

MOS INTEGRATED CIRCUIT $\mu PD43257B$

256K-BIT CMOS STATIC RAM 32K-WORD BY 8-BIT

Description

The μ PD43257B is a high speed, low power, and 262,144 bits (32,768 words by 8 bits) CMOS static RAM. Battery backup is available. And the μ PD43257B has two chip enable pins (/CE1, CE2) to extend the capacity. The μ PD43257B is packed in 28-pin PLASTIC DIP and 28-pin PLASTIC SOP.

Features

32,768 words by 8 bits organization
Fast access time: 70, 85 ns (MAX.)
Low Vcc data retention: 2.0 V (MIN.)
Two Chip Enable inputs: /CE1, CE2

Part number	Access time	Operating supply	Operating ambient	Supply current		
	ns (MAX.)	voltage	temperature	At operating	At standby	At data retention
		V	°C	mA (MAX.)	μ Α (ΜΑΧ.)	μΑ (MAX.) Note
μPD43257B-xxL	70, 85	4.5 to 5.5	0 to 70	45	50	3
μPD43257B-xxLL				45	15	2

Note Ta \leq 40 °C, Vcc = 3.0 V

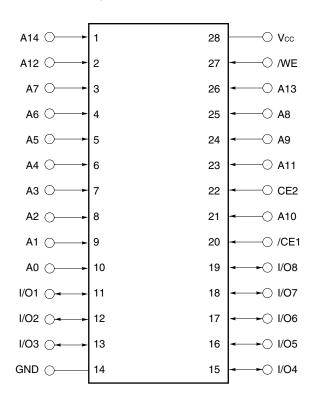
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

Ordering Information

Part number	Package	Access time	Supply curre	ent μA (MAX.)	Remark
		ns (MAX.)	At standby	At data retention Note	
μPD43257BCZ-70L	28-pin PLASTIC DIP	70	50	3	L version
μPD43257BCZ-85L	(15.24 mm (600))	85			
μPD43257BCZ-70LL		70	15	2	LL version
μPD43257BCZ-85LL		85			
μPD43257BGU-70L	28-pin PLASTIC SOP	70	50	3	L version
μPD43257BGU-85L	(11.43 mm (450))	85			
μPD43257BGU-70LL		70	15	2	LL version
μPD43257BGU-85LL		85			
μPD43257BGU-70L-A	28-pin PLASTIC SOP	70	50	3	L version
μPD43257BGU-85L-A	(11.43 mm (450))	85			
μPD43257BGU-70LL-A		70	15	2	LL version
μPD43257BGU-85LL-A		85			

Note Ta \leq 40 °C, Vcc = 3.0 V

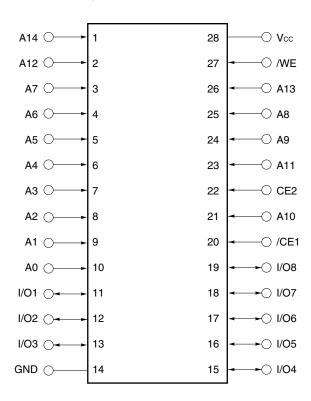

Remark Products with -A at the end of the part number are lead-free products.

Pin Configurations (Marking Side)

/xxx indicates active low signal.

28-pin PLASTIC DIP (15.24 mm (600)) $[\ \mu \text{PD43257BCZ-xxL} \]$ $[\ \mu \text{PD43257BCZ-xxLL} \]$

A0 - A14 : Address inputs


I/O1 - I/O8 : Data inputs / outputs

/CE1 : Chip Enable 1
CE2 : Chip Enable 2
/WE : Write Enable
Vcc : Power supply

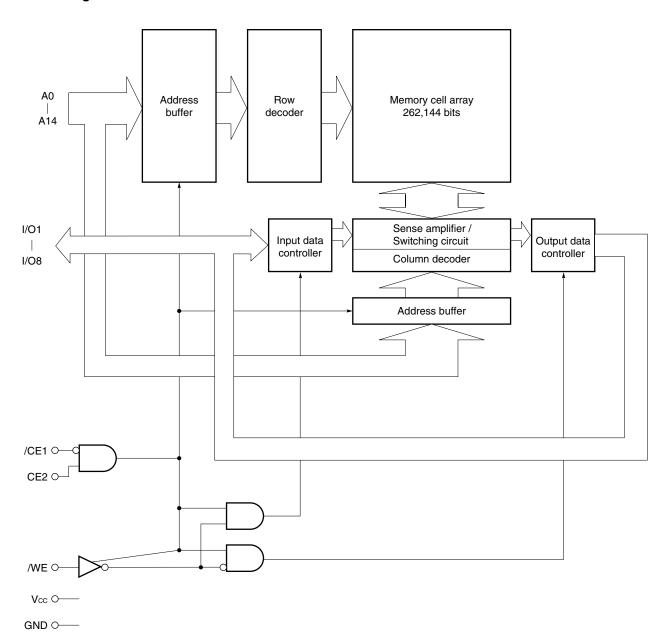
GND : Ground

Remark Refer to Package Drawings for the 1-pin marking.

[μPD43257BGU-xxLL-A]

A0 - A14 : Address inputs

I/O1 - I/O8 : Data inputs / outputs


/CE1 : Chip Enable 1
CE2 : Chip Enable 2
/WE : Write Enable
Vcc : Power supply

GND : Ground

Remark Refer to Package Drawings for the 1-pin marking.

Block Diagram

Truth Table

/CE1	CE2	/WE	Mode	I/O	Supply current
Н	×	×	Not selected	High impedance	IsB
×	L	×			
L	Н	Н	Read	D оит	ICCA
L	Н	L	Write	Din	

 $\textbf{Remark} \ \times \ : \ V \text{IH or } V \text{IL}$

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	Vcc		-0.5 Note to +7.0	٧
Input / Output voltage	VT		-0.5 Note to Vcc + 0.5	٧
Operating ambient temperature	Та		0 to 70	°C
Storage temperature	T _{stg}		-55 to +125	°C

Note -3.0 V (MIN.) (Pulse width: 50 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		4.5	5.0	5.5	٧
High level input voltage	ViH		2.2		Vcc+0.5	٧
Low level input voltage	VIL		-0.3 Note		+0.8	٧
Operating ambient temperature	TA		0		70	°C

Note -3.0 V (MIN.) (Pulse width: 50 ns)

Capacitance (T_A = 25 °C, f = 1 MHz)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	Vin = 0 V			5	pF
Input / Output capacitance	C _{I/O}	V ₁ /0 = 0 V			8	pF

Remarks 1. VIN: Input voltage

VI/O: Input / Output voltage

2. These parameters are periodically sampled and not 100% tested.

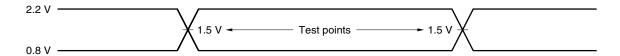
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

Parameter	Symbol	Test condition		Test condition μ PD43257B-xxL		-xxL	μPD43257B-xxLL			Unit
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input leakage current	lu	V _{IN} = 0 V to V _{CC}	V _{IN} = 0 V to V _{CC}			+1.0	-1.0		+1.0	μΑ
I/O leakage current	Іго	V _I /O = 0 V to V _{CC} , /CE1 = V _I H or CE2 = V _I L or /WE = V _I L		-1.0		+1.0	-1.0		+1.0	μΑ
Operating	ICCA1	/CE1 = VIL, CE2 = VIH,	μPD43257B-70			45			45	mA
supply current		Minimum cycle time, I _{VO} = 0 mA	μPD43257B-85			45			45	
	ICCA2	/CE1 = VIL, CE2 = VIH, II/O = 0 mA				10			10	
	Іссаз	/CE1 \leq 0.2 V, CE2 \geq Vcc $-$ 0.2 V, Cy I _{I/O} = 0 mA, V _{IL} \leq 0.2 V, V _{IH} \geq Vcc $-$ 0	,			10			10	
Standby	Isa	/CE1 = VIH or CE2 = VIL,				3			3	mA
supply current	I _{SB1}	/CE1 ≥ Vcc - 0.2 V, CE2 ≥ Vcc - 0.2	2 V		1.0	50		0.5	15	μΑ
	I _{SB2}	CE2 ≤ 0.2 V			1.0	50		0.5	15	
High level	V _{OH1}	I _{OH} = -1.0 mA		2.4			2.4			V
output voltage	V _{OH2}	$I_{OH} = -0.1 \text{ mA}$		Vcc-0.5			Vcc-0.5			
Low level output voltage	Vol	IoL = 2.1 mA				0.4			0.4	٧

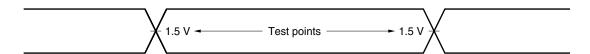
Remarks 1. VIN: Input voltage

 $V_{I/O}$: Input / Output voltage

2. These DC characteristics are in common regardless of package types and access time.

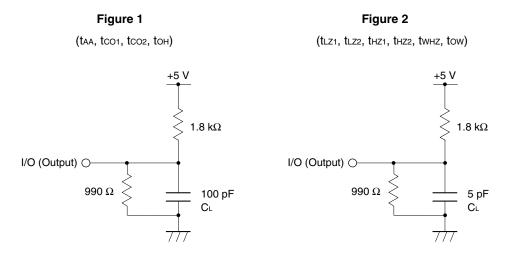


AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)


AC Test Conditions

[μ PD43257B-70L, μ PD43257B-85L, μ PD43257B-70LL, μ PD43257B-85LL]

Input Waveform (Rise and Fall Time ≤ 5 ns)



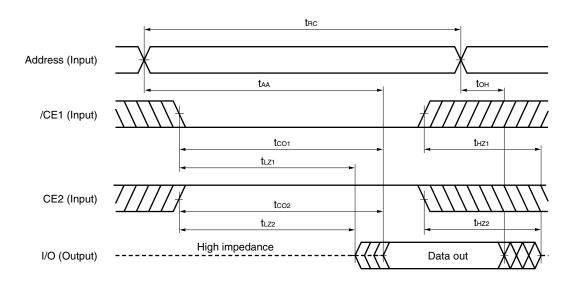
Output Waveform

Output Load

AC characteristics with notes should be measured with the output load shown in Figure 1 and Figure 2.

Remark C_L includes capacitance of the probe and jig, and stray capacitance.

Read Cycle


Parameter	Symbol	<i>μ</i> PD432	257B-70	μPD43257B-85		Unit	Condition
		MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	70		85		ns	
Address access time	taa		70		85	ns	Note 1
/CE1 access time	tco1		70		85	ns	
CE2 access time	t co2		70		85	ns	
Output hold from address change	tон	10		10		ns	
/CE1 to output in low impedance	t _{LZ1}	10		10		ns	Note 2
CE2 to output in low impedance	tız2	10		10		ns	
/CE1 to output in high impedance	t _{HZ1}		30		30	ns	
CE2 to output in high impedance	thz2		30		30	ns	

Notes 1. See the output load shown in Figure 1.

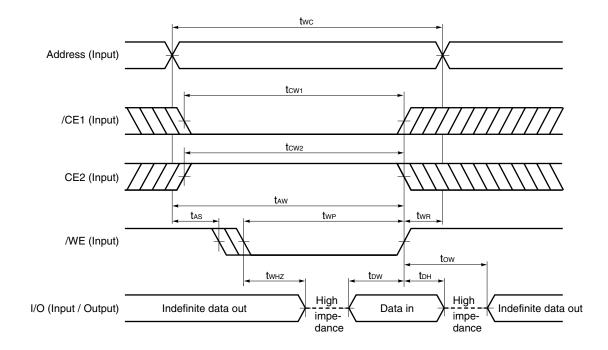
2. See the output load shown in Figure 2.

Remark These AC characteristics are in common regardless of package types and L, LL versions.

Read Cycle Timing Chart

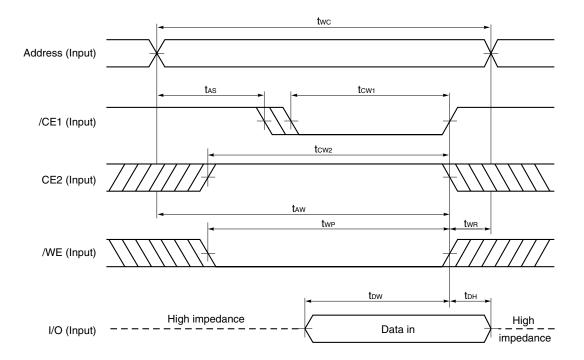
Remark In read cycle, /WE should be fixed to high level.

Write Cycle


Parameter	Symbol	μPD432	257B-70	μPD43257B-85		Unit	Condition
		MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	70		85		ns	
/CE1 to end of write	tcw1	50		70		ns	
CE2 to end of write	tcw2	50		70		ns	
Address valid to end of write	taw	50		70		ns	
Address setup time	tas	0		0		ns	
Write pulse width	twp	55		65		ns	
Write recovery time	twr	0		0		ns	
Data valid to end of write	tow	30		35		ns	
Data hold time	tон	0		0		ns	
/WE to output in high impedance	twнz		30		30	ns	Note
Output active from end of write	tow	10		10		ns	

Note See the output load shown in Figure 2.

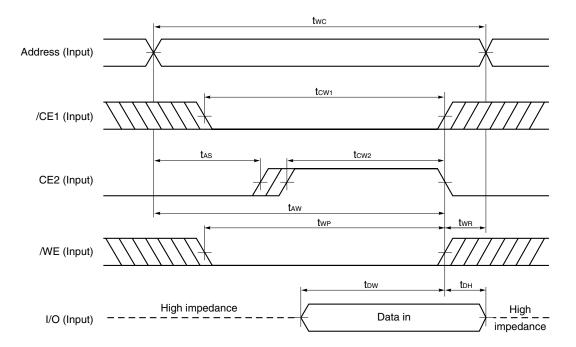
Remark These AC characteristics are in common regardless of package types and L, LL versions.


Write Cycle Timing Chart 1 (/WE Controlled)

- Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
 - 2. When I/O pins are in the output state, therefore the input signals must not be applied to the output.
- Remarks 1. Write operation is done during the overlap time of a low level /CE1, /WE and a high level CE2.
 - 2. If /CE1 changes to low level at the same time or after the change of /WE to low level, or if CE2 changes to high level at the same time or after the change of /WE to low level, the I/O pins will remain high impedance state.
 - 3. When /WE is at low level, the I/O pins are always high impedance. When /WE is at high level, read operation is executed. Therefore /OE should be at high level to make the I/O pins high impedance.

Data Sheet M10693EJ9V0DS 11

Write Cycle Timing Chart 2 (/CE1 Controlled)



- Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
 - 2. When I/O pins are in the output state, therefore the input signals must not be applied to the output.

Remark Write operation is done during the overlap time of a low level /CE1, /WE and a high level CE2.

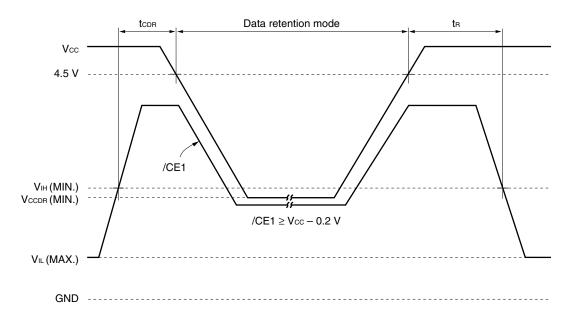
Write Cycle Timing Chart 3 (CE2 Controlled)

- Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
 - 2. When I/O pins are in the output state, therefore the input signals must not be applied to the output.

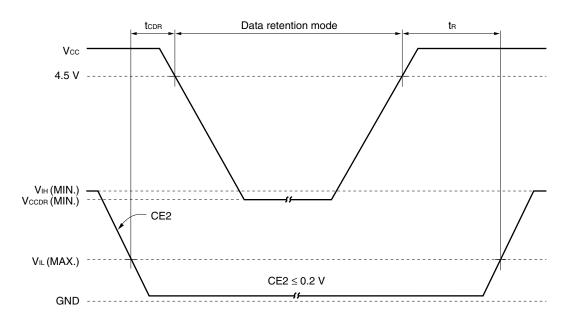
Remark Write operation is done during the overlap time of a low level /CE1, /WE and a high level CE2.

Low Vcc Data Retention Characteristics ($T_A = 0$ to 70 °C)

Parameter	Symbol	Test Condition	μΡΙ	D43257B	-xxL	μPD	43257B-	xxLL	Unit
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Data retention supply voltage	Vccdr1	/CE1 ≥ Vcc - 0.2 V, CE2 ≥ Vcc - 0.2 V	2.0		5.5	2.0		5.5	V
	Vccdr2	CE2 ≤ 0.2 V	2.0		5.5	2.0		5.5	
Data retention supply current	ICCDR1	$Vcc = 3.0 \text{ V}, /CE1 \ge Vcc - 0.2 \text{ V},$ $CE2 \ge Vcc - 0.2 \text{ V}$		0.5	20 Note1		0.5	7 ^{Note2}	μΑ
	ICCDR2	Vcc = 3.0 V, CE2 ≤ 0.2 V		0.5	20 Note1		0.5	7 Note2	
Chip deselection to data retention mode	tcdr		0			0			ns
Operation recovery time	t⊓		5			5			ms

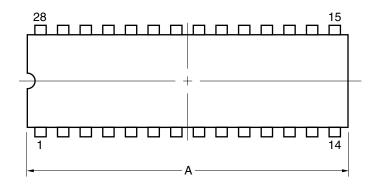

Notes 1. $3 \mu A (T_A \le 40 \, ^{\circ}C)$

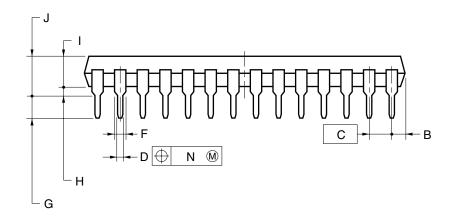
2. $2 \mu A (T_A \le 40 \, ^{\circ}C)$, $1 \mu A (T_A \le 25 \, ^{\circ}C)$

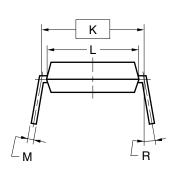

Data Retention Timing Chart

(1) /CE1 Controlled

Remark On the data retention mode by controlling /CE1, the input level of CE2 must be CE2 \geq Vcc - 0.2 V or CE2 \leq 0.2 V. The other pins (Address, I/O, /WE) can be in high impedance state.

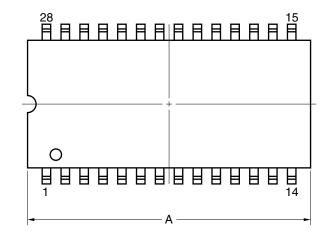

(2) CE2 Controlled




Remark On the data retention mode by controlling CE2, the other pins (/CE1, Address, I/O, /WE) can be in high impedance state.

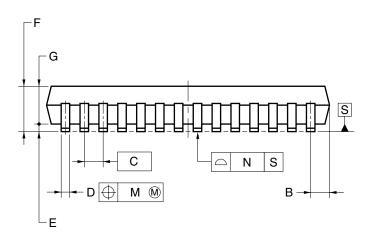
Package Drawings

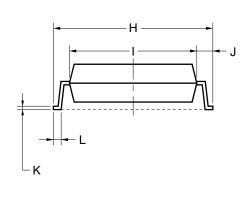
28-PIN PLASTIC DIP (15.24 mm (600))



NOTES

- 1. Each lead centerline is located within 0.25 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS
Α	38.10 MAX.
В	2.54 MAX.
С	2.54 (T.P.)
D	0.50±0.10
F	1.2 MIN.
G	3.6±0.3
Н	0.51 MIN.
I	4.31 MAX.
J	5.72 MAX.
K	15.24 (T.P.)
L	13.2
М	$0.25^{+0.10}_{-0.05}$
N	0.25
R	0~15°
F	P28C-100-600A1-2


28-PIN PLASTIC SOP (11.43 mm (450))

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	$18.0^{+0.6}_{-0.05}$
В	1.27 MAX.
С	1.27 (T.P.)
D	$0.42^{+0.08}_{-0.07}$
E	0.2±0.1
F	2.95 MAX.
G	2.55±0.1
Н	11.8±0.3
- 1	8.4±0.1
J	1.7±0.2
K	0.22±0.05
L	0.7±0.2
М	0.12
N	0.10
Р	3°+7° -3°

P28GU-50-450A-4

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD43257B.

Types of Surface Mount Device

μPD43257BGU-xxLL : 28-pin PLASTIC SOP (11.43 mm (450)) μPD43257BGU-xxLL : 28-pin PLASTIC SOP (11.43 mm (450)) μPD43257BGU-xxL-A : 28-pin PLASTIC SOP (11.43 mm (450)) μPD43257BGU-xxLL-A : 28-pin PLASTIC SOP (11.43 mm (450))

Types of Through Hole Mount Device

 μ PD43257BCZ-xxLL : 28-pin PLASTIC DIP (15.24 mm (600)) μ PD43257BCZ-xxLL : 28-pin PLASTIC DIP (15.24 mm (600))

Soldering process	Soldering conditions	
Wave soldering (only to leads)	Solder temperature : 260 °C or below,	
	Flow time: 10 seconds or below	
Partial heating method	Terminal temperature : 300 °C or below,	
	Time : 3 seconds or below (Per one lead)	

Caution Do not jet molten solder on the surface of package.

Revision History

Edition/	Page		Type of	Location	Description
Date	This	Previous	revision		(Previous edition $ ightarrow$ This edition)
	edition	edition			
9th edition/	p.1	p.1	Deletion	-	Description of Version X has been deleted.
Jun. 2006					

[MEMO]

[MEMO]

NEC

Data Sheet M10693EJ9V0DS

[MEMO]

NOTES FOR CMOS DEVICES —

1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

② HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4 STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of June, 2006. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
 data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
 products and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).