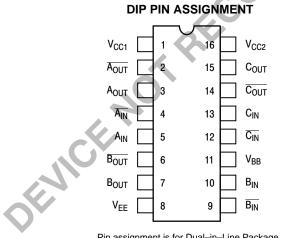

High Speed Triple Line Receiver

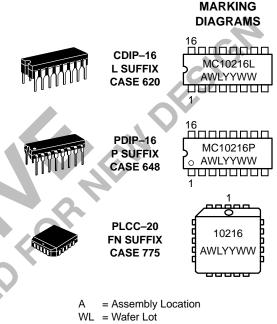
The MC10216 is a high speed triple differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (V_{BB}) is made available at pin 11 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.


Active current sources provide the MC10216 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (pin 11) to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function.

- $P_D = 100 \text{ mW typ/pkg}$ (No Load)
- $t_{pd} = 1.8$ ns typ (Single ended)
- = 1.5 ns typ (Differential)
- $t_r, t_f = 1.5 \text{ ns typ} (20\% 80\%)$

 $^*V_{BB}$ to be used to supply bias to the MC10216 only and bypassed (when used) with 0.01 μF to 0.1 μF capacitor. When the input pin with bubble goes positive, it's respective output pin with bubble goes positive.



Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ON Semiconductor

http://onsemi.com

YY = Year

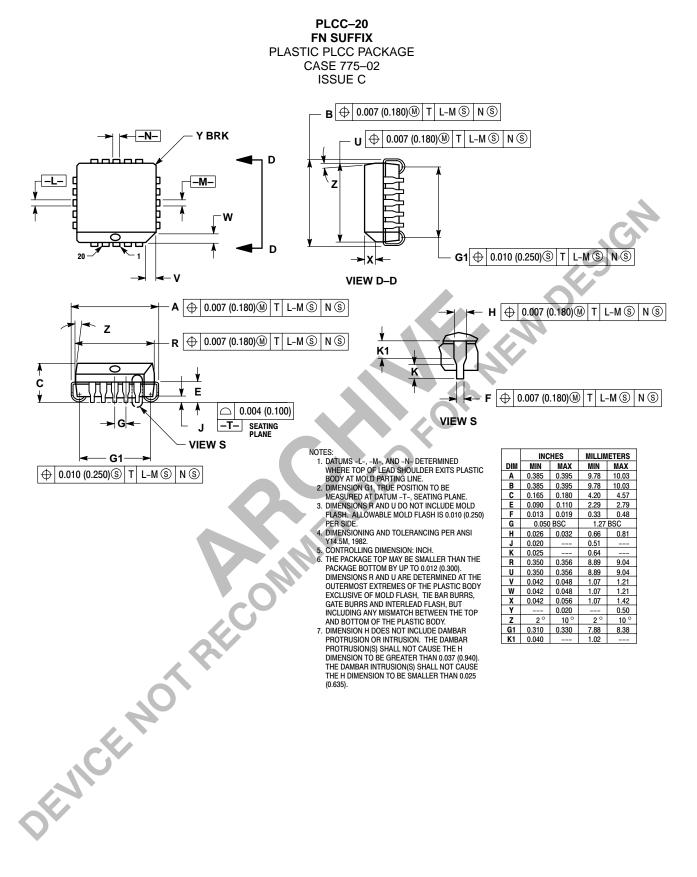
WW = Work Week

ORDERING INFORMATION

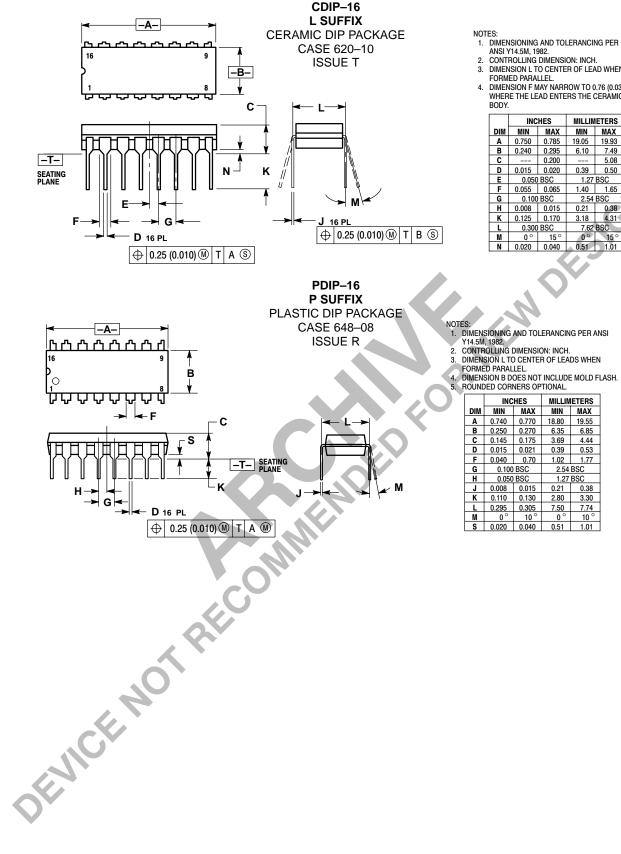
Device	Package	Shipping
MC10216L	CDIP-16	25 Units / Rail
MC10216P	PDIP-16	25 Units / Rail
MC10216FN	PLCC-20	46 Units / Rail

ELECTRICAL CHARACTERISTICS

Characteristic Symbol Test Max Min Typ Max Min Max I Power Supply Drain Current IE 8 27 1 2 2 2 2 1 <th></th> <th></th> <th></th> <th>Pin</th> <th colspan="3">Test Limits −30°C +25°C</th> <th></th> <th></th> <th>-</th>				Pin	Test Limits −30°C +25°C					-		
Power Supply Drain Current IE 8 27 20 25 27 n Input Current Input Current Input Current Input Current Input Current 115 115 115 115 115 115 115 115 10 <t< th=""><th>0</th><th></th><th>Course la set</th><th>Under</th><th></th><th>1</th><th>Min</th><th>1</th><th>Marr</th><th></th><th></th><th>┨.</th></t<>	0		Course la set	Under		1	Min	1	Marr			┨.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-		Min		wiin			wiin		-
$ \frac{1}{100} \frac{1}{100} \frac{1}{9} \frac{1}{1.5} \frac{1}{1.5} \frac{1}{1.0} \frac{1}{$		Drain Current						20				-
Output Voltage Logic 1 V _{OH} 2 -1.060 -0.890 -0.960 -0.810 -0.810 -0.890 -0.700 2 Output Voltage Logic 0 V _{OL} 2 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 -0.810 -0.810 -0.890 -0.700 2 Output Voltage Logic 0 V _{OL} 2 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 -1.615 -1.650 -1.825 -1.615 -1.650 -1.825 -1.615 -1.650 -1.825 -1.615 -1.650 -1.825 -1.615 -1.650 -1.825 -1.615 -1.650 -1.825 -1.615 -1.655 -1.650 -1.630 -0.910 <	Input Current											μ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			I _{CBO}									μ
Threshold Voltage Logic 1 V _{OHA} 2 -1.680 -1.675 -1.850 -1.650 -1.825 -1.615 Threshold Voltage Logic 0 V _{OHA} 2 -1.080 -0.980 -0.980 -0.910 -	Output Voltage	Logic 1	V _{OH}									`
And Control 3 -1.080 -0.980 -0.910 -0.910 Threshold Voltage Logic 0 V _{OLA} 2 -1.655 -1.655 -1.630 -1.530 -1.595 -1.595 -1.630 -1.595 -1.595 -1.655 -1.655 -1.630 -1.230 -1.295 -1.595 -1.595 -1.595 -1.595 -1.595 -1.500 -1.230 -1.295 -1.150 9 Switching Times (50Ω Load) F 10 2.6 1.0 1.8* 2.5 1.0 2.8 -1.433 1.0 2.6 1.0 1.8* 2.5 1.0 2.8 -1.434 2.8 1.0 2.8 1	Output Voltage	Logic 0	V _{OL}									
Reference VoltageVBB11-1.420-1.655-1.630-1.630-1.595Switching Times (50Ω Load) V_{BB} 11-1.420-1.280-1.350-1.230-1.295-1.150 V_{BB} Propagation Delay t_{4+2+} 21.02.61.01.8*2.51.02.8 t_{4+3-} 31.02.61.01.8*2.51.02.8 t_{4+3-} 31.02.61.01.8*2.51.02.8Rise Time(20 to 80%) t_{2+} 21.02.61.01.52.51.02.8Fall Time(20 to 80%) t_{2-} 21.02.61.01.52.51.02.8belay is 1.5ns when inputs are driven differentially. Delay is 1.8ns when inputs are driven single ended.2.61.01.52.51.02.8	Threshold Volta	age Logic 1	V _{OHA}								C	
Switching Times (50Ω Load) Propagation Delay t_{4+2+} t_{4-2-} t_{4+3-} t_{4+3+} 21.02.61.01.8* t_{8+3-} 2.51.02.8 t_{8+3-} Rise Time Fall Time(20 to 80%) t_{2+} t_{3-} 21.02.61.01.8* t_{8+3-} 2.51.02.8 t_{8+3-} Fall Time Delay is 1.5ns when inputs are driven differentially. Delay is 1.8ns when inputs are driven single ended.2.61.01.52.51.02.8 $t_{8+3-3-3}$	Threshold Volta	age Logic 0	V _{OLA}									`
Switching Times (50 Ω Load) Propagation Delayt_{4+2+} t_{4-2-} t_{4+3-} t_{4-3+}21.02.61.01.8* t.62.51.02.8Rise Time Fall Time(20 to 80%)t_2+ t_3+21.02.61.01.8* t.62.51.02.8Fall Time Delay is 1.5ns when inputs are driven differentially. Delay is 1.8ns when inputs are driven single ended.1.02.61.01.52.51.02.8	Reference Volta	age	V _{BB}	11	-1.420	-1.280	-1.350		-1.230	-1.295	-1.150	١
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Switching Time	s (50Ω Load)									-	
t ₃₊ 3 1.0 2.6 1.0 1.5 2.5 1.0 2.8 Fall Time (20 to 80%) t ₂₋ 2 1.0 2.6 1.0 1.5 2.5 1.0 2.8 Fall Time (20 to 80%) t ₂₋ 2 1.0 2.6 1.0 1.5 2.5 1.0 2.8	Propagation De	elay	t ₄₋₂₋ t ₄₊₃₋	2 3	1.0 1.0	2.6 2.6	1.0 1.0	1.8* 1.8*	2.5 2.5	1.0 1.0	2.8 2.8	
t ₃₋ 3 1.0 2.6 1.0 1.5 2.5 1.0 2.8 * Delay is 1.5ns when inputs are driven differentially. Delay is 1.8ns when inputs are driven single ended.	Rise Time	(20 to 80%)						1.5 1.5				
* Delay is 1.5ns when inputs are driven differentially. Delay is 1.8ns when inputs are driven single ended.	Fall Time	(20 to 80%)		2	10	26	10	1 5				
		EN	R									


ELECTRICAL CHARACTERISTICS (continued)

		TEST VOLTAGE VALUES (Volts)								
	(@ Test Tem	perature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{BB}	V _{EE}	
-30°C				-0.890	-1.890	-1.205	-1.500	From	-5.2	
			+25°C	-0.810	-1.850	-1.105	-1.475	Pin	-5.2	
			+85°C	-0.700	-1.825	-1.035	-1.440	11	-5.2	
			Pin	TES		GE APPLIED	TO PINS L	ISTED BEL	ow	<i></i>
Characteri	istic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{BB}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain (Current	ΙE	8	4, 9, 12				5, 10, 13	8	1, 16
Input Current		I _{inH}	4	4	9, 12			5, 10, 13	8	1, 16
		I _{CBO}	4 9		9, 12 4, 12			5, 10, 13 5, 10, 13	8, 4 8, 9	1, 16
Output Voltage	Logic 1	V _{OH}	2 3	4 9, 12	9, 12 4			5, 10, 13 5, 10, 13	8 8	1, 16 1, 16
Output Voltage	Logic 0	V _{OL}	2 3	9, 12 4	4 9, 12			5, 10, 13 5, 10, 13	8 8	1, 16 1, 16
Threshold Voltage	Logic 1	V _{OHA}	2 3	9, 12	9, 12	4	4	5, 10, 13 5, 10, 13	8 8	1, 16 1, 16
Threshold Voltage	Logic 0	V _{OLA}	2 3	9, 12	9, 12	4	4	5, 10, 13 5, 10, 13	8 8	1, 16 1, 16
Reference Voltage		V _{BB}	11					5, 10, 13	8	1, 16
Switching Times	(50 Ω Load)					Pulse In	Pulse Out		–3.2 V	+2.0 V
Propagation Delay		t ₄₊₂₊ t ₄₋₂₋ t ₄₊₃₋ t ₄₋₃₊	2 2 3 3			4 4 4 4	2 2 3 3	5, 10, 13 5, 10, 13 5, 10, 13 5, 10, 13 5, 10, 13	8 8 8	1, 16 1, 16 1, 16 1, 16 1, 16
Rise Time	(20 to 80%)	t ₂₊ t ₃₊	2 3			4 4	2 3	5, 10, 13 5, 10, 13	8 8	1, 16 1, 16
Fall Time	(20 to 80%)	t ₂₋ t ₃₋	2 3			4 4	2 3	5, 10, 13 5, 10, 13	8 8	1, 16 1, 16


Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50–ohm resistor to –2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

		.Ć	
	4		
E			

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
DIMENSION L TO CENTER OF LEAD WHEN FOOMED DRAWLES

DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL.
DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.750	0.785	19.05	19.93		
В	0.240	0.295	6.10	7.49		
С		0.200		5.08		
D	0.015	0.020	0.39	0.50		
Е	0.050	BSC	1.27 BSC			
F	0.055	0.065	1.40	1.65		
G	0.100	BSC	2.54	BSC		
Н	0.008	0.015	0.21	0.38		
Κ	0.125	0.170	3.18	4.31		
Г	0.300	BSC	7.62	BSC		
Μ	0 °	15 °	0 °	15°		
Ν	0.020	0.040	0.51	1.01		

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
C	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
Μ	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

http://onsemi.com 5

Notes

DEWICE NOT RECOMMENDED FOR MENDESIGN

Notes

DEWICE NOT RECOMMENDED FOR MENDESIGN

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

SRNEW DESIGN

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.