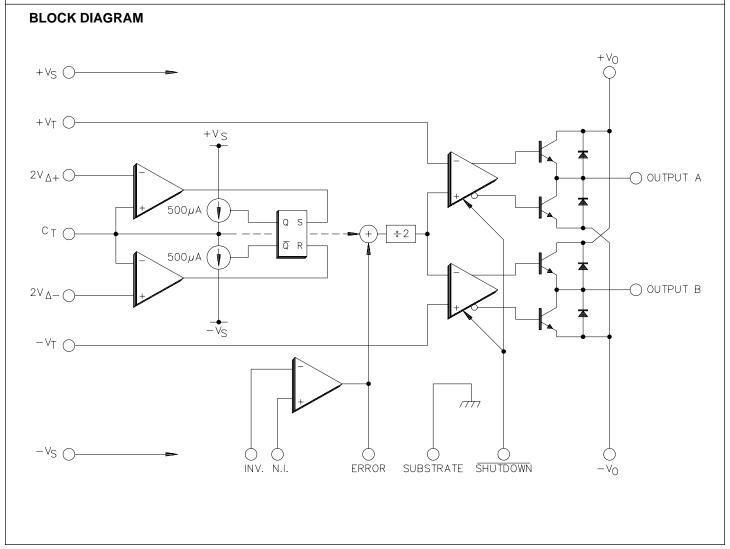


DC MOTOR PULSE WIDTH MODULATOR

DESCRIPTION

The SG1731 is a pulse width modulator circuit designed specifically for DC motor control. It provides a bi-directional pulse train output in response to the magnitude and polarity of an analog error signal input. The device is useful as the control element in motor-driven servo systems for precision positioning and speed control, as well as in audio modulators and amplifiers using carrier frequencies to 350 KHz.


The circuit contains a triangle waveform oscillator, a wideband operational amplifier for error voltage generation, a summing/scaling network for level-shifting the triangle waveform, externally programmable PWM comparators and dual ± 100 mA, ± 22 V totem pole drivers with commutation diodes for full bridge output. A SHUTDOWN terminal forces the drivers into a floating high-impedance state when driven LOW. Supply voltage to the control circuitry and to the output drivers may be from either dual positive and negative supplies, or single-ended.

FEATURES

- ±3.5V to ±15V control supply
- ±2.5V to ±22V driver supply
- Dual 100mA source/sink output drivers
- 5KHz to 350KHz oscillator range
- High slew rate error amplifier
- Adjustable deadband operation
- Digital SHUTDOWN input

HIGH RELIABILITY FEATURES - SG1731

- ♦ Available to MIL-STD-883
- ♦ LMI level "S" processing available

ABSOLUTE	MAXIMUM	RATINGS	(Note1)
----------	---------	---------	---------

Supply Voltage (±V _s) ±18	ЗV
Analog Inputs ±	Vs
Digital Inputs (SHUTDOWN)V _s -0.3V to -V _s +18	
Output Driver Supply Voltage (±V _o)±29	5V
Source/Sink Output Current (continuous) 200n	nΑ
Source/Sink Output Current (peak, 500ns) 400n	nΑ
Note 1 Values havend which damage may occur	

Output Driver Diode Current (peak, 500ns) 400mA Operating Junction Temperature Hermetic (J - Package) 150°C Plastic (N - Package) 150°C Storage Temperature Range-65°C to 150°C

Note 1. Values beyond which damage may occur.

Lead Temperature (Soldering, 10 Seconds) 300°C RoHS Peak Package Solder Reflow Temp.(40 sec. max. exp.)..... 260°C (+0, -5)

THERMAL DATA

J Package:

Thermal Resistance-Junction to Case, θ_{JC} 30°C/W Thermal Resistance-Junction to Ambient, θ_{JA} 80°C/W Thermal Resistance-Junction to Case, θ_{JC} 40°C/W

Thermal Resistance-Junction to Ambient, θ_{IA} 65°C/W

Note A. Junction Temperature Calculation: $T_{J} = T_{A} + (P_{D} \times \theta_{JA})$. Note B. The above numbers for θ_{JC} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The $\theta_{\mbox{\tiny JA}}$ numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Supply Voltage Range (±V _s)	±3.5V to ±15V
Error Amp Common-Mode Range	$V_{s} + 3V \text{ to } V_{s} - 3V$
Output Driver Supply Voltage Range	±2.5V to ±22V
Source/Sink Output Current (continuous) .	100mA
Source/Sink Output Current (peak, 500ns)	200mA
Output Driver Diode Current (continuous) .	100mA
Output Driver Diode Current (peak, 500ns)	200mA

Oscillator Frequency Range 10Hz to 350KHz Oscillator Voltage (Peak-to-Peak)1V to 10V Oscillator Timing Capacitor ($C_{\scriptscriptstyle T}$) 200pF to 2.5 μ F Operating Ambient Temperature Range SG1731-55°C to 125°C SG2731--25°C to 85°C SG3731 0°C to 70°C

Note 2. Range over which the device is functional and parameter limits are guaranteed.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1731 with -55°C ≤ T₄ ≤ 125°C, SG2731 with $-25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$, SG3731 with $0^{\circ}\text{C} \le \text{T}_{\text{A}} \le 70^{\circ}\text{C}$, $\text{V}_{\text{S}} = \pm 15\text{V}$, and $\text{V}_{\text{O}} = \pm 22\text{V}$. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Parameter	Test Conditions	SG17	SG1731/2731/3731		Units
i arameter	rest conditions	Min.	Тур.	Max.	Oilits
Oscillator Section		I			
C _⊤ Charging Current	T _A = 25°C	450	500	550	μΑ
	$T_A = T_{MIN}$ to T_{MAX}	400		600	μΑ
2V∆± Input Bias Current	$V_{CM} = \pm 5V$			-20	μΑ
Initial Oscillator Frequency	$C_{T} = 1000 \text{pF}, 2V\Delta \pm = \pm 5V, T_{A} = 25 ^{\circ}\text{C}$	22.5	25.0	27.5	KHz
Temperature Stability (Note 3)	$C_{T} = 1000 pF, 2V\Delta \pm = \pm 5V$			10	%
Error Amplifier Section (Note 5)					
Input Offset Voltage				10	m∀
Input Bias Current				3	μΑ
Input Offset Current				600	nA
Open Loop Voltage Gain	$R_1 = 2K\Omega$	70			dB
Output Voltage Swing	$R_{i} = 2K\Omega$	±10			V
Common-Mode Rejection Ratio		70			dB
Slew Rate (Notes 3 and 4)	$T_{\Delta} = 25^{\circ}C$	5	10		V/μs
Unity Gain Bandwidth (Notes 3 and 4)	$T_A = 25^{\circ}C$	0.7	1		MHz
PWM Comparators	I	I	l		
Input Bias Current	$\pm V_{T} = \pm 3V$			6	μΑ

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	SG1731/273 Min. ∣ Typ.	1/3731 Max.	Units
SHUTDOWN Section	I			<u> </u>
Logic Threshold SHUTDOWN HIGH Current SHUTDOWN LOW Current	$-V_{S} = -3.5V \text{ to } -15V$ $V_{SHUTDOWN} = -V_{S} + 2.4V$ $V_{SHUTDOWN} = -V_{S}$	V _s +0.8	V _s +2.0 400 -1.0	V μA mA
Output Drivers (Each Output)	G.IO.BOILL			
HIGH Output Voltage	I _{SOURCE} = 20mA	19.2		V
LOW Output Voltage	I _{SOURCE} = 100mA I _{SOURCE} = 20mA	19.0	-19.2 -19.0	V V
Driver Risetime	$I_{SINK}^{SINK} = 100\text{mA}$ $C_{i} = 1000\text{pF}$		300	ns
Driver Falltime	C ₁ = 1000pF		300	ns
Total Supply Current				<u> </u>
V _s Supply Current	$V_{\text{SHIITDOWN}} = -V_{\text{S}} + 0.8V$		14	mA
V _o Supply Current	$V_{\text{SHUTDOWN}} = -V_{\text{S}} + 0.8V$ $V_{\text{SHUTDOWN}} = -V_{\text{S}} + 0.8V$		6	mA

Note 3. These parameters, although guaranteed, are not tested in production.

Note 5. $V_{CM} = \pm 12V$.

Note 4. Unity Gain Inverting $10K\Omega$ Feedback Resistance.

APPLICATION INFORMATION

SUPPLY VOLTAGE

The SG1731 requires a supply voltage for the control circuitry (V_s) and for the power output drivers (V_o). Each supply may be either balanced positive and negative with respect to ground, or single-ended. The only restrictions are:

- 1. The voltage between +V $_{\rm S}$ and -V $_{\rm S}$ must be at least 7.0V; but no more than 44V.
- 2. The voltage between +V $_{\rm o}$ and -V $_{\rm o}$ must be at least 5.0V; but no more than 44V.
- 3.+V_o must be at least 5V more positive than -V_s. This eliminates the combination of a single-ended positive control supply with a single-ended negative driver supply.

SUBSTRATE CONNECTION

The substrate connection (Pin 10) must always be connected to either $-V_s$ or $-V_o$, whichever is more negative. The substrate must also be well bypassed to ground with a high quality capacitor.

OSCILLATOR

The triangle oscillator consists of two voltage comparators, a set/reset flip-flop, a bi-directional 500 μ A current source, and an external timing capacitor C_{τ} . A positive reference voltage (2V Δ +) applied to Pin 2 determines the positive peak value of the triangle, and a negative reference voltage (2V Δ -) at Pin 7 sets the negative peak value of the triangle waveform.

Since the value of the internal current source is fixed at a nominal $\pm 500 \mu A$, the oscillator period is a function of the selected peak-to-peak voltage excursion and the value of $C_{\scriptscriptstyle T}$. The theoretical expression for the oscillator period is:

$$T_{OSC} = \frac{2C_T dV}{5 \times 10^{-4}}$$
 (Eq.1)

where $\mathbf{C}_{\!_{\mathrm{T}}}$ is the timing capacitor in Farads and dV is $\mathbf{V}_{\!_{\mathrm{OSC}}}$ in Volts peak-to-peak.

As a design aid, the solutions to Equation 1 over the recommended range of $T_{\rm OSC}$ and $V_{\rm OSC}$ are given in graphic form in Figure 1. The lower limit on $T_{\rm OSC}$ is 1.85 μ s, corresponding to a maximum frequency of 350 KHz. The maximum value of $V_{\rm OSC}$, $(2V\Delta+)$ - $(2V\Delta-)$, is 10V peak-to-peak for linear waveforms.

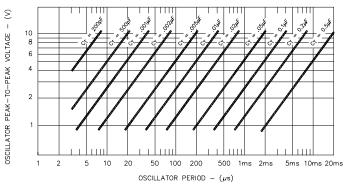


FIGURE 1 - SG1731 OSCILLATOR PERIOD VS. $V_{\rm osc}$ AND $C_{\rm T}$

ERROR AMPLIFIER

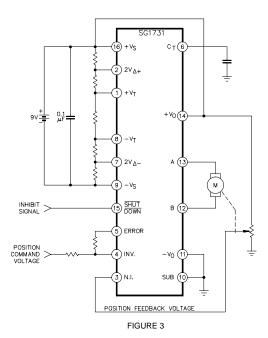
The error amplifier of the SG1731 is a conventional internally-compensated operational amplifier with low output impedance. All of the usual feedback and frequency compensation techniques may be use to control the closed-loop gain characteristics. The control supply voltage $\pm V_{\rm S}$ will determine the input common mode range and output voltage swing; both will extend to within 3V of the $V_{\rm S}$ supply.

PULSE WIDTH MODULATION

Pulse width modulation occurs by comparing the triangle waveform to a fixed upper (+ V_T) and lower (- V_T) threshold voltage. A crossing above the upper threshold causes Output A to switch to the HIGH state, and a crossing below

APPLICATION INFORMATION (continued)

the lower threshold causes Output B to switch to the HIGH state. If $\pm V_s$ is less than $\pm 8V$ then $\pm V_{\tau}$ can be obtained with resistors from $\pm V_s$. If $\pm V_s$ is greater than $\pm 8V$ use zeners.


Threshold crossings are generated by shifting the triangle waveform up and down with the error voltage (Pin 5). A positive error voltage will result in a pulse width modulated output at Driver A (Pin 13). Similarly, a negative error voltage produces a pulse train at Driver B (Pin 12). Figure 2 illustrates this process for the case where V_{Δ} + is greater than V_{τ} .

It is important to note that the triangle shifting circuit also attenuates the waveform seen at $C_{\scriptscriptstyle T}$ by a factor of 2. This results in a waveform at the PWM comparators with a positive peak of $V\Delta$ + and a negative peak of $V\Delta$ -, and must be taken into account when selecting the values for $+V_{\tau}$ and $-V_{\tau}$.

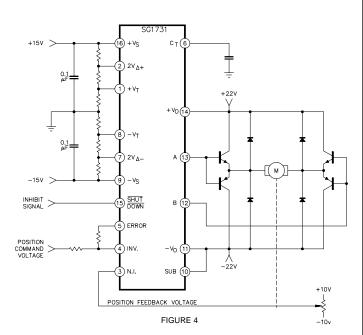
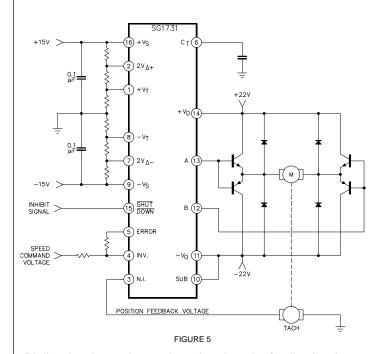
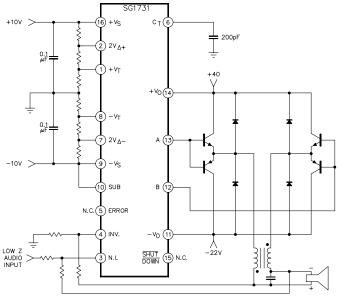


FIGURE 2 - PULSE WIDTH MODULATION WITH NO DEADBAND

APPLICATION CIRCUITS




In this simple battery-powered position servo, the control supply and driver supply are both single-ended positive with respect to ground.

A high torque position servo is obtained by buffering the output drivers to obtain higher output current.

APPLICATION CIRCUITS

Bi-directional speed control results when the feedback voltage transducer is a tachometer.

The two-quadrant transfer function of the SG1731 is ideal for pulse width modulated audio power amplifiers.

FIGURE 6

CONNECTION DIAGRAMS & ORDERING INFORMATION (See Note Below)

Package	Part No.	Ambient Temperature Range	Connection Diagram
16-PIN CERAMIC DIP J - PACKAGE	SG1731J/883B SG1731J SG2731J SG3731J	-55°C to 125°C -55°C to 125°C -25°C to 85°C 0°C to 65°C	+V _T 2V _{Δ+} 2 15 SHUTDOWN N. I. INPUT 3 14 +V _o INV. INPUT 4 13 OUTPUT A ERROR 5 12 OUTPUT B
16-PIN PLASTIC DIP N - PACKAGE	SG2731N SG3731N N Package: RoHS / Pb-free	-25°C to 85°C 0°C to 65°C - 100% Matte Tin Lead Finish	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note 1. All packages are viewed from the top.

Note 2. Contact factory for flatpack and leadless chip carrier availability.