

DS2001/DS9665/DS2002/DS9666 DS2003/DS9667/DS2004/DS9668 High Current/Voltage Darlington Drivers

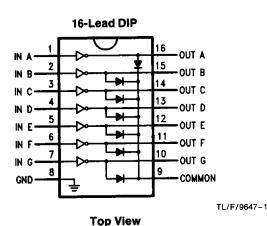
General Description

The DS2001/DS9665/DS2002/DS9666/DS2003/DS9667 DS2004/DS9668 are comprised of seven high voltage, high current NPN Darlington transistor pairs. All units feature common emitter, open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads and appropriate emitter base resistors for leakage.

The DS2001/DS9665 is a general purpose array which may be used with DTL, TTL, PMOS, CMOS, etc. Input current limiting is done by connecting an appropriate discrete resistor to each input.

The DS2002/DS9666 version does away with the need for any external discrete resistors, since each unit has a resistor and a Zener diode in series with the input. The DS2002/DS9666 was specifically designed for direct interface from PMOS logic (operating at supply voltages from 14V to 25V) to solenoids or relays.

The DS2003/DS9667 has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5.0V.


The DS2004/DS9668 has an appropriate input resistor to allow direct operation from CMOS or PMOS outputs operating from supply voltages of 6.0V to 15V.

The DS2001/DS9665/DS2002/DS9666/DS2003/DS9667 DS2004/DS9668 offer solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling the outputs.

Features

- Seven high gain Darlington pairs
- High output voltage (V_{CE} = 50V)
- High output current (I_C = 350 mA)
- DTL, TTL, PMOS, CMOS compatible
- Suppression diodes for inductive loads
- Extended temperature range

Connection Diagram

Order Numbers

	J Package Number J16A	N Package Number N16E	M Package Number M16A
DS2001 DS9665	DS2001MJ DS2001TJ DS2001CJ DS9665MJ DS9665TJ DS9665CJ	DS2001TN DS2001CN DS9665TN DS9665CN	DS2001TM DS2001CM
DS2002 DS9666	DS2002MJ DS2002TJ DS2002CJ DS9666MJ DS9666TJ DS9666CJ	DS2002TN DS2002CN DS9666TN DS9666CN	DS2002TM DS2002CM
DS2003 DS9667	DS2003MJ DS2003TJ DS2003CJ DS9667MJ DS9667TJ DS9667CJ	DS2003TN DS2003CN DS9667TN DS9667CN	DS2003TM DS2003CM
DS2004 DS9668	DS2004MJ DS2004TJ DS2004CJ DS9668MJ DS9668TJ DS9668CJ	DS2004TN DS2004CN DS9668TN DS9668CN	DS2004TM DS2004CM

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range

Ceramic DIP -65°C to +175°C Molded DIP -65°C to +150°C

Operating Temperature Range DS2001M/DS9665M -55°C to +125°C DS2002M/DS9666M -55°C to +125°C DS2003M/DS9667M -55°C to +125°C DS2004M/DS9668M -55°C to +125°C DS2001T/DS9665T -40°C to +105°C -40°C to +105°C DS2002T/DS9666T -40°C to +105°C DS2003T/DS9667T -40°C to +105°C DS2004T/DS9668T

DS2001C/DS9665C 0°C to +85°C D\$2002C/D\$9666C 0°C to +85°C DS2003C/DS9667C 0°C to +85°C DS2004C/DS9668C 0°C to +85°C

Lead Temperature

Ceramic DIP (Soldering, 60 seconds) 300°C Molded DIP (Soldering, 10 seconds) 265°C

Maximum Power Dissipation* at 25°C

2016 mW Cavity Package 1838 mW Molded Package 926 mW S.O. Package

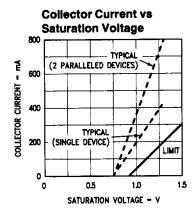
*Derate cavity package 16.13 mW/°C above 25°C; derate molded DIP pack-

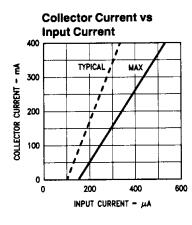
age 14.7 mW/°C above 25°C. Derate S.O. package 7.4 mW/°C. Input Voltage 30V **Output Voltage** 55V **Emitter-Base Voltage** 6.0V 500 mA Continuous Collector Current 25 mA Continuous Base Current

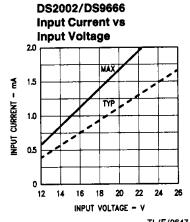
Electrical Characteristics T_A = 25°C, unless otherwise specified (Note 2)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
ICEX	Output Leakage Current	T _A = 85°C for Commercial V _{CE} = 50V <i>(Figure 1a)</i>				100	100 μΑ
		V _{CE} = 50V, V _I = 6.0V <i>(Figure 1b)</i>	DS2002/DS9666			500	٠, سم
		V _{CE} = 50V, V _I = 1.0V <i>(Figure 1b)</i>	DS2004/DS9668			500	
V _{CE(Sat)}	Collector-Emitter	I _C = 350 mA, I _B = 500 μA <i>(Figure 2)</i> (Note 3)			1.25	1.6	٧
	Saturation Voltage	$I_C = 200 \text{ mA}, I_B = 350 \mu A \text{ (Figure 2)}$			1.1	1.3	
		I _C = 100 mA, I _B = 250 μA <i>(Figure 2)</i>			0.9	1.1	
I _{I(ON)}	Input Current	V _I = 17V <i>(Figure 3)</i>	DS2002/DS9666		0.85	1.3	mA
		V _I = 3.85V <i>(Figure 3)</i>	DS2003/DS9667		0.93	1.35	
		V _I = 5.0V <i>(Figure 3)</i>	DS2004/DS9668		0.35	0.5	
		V _I = 12V <i>(Figure 3)</i>			1.0	1.45	
I _{I(OFF)}	Input Current (Note 4)	$T_A = 85^{\circ}\text{C}$ for Commercial $I_C = 500 \ \mu\text{A}$ (Figure 4)		50	100		μΑ
V _I (ON)	Input Voltage (Note 5)	$V_{CE} = 2.0V, I_{C} = 300 \text{ mA (Figure 5)}$	DS2002/DS9666			13	V
		$V_{CE} = 2.0V, I_{C} = 200 \text{ mA } (Figure 5)$	DS2003/DS9667			2.4	
		$V_{CE} = 2.0V, I_{C} = 250 \text{ mA } (Figure 5)$				2.7	
		$V_{CE} = 2.0V, I_{C} = 300 \text{ mA } (Figure 5)$				3.0	
		$V_{CE} = 2.0V, I_{C} = 125 \text{ mA } (Figure 5)$	DS2004/DS9668			5.0	
		$V_{CE} = 2.0V$, $I_{C} = 200$ mA (Figure 5)				6.0	
		$V_{CE} = 2.0V, I_{C} = 275 \text{ mA } (Figure 5)$				7.0	
		$V_{CE} = 2.0V, I_{C} = 350 \text{ mA } (Figure 5)$				8.0	
h _{FE}	DC Forward Current Transfer Ratio	$V_{CE} = 2.0V, I_{C} = 350 \text{ mA (Figure 2)}$	DS2001/DS9665	1000			
Cı	Input Capacitance				15	30	рF
t _{PLH}	Turn-On Delay	0.5 V _I to 0.5 V _O				1.0	μs
t _{PHL}	Turn-Off Delay	0.5 V _I to 0.5 V _O				1.0	μs
I _R	Clamp Diode Leakage Current	V _R = 50V (Figure 6)	T _A = 25°C T _A = 85°C			50 100	μA μA
V _F	Clamp Diode Forward Voltage	I _F = 350 mA <i>(Figure 7)</i>			1.7	2.0	٧

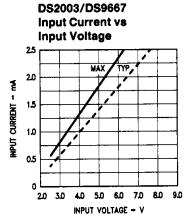
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

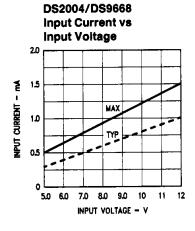

Note 2: All limits apply to the complete Darlington series except as specified for a single device type.

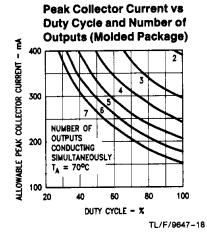

Note 3: Under normal operating conditions these units will sustain 350 mA per output with VCE (Sat) = 1.6V at 70°C with a pulse width of 20 ms and a duty cycle of 30%.

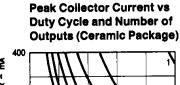

Note 4: The I_{I(OFF)} current limit guaranteed against partial turn-on of the output.

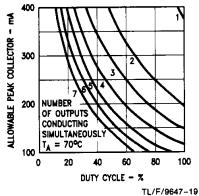
Note 5: The VI(ON) voltage limit guarantees a minimum output sink current per the specified test conditions.

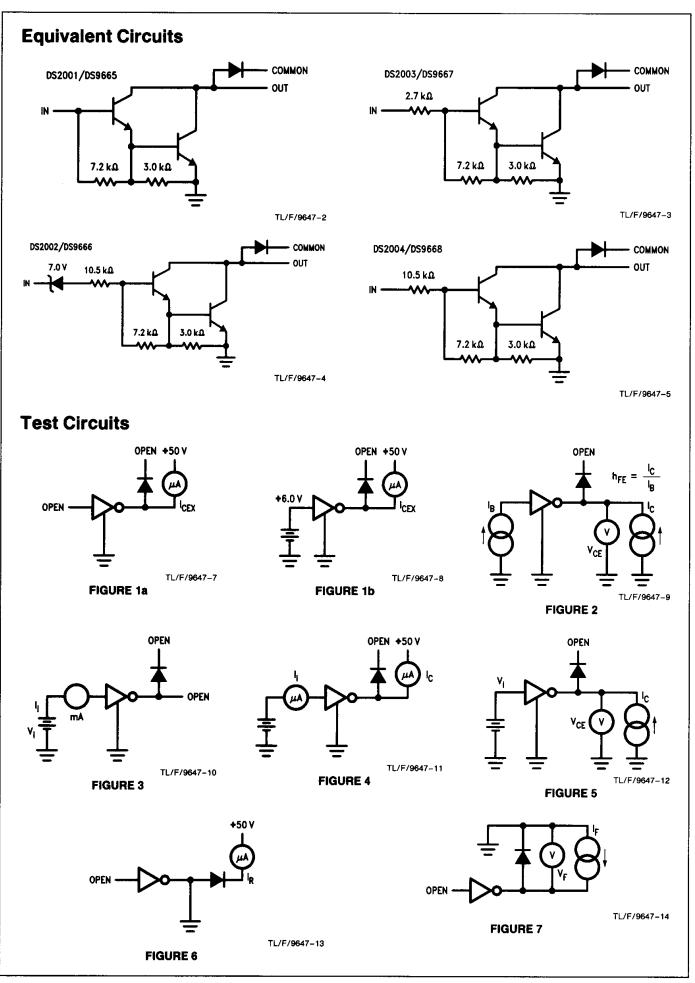

Typical Performance Characteristics

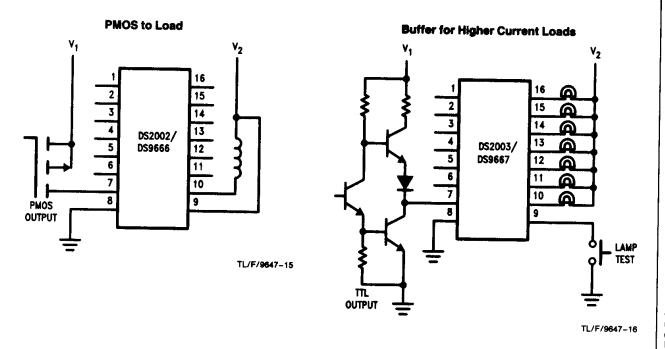


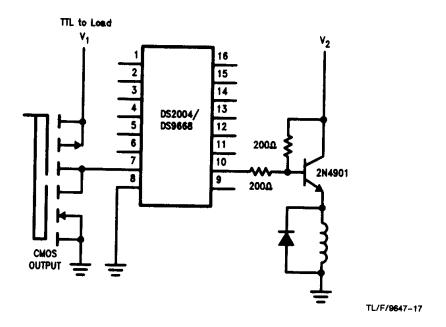





TL/F/9647-6







Typical Applications

