

IP1543 SERIES

IP1544 SERIES

POWER SUPPLY SUPERVISORY CIRCUITS

FEATURES

- 4.5 to 40V operation over full temperature range
- Reference voltage trimmed to 1% accuracy
- Includes over-voltage, under-voltage and current sensing
- Programmable time delays
- SCR "Crowbar" drive of 300mA
- Remote activation capability
- Optional over–voltage latch capability
- Uncommitted comparator inputs for low voltage sensing (IP1544 series only)

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

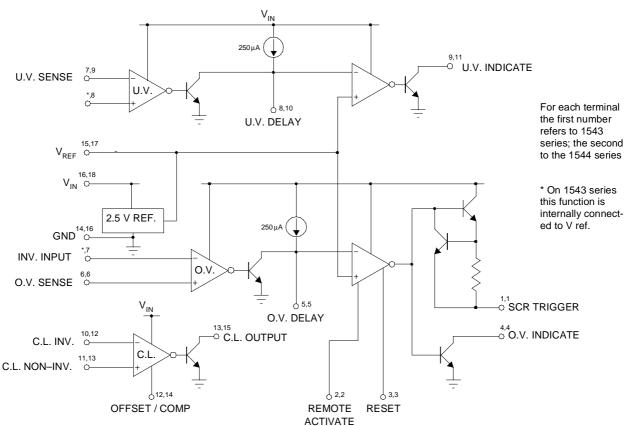
+V _{IN}	Input Supply Voltage	Input Supply Voltage				
	Sense Inputs		V_{IN}			
	SCR Trigger Current		Internally Limited			
	Indicator Output Voltage		+40V			
	Indicator Output Sink Cur	rrent	50mA			
P_{D}	Power Dissipation	T _A = 25°C	1W			
_		Derate @ T _A > 50°C	10mW/°C			
P_{D}	Power Dissipation	T _C = 25°C	2W			
		Derate @ T _C > 25°C	16mW/°C			
T_J	Operating Junction Temp	erature	See Ordering Information			
T_{STG}	Storage Temperature Ra	Storage Temperature Range				
T_L	Lead Temperature	(soldering, 10 seconds)	+300°C			

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. E-mail: sales@semelab.co.uk

Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk



DESCRIPTION

The IP1543 and IP3543 power supply supervisory circuits contain all the functions necessary to monitor and control the output of a sophisticated power supply system. Included on the chip are over-voltage (O.V.) sensing with externally programmable delay used to trigger an external SCR "Crowbar", under-voltage (U.V.) sensing with externally programmable delay used to sense either the power supply output or the line input voltage, a third op-amp/comparator with provision for external compensation and/or offset programming used for either current limiting or as an additional voltage monitor, and a voltage reference trimmed to ±1%.

The IP1544 and IP3544 circuits contain all of the features of the IP1543 series and have the added flexibilty of the completely uncommitted inputs to the O.V. and U.V. sensing comparators so that voltages less than 2.5V may be monitored by dividing down the reference voltage

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS

$\overline{V_{IN}}$	Input Supply Voltage	+4.5 to +40V			
	Input Voltage Range			0 to V _{IN} – 3	
	Reference Load Current			0 to 10mA	
	Indicate Output Current			0 to 10mA	
	Operating Ambient Temperature Range	IP1543	IP1544	−55 to +125°C	
		IP3543	IP3544	0 to +70°C	

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 3694

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1

ELECTRICAL CHARACTERISTICS $(T_J = Over Operating Temperature Range unless otherwise stated)$

	IP1543 / IP1544			1544	544 IP3543 / IP3544					
Parameter	Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Units	
Input Voltage Range			4.5		40	4.5		40	V	
Supply Current	V _{IN} = 40V			7	10		7	10	mA	
	REFERENCE SE	CTION	•							
Outrout Valtage	T _J = 25°C		2.48	2.5	2.52	2.45	2.5	2.55	V	
Output Voltage			2.45		2.55	2.4		2.6		
Line Regulation	$V_{IN} = 4.5 \text{ to } 30V$			1	5		1	5	\/	
Load Regulation	I _{REF} = 0 to 10mA			1	10		1	10	mV	
Short Circuit Current	$V_{REF} = 0$		12	25	40	12	25	40	mA	
Temperature Stability	Over Operating Ra	nge		50			50		ppm/°C	
	SCR TRIGGER S	ECTION							·L	
Deal Oriento and	V _{IN} = 5V	R _G = 0	400	200	0 400	100	200	400	mA	
Peak Output Current	V _O = 0		100							
Peak Output Voltage	V _{IN} = 15V	I _O = 100mA	12	13		12	13			
Output Off Voltage	V _{IN} = 40V			0	0.1		0	0.1	V	
Remote Activate Current	Pin 2 = Gnd			-0.1	-0.8		-0.1	-0.8	mA	
Remote Activate Voltage	Pin 2 = Open			1.5	6		1.5	6	V	
Reset Current	Pin 3 = Gnd	Pin 2 = Gnd		-0.1	-0.8		-0.1	-0.8	mA	
Reset Voltage	Pin 3 = Open	Pin 2 = Gnd		1.5	6		1.5	6	V	
Output Current Rise Time	$R_L = 50\Omega$	T _J = 25°C		400			400		mA/μs	
December (complete)	$C_D = 0$			000			200			
Prop. Delay from Pin 2	$V_{PIN2} = 0.4V$	$T_J = 25^{\circ}C$		300			300		ns	
Prop. Delay from Pin 6	V _{PIN6} = 2.7V	T _J = 25°C		500			500		ns	
	COMPARATOR S	SECTIONS							·	
Input Threshold (Input Voltage	T _J = 25°C		2.45	2.5	2.55	2.4	2.5	2.6	.,	
Rising on Pin 6, Falling on Pin 7)			2.4		2.6	2.35		2.65	V	
Input Hysteresis	T _J = 25°C			25			25		mV	
Input Bias Current	Sense Input = 0V			-0.3	-1		-0.3	-1	μΑ	
Delay Saturation				0.2	0.5		0.2	0.5	<u> </u>	
Delay High Level				6	8		6	8	V	
Delay Charging Current	V _D = 0		200	250	300	200	250	300	μА	

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

$\textbf{ELECTRICAL CHARACTERISTICS} \quad (\textbf{T}_{J} = \textbf{Over Operating Temperature Range unless otherwise stated})$

			IP1543 / IP1544			IP3543 / IP3544				
Parameter	Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Units	
	COMPARATOR SE	CTIONS (cont.)								
Indicate Saturation	I _L = -10mA			0.2	0.5		0.2	0.5	V	
Indicate Leakage	V _{IND} = 40V			0.01	1		0.01	1	μΑ	
	V _{PIN6} = 2.7V	V _{PIN7} = 2.3V		400		400				
Dropogotion Dioploy	$C_D = 0$	$T_J = 25^{\circ}C$					400		ns	
Propagation Display	V _{PIN6} = 2.7V	V _{PIN7} = 2.3V	10	10			10		ms	
	$C_D = 1\mu F$	$T_J = 25^{\circ}C$		10						
	CURRENT LIMIT S	SECTION			•			•		
Input Voltage Range			0		V _{IN} – 3	0		V _{IN} – 3	V	
Input Bias Current	Pin 12 = Open	V _{CM} = 0		-0.3	-1		-0.3	-1	μΑ	
Input Offset Voltage	Pin 12 = Open	V _{CM} = 0		0	10		0	15	mV	
Imput Offset voltage	10kΩ from Pin 12 to	Gnd	70	100	130	70	100	130	1 1111	
CMRR	V _{CM} = 0 to 12V	V _{IN} = 15V	60	70		60	70		4D	
AVOL	Pin 12 = Open	V _{CM} = 0	72	80		72	80		dB	
Output Saturation	$I_L = -10 \text{mA}$			0.2	0.5		0.2	0.5	V	
Output Leakage	V _{IND} = 40V			0.01	1		0.01	1	μΑ	
Small Signal Bandwidth	$A_V = 0dB$	T _J = 25°C		5			5		MHz	
Propagation Delay	V _{overdrive} = 100mV	T _J = 25°C		200			200		ns	

NOTES

1. Test Conditions unless otherwise stated:

 $V_{IN} = 10V$

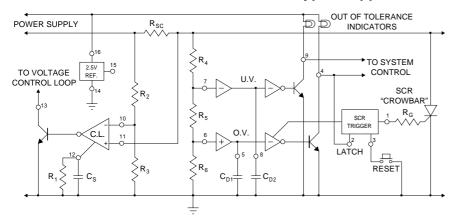
 $T_J = -55 \text{ to } +125^{\circ}\text{C}$ for IP1543 / IP1544 $T_J = 0 \text{ to } +70^{\circ}\text{C}$ for IP3543 / IP354

Order Information

Part	J-Pack	N-Pack	D-16	Temp.
Number	16 Pin	16 Pin	16 Pin	Range
IP1543	V			-55 to +125°C
IP3543	V	~	~	0 to 70°C
IP1544	V			-55 to +125°C
IP3544	V	>	✓	0 to +70°C

Note:

To order, add the package identifier to the part number.


eg. IP1543J IP3543D-16

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

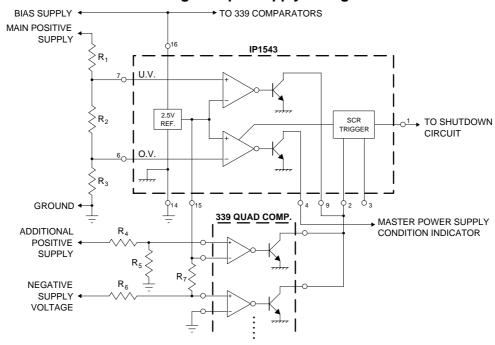
APPLICATIONS INFORMATION

Typical Application

Current Limit
$$V_{TH} \approx \frac{1000}{R_{\star}}$$

 $C_{\mbox{\scriptsize s}}$ is determined by the current loop dynamics.

Peak Current to load
$$I_P \cong \frac{V_{TH}}{R_{SC}} + \frac{V_O}{R_{SC}} \left(\frac{R_2}{R_2 + R_3}\right)$$

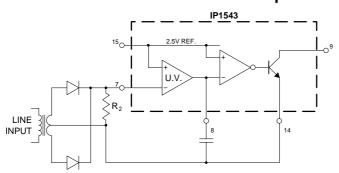

Low Output Voltage Limit
$$V_{O(low)} = \frac{2.5 \; (R_4 + R_5 + R_6)}{R_5 + R_6}$$

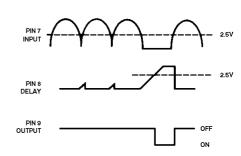
High Output Voltage Limit
$$V_{O(high)} = \frac{2.5 (R_4 + R_5 + R_6)}{R_6}$$

Voltage Sensing Delay $T_D = 10000 C_D$

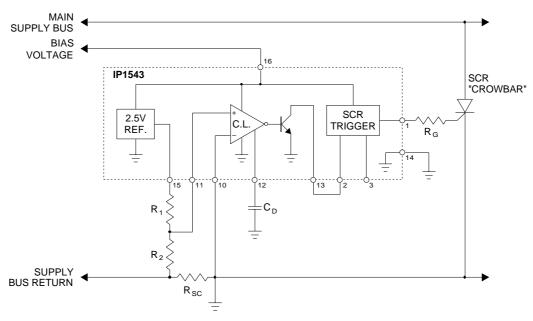
SCR trigger power limiting resistor $R_G > \frac{V_{IN}-5}{0.2}$

Sensing Multiple Supply Voltages


Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

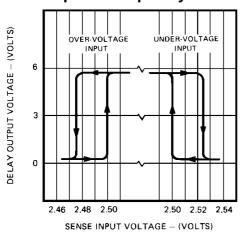

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Website: http://www.semelab.co.uk

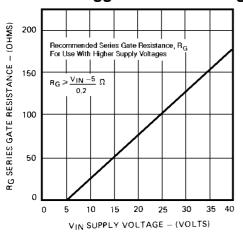


Input Line Monitor

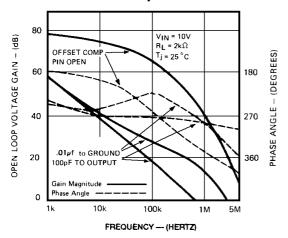
Overcurrent Shutdown

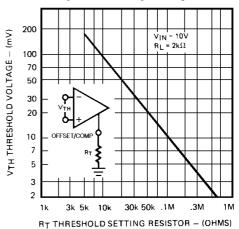

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

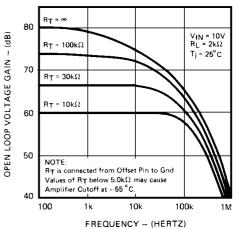
Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 3694
E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1

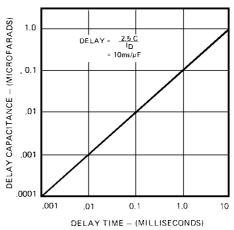


TYPICAL PERFORMANCE CHARACTERISTICS


Comparator Input Hysteresis


SCR Trigger Power Limiting


Current Limit Amplifier Frequency Response


Comparator Input Hysteresis

Current Limit Amplifier Gain

Activation Delay vs Capacitor Value

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. E-mail: sales@semelab.co.uk

Fax +44(0)1455 552612. Website: http://www.semelab.co.uk