80

• Data transfer : 1, 2, 4-bit bidirectional

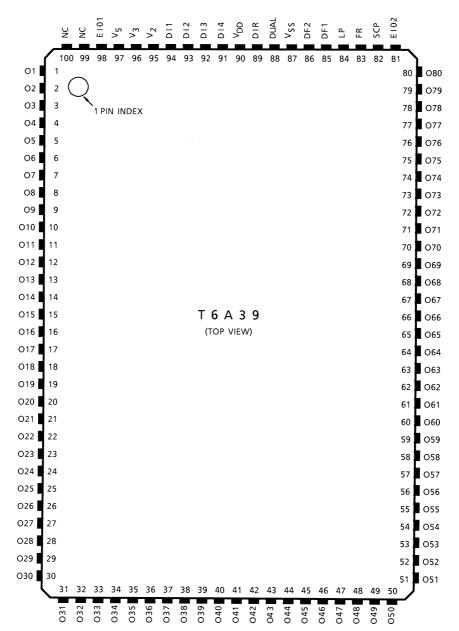

• Operating frequency : 4 MHz

• LCD drive voltage : 8 to 28 V (max 30 V)

Power supply voltage : 4.5 to 5.5 V
 Operating temperature : -20 to 75°C


• LCD drive output resistance : 1.5 k Ω (max) (12.8 V, 1/9 bias)

• Low power consumption : Cascade connection and auto enable transfer functions are available.



Weight: 1.60 g (typ.)

Block Diagram

Pin Assignment

2

2001-11-27

Pin Functions

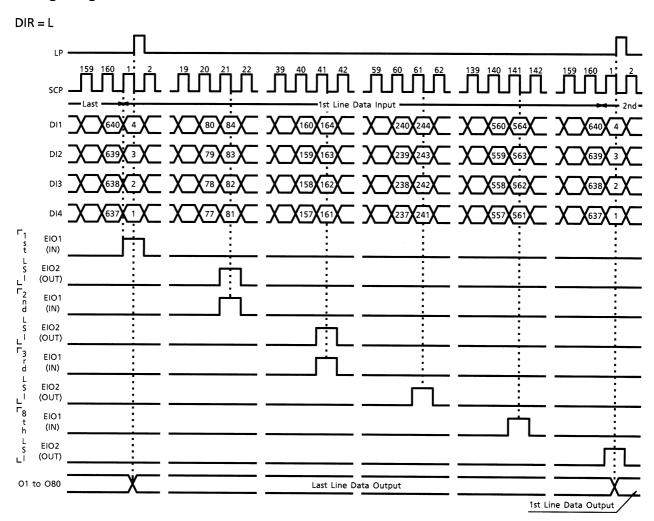
Pin Name	1/0	Fun	ections				Level			
O1 to O80	Output	Output for LCD drive signal					V _{DD} to V5			
DI1 to DI4	Input	Input for shift data								
SCP	Input	(Shift Clock Pulse) Input for shift clock pulse								
FR	Input	(Frame) Input for frame signal								
LP	Input	(Latch Pulse) Input for shift clock pulse								
DUAL	Input	(Dual Mode) Terminal for dual input mode or single input mode select								
DIR	Input	(Direction) Input for data flow direction select					V _{DD} to V _{SS}			
DF1, DF2	Input	(Data Format) Input for selection data format (1-bit, 2-b	it, 4-bit)							
		(Input / output for ENABLE signal) At cascade connection of the T6A39, connect output pin to enable pin (input)	DUAL	DIR	EION1	EION2				
		of next LSI externally.	L	L	OUT	IN				
EIO1, EIO2	1/0		L	Н	IN	OUT				
			Н	L	OUT	IN				
			Н	Н	OUT	IN				
V _{DD}	_	Power supply for internal logic (+5 V)								
V _{SS}	_	Power supply for internal logic (0 V)								
V2	_	Power supply for LCD drive circuit] –			
V3	_	Power supply for LCD drive circuit								
V5	_	Power supply for LCD drive circuit								

3

Relation Between FR, Data Input and Output Level

FR	Data Input (DI1 to DI4)	Output Level
L	L	V2
L	Н	V _{DD}
Н	L	V3
Н	Н	V5

Data Input Format


Ĭ	C L	3	0	3		DATA	DATA INPUT			DATA	DATA FORMAT	
UF1	DF2	DUAL	אוח	DITS	DI1	DI2	DI3	DI4	(L) DI1 (E)	O DI2 (O DI3 (E)	D14 (C)
Γ	٦	٦	٦		*	*	*	Z	ı	l	ı	080,07902,01
Γ	٦	٦	I	7	Z	*	*	*	01,02079,080	I	I	ı
٦	_	I	_	10-	*	*	*	Z	ı	I	I	080,079042,041
Γ	7	ェ	I		Z	*	*	Z	01,02039,040	I	I	080,079042,041
т	_	_	_		*	*	Z	Z	I	I	079,07703,01	080,078···04,02
I	Γ	٦	I	±:	Z	Z	*	*	01,03077,079	02,04078,080	ı	ı
т	Γ	I	٦	7-011	*	*	Z	Z	I	I	079,077043,041	O80,O78···O44,O42
H	Γ	Н	I		N	N	Z	N	01,03037,039	02,04038,040	079,077043,041	080,078···044,042
*	Н	Γ	Γ		N	N	N	N	077,073···05,01	O78,O74···O6,O2	079,07507,03	080,07608,04
*	Н	Γ	н	4-bit	N	N	N	N	01,05···073,077	02,06···074,078	03,07075,079	04,08076,080
*	Н	Н	Γ		NI	N	N	NI	077,073···045,041	078,074046,042	2 079,075047,043	080,076048,044
*	I	I	I							DON'T USE		
ĺ	ĺ		I									

* Don't Care Û→LAST DATA Ê→FIRST DATA

T6A39

Timing Diagram

Absolute Maximum Ratings (Ensure that the Following Conditions are Maintained, $V_{CC} \ge V_0 \ge V_2 \ge V_3 \ge V_5 \ge V_{SS}$, $V_{SS} = 0$ V

Item	Symbol	Pin Name	Rating	Unit
Supply Voltage 1	V _{DD}	V_{DD}	-0.3 to 7.0	V
Supply Voltage 2	V2	V2	V _{DD} - 30 to V _{DD} + 0.3	V
Supply Voltage 3	V3	V3	V _{DD} - 30 to V _{DD} + 0.3	V
Supply Voltage 4	V5	V5	V _{DD} - 30 to V _{DD} + 0.3	V
Input Voltage	V _{IN}	(Note 1)	-0.3 to V _{DD} + 0.3	V
Operating Temperature	T _{opr}	_	−20 to 75	°C
Storage Temperature	T _{stg}		-55 to 125	°C

Note 1: SCP, FR, LP, DIR, DF1, DF2, DUAL, DI1 to DI4

Electrical Characteristics Dc Characteristics

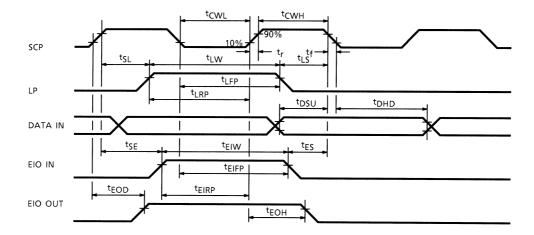
Test Conditions (Unless Otherwise Noted, V_{SS} = 0 V, V_{DD} = 4.5 to 5.5 V, V_{DD} = 23) V ± 10%, Ta = -20 to 75°C

Iten	n	Symbol	Test Circuit	Test Co	ndition	Min	Тур.	Max	Unit	Pin Name
Supply Volta	age 1	_	_	_	-	4.5	5.0	5.5	V	V_{DD}
Supply Volta	age 2	V5	_	_	-	V _{DD} - 28	V _{DD} - 23	V _{DD} - 8.0	V	V5
Input Voltage	H Level	V_{IH}	_	$T_{opr} = -10 \text{ to } 75$	°C (Note2)	V _{DD} - 0.8 (Note 3)	_	V _{DD}	V	SCP, FR, LP, DIR, EIO1, EIO2, DI1 to
voltage	L Level	V_{IL}		$T_{opr} = -10 \text{ to } 75$	°C (Note2)	0	_	0.8 (Note 4)		DI4, DF1, DF2, DUAL
Output Voltage	H Level	V _{OH}	_	_			_	V _{DD}	V	EIO1, EIO2
Voltage	L Level	V_{OL}		_	_	0	_	0.3		
Output Resistance	H Level	R _{OH}	_	$V_{OUT} = V_{DD} - 0$.5 V	_	_	1.0	kΩ	EIO1, EIO2
(1)	L Level	R_{OL}	_	V _{OUT} = V _{SS} + 0	.5 V	_	_	1.0	K12	EIO1, EIO2
	H Level	R _{OH}	_	V _{OUT} = V _{DD} - 0	.5 V (Note 5)	_	_	1.5		
Output Resistance	M Level	R _{OM}	_	V _{OUT} = V2 ± 0.5	V (Note 5)	_	_	1.5	kΩ	O1 to O80
(2)	W Level	R _{OM}	_	$V_{OUT} = V3 \pm 0.5$	V (Note 5)	_	_	1.5	KSZ	0110000
	L Level	R _{OL}	_	$V_{OUT} = V5 + 0.5$	V (Note 5)	_	_	1.5		
Current Con	sumption	$V5 = -22.5 \text{ V}$ $f_{FR} = 35 \text{ Hz}$ $f_{FR} = 3.5 \text{ MHz}$		f _{FR} = 35 Hz	Input Data: every bit inverted	_	1050	1400	4	VSS
(1) (Note 5)		O1 to O80	Input Data: low	-	770	1000	μА	V55		
Current Con (2)	sumption (Note 6)	I _{SS}	_	As mentioned above (Note 7)	Input Data: every bit inverted	_	260	350	μΑ	VSS

Note 2: $R_L = 3 k\Omega$, $C_L = 500 pF$

Note 3: $V_{DD} - 0.7 (T_{opr} = -20 \text{ to } -10^{\circ}\text{C})$

Note 4: $0.7 (T_{opr} = -20 \text{ to } -10^{\circ}\text{C})$


Note 5: Internal data receiver operating

Note 6: Internal data receiver sleeping

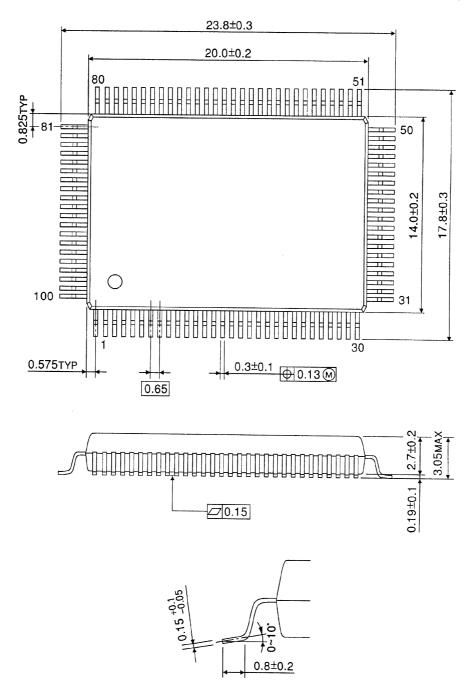
Note 7: $V_{DD} = 5.0 \text{ V}$, $V_5 = -7.8 \text{ V}$, $V_2 = V_{DD} - 2 / 9 (V_{DD} - V_5)$, $V_3 = V_{DD} - 7 / 9 (V_{DD} - V_5)$

6 2001-11-27

AC Characteristics

Test Conditions $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, V_0 = V_{DD}, V_5 = (V_{DD} - 23) \text{ V} \pm 10\%, Ta = -20 \text{ to } 75^{\circ}\text{C})$

Item	Symbol	Test Condition	Min	Max	Unit
Operating Frequency	t _{SCP}	_	_	4.0	MHz
SCP Pulse Width	tсwн	_	95	_	
SCP Pulse Width	tcwL	_	95	_	
Data Set-up Time	t _{DSU}	_	20	_	
Data Hold Time	t _{DHD}	_	40	_	
SCP Rise / Fall Time	t _r , t _f	_	_	30	
LP Set-up Time	t _{LRP}	_	20	_	
LP Hold Time	t _{LFP}	_	40	_	
LP Pulse Width	t _{LW}	_	40	_	
SCP-Rise-to-LP-Rise Time	t _{SL}	_	10	_	ns
LP-Fall-to-SCP-Fall Time	t _{LS}	_	10	_	
EIO IN Set-up Time	t _{EIRP}	_	20	_	
EIO IN Hold Time	t _{EIFP}	_	40	_	
EIO IN Pulse Width	t _{EIW}	_	40	_	
SCP-Rise-to-EIO-Rise Time	t _{SE}	(Note 8)	10	_	
EIO-Fall-to-SCP-Fall Time	t _{ES}	(Note 8)	10	_	
EIO OUT Data Delay Time	t _{EOD}	_	_	100	
EIO OUT Hold Time	t _{EOH}	_	_	95	1


7

Note 8: $C_L = 10 pF$

Package Dimensions

QFP100-P-1420-0.65A

Unit: mm

Weight: 1.60g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.