PLLatinum ${ }^{\text {™ }}$ Low Power Dual Frequency Synthesizer for RF Personal Communications

LMX2330L 2.5 GHz/510 MHz
LMX2331L 2.0 GHz/510 MHz LMX2332L 1.2 GHz/510 MHz

General Description

The LMX233XL family of monolithic, integrated dual frequency synthesizers, including prescalers, is to be used as a local oscillator for RF and first IF of a dual conversion transceiver. It is fabricated using National's $0.5 \mu \mathrm{ABiC} V$ silicon BiCMOS process.
The LMX233XL contains dual modulus prescalers. A 64/65 or a $128 / 129$ prescaler ($32 / 33$ or $64 / 65$ in the 2.5 GHz LMX2330L) can be selected for the RF synthesizer and a 8/9 or a $16 / 17$ prescaler can be selected for the IF synthesizer. LMX233XL, which employs a digital phase locked loop technique, combined with a high quality reference oscillator, provides the tuning voltages for voltage controlled oscillators to generate very stable, low noise signals for RF and IF local oscillators. Serial data is transferred into the LMX233XL via a three wire interface (Data, Enable, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX233XL family f very low current consumption;
LMX2330L- 5.0 mA at 3 V , LMX2331L- 4.0 mA at 3 V , LMX2332L-3.0 mA at 3V.
The LMX233XL are available in a TSSOP 20-pin, CSP 24-pin surface mount plastic package, and thin CSP 20 -pin surface mount plastic package.

Features

- Ultra low current consumption
- 2.7 V to 5.5 V operation
- Selectable synchronous or asynchronous powerdown mode:
$\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}$ typical at 3 V
- Dual modulus prescaler:
LMX2330L
(RF) $32 / 33$ or $64 / 65$
LMX2331L/32L
(RF) $64 / 65$ or 128/129
LM $\times 2330 \mathrm{~L} / 31 \mathrm{~L} / 32 \mathrm{~L}$
(IF) $8 / 9$ or $16 / 17$
- Selectable charge pump TRI-STATE ${ }^{\circledR}$ mode
- Selectable charge pump current levels
- Selectabie Fastlock ${ }^{\top M}$ mode
- Upgrade and compatible to LMX233XA family

Applications

- Portable Wireless Communications (PCS/PCN, cordless)
- Cordless and cellular telephone systems
- Wireless Local Area Networks (WLANs)
- Cable TV tuners (CATV)
- Other wireless communication systems

Functional Block Diagram

1280639
Order Number LMX2330LSBX, LMX2331LSLBX or LMX2332LSLBX NS Package Number SLB24A

20-Pin Thin Chipscale Package (SLD) (Top View)
$\begin{array}{lll}-3 & \text { N } \\ > & 0 \\ > & 0\end{array}$

Order Number LMX2330LSLDX, LMX2331LSLDX, or LMX2332LSLDX NS Package Number SLD20A

Pin No. LMX233XLSL D 20-pin Thin CSP Package	Pin No. LMX233XLSL B 24-pin CSP Package	Pin No. LMX233XLTM 20-pin TSSOP Package	Pin Name	I/O	Description
20	24	1	$\mathrm{V}_{\mathrm{CC}}{ }^{1}$	-	Power supply voltage input for RF analog and RF digital circuits. Input may range from 2.7 V to 5.5 V . $\mathrm{V}_{\mathrm{CC}} 1$ must equal $\mathrm{V}_{\mathrm{CC}} 2$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
1	2	2	$\mathrm{V}_{\mathrm{p}} 1$	-	Power Supply for RF charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
2	3	3	D ${ }_{\text {RF }}$	0	Internal charge pump output. For connection to a loop filter for driving the input of an external VCO.
3	4	4	GND	-	Ground for RF digital circuitry.
4	5	5	$\mathrm{f}_{\text {IN }}$ RF	I	RF prescaler input. Small signal input from the VCO.
5	6	6	$\overline{\mathrm{f}_{\text {IN }}} \mathrm{RF}$	1	RF prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with some loss of sensitivity.
6	7	7	GND	-	Ground for RF analog circuitry.
7	8	8	$\mathrm{OSC}_{\text {in }}$	1	Oscillator input. The input has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
8	10	9	GND	-	Ground for IF digital, MICROWIRE ${ }^{\text {TM }}$, F F_{0} LD, and oscillator circuits.
9	11	10	F_{0} LD	0	Multiplexed output of the RF/IF programmable or reference dividers, RF/IF lock detect signals and Fastlock mode. CMOS output (see Programmable Modes).
10	12	11	Clock	I	High impedance CMOS Clock input. Data for the various counters is clocked in on the rising edge, into the 22-bit shift register.
11	14	12	Data	1	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
12	15	13		1	Load enable high impedance CMOS input. When LE goes HIGH, data stored in the shift registers is loaded into one of the 4 appropriate latches (control bit dependent).
13	16	14	GND	-	Ground for IF analog circuitry.
14	17	15	$\overline{\mathrm{f}_{\text {IN }}} \overline{\mathrm{IF}}$	1	IF prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane. Capacitor is optional with some loss of sensitivity.
15	18	16	$\mathrm{f}_{\text {IN }} \mathrm{RF}$	1	IF prescaler input. Small signal input from the VCO.
16	19	17	GND	-	Ground for IF digital, MICROWIRE, F_{0} LD, and oscillator circuits.
17	20	18	Do IF	0	IF charge pump output. For connection to a loop filter for driving the input of an external VCO.
18	22	19	$\mathrm{V}_{\mathrm{p}} 2$	-	Power Supply for IF charge pump. Must be $\geq \mathrm{V}_{\text {CC }}$.
19	23	20	$\mathrm{V}_{\mathrm{cc}}{ }^{2}$	-	Power supply voltage input for IF analog, IF digital, MICROWIRE, $F_{0} \mathrm{LD}$, and oscillator circuits. Input may range from 2.7 V to 5.5 V . $\mathrm{V}_{\mathrm{CC}} 2$ must equal $\mathrm{V}_{\mathrm{CC}} 1$. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
X	1, 9, 13, 21	X	NC	-	No connect.

Block Diagram

Note：The RF prescaler for the LMX2331L／32L is either 64／65 or 128／129，while the prescaler for the LMX2330L is $32 / 33$ or 64／65．
Note： $\mathrm{V}_{\mathrm{CC}} 1$ supplies power to the RF prescaler， N －counter，R－counter and phase detector． $\mathrm{V}_{\mathrm{CC}}{ }^{2}$ supplies power to the IF prescaler， N －counter，phase detector R－counter along with the $O S C_{\text {in }}$ buffer，MICROWIRE，and $F_{\circ} L D . V_{C C} 1$ and $V_{C C} 2$ are clamped to each other by diodes and must be run at the same voltage level．
Note：$V_{P} 1$ and $V_{P} 2$ can be run separately as long as $V_{p} \geq$

Absolute Maximum Ratings
 (Note 1, Note
 2)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage
$\mathrm{V}_{\mathrm{CC}} \quad-0.3 \mathrm{~V}$ to +6.5 V
$\mathrm{V}_{\mathrm{P}} \quad-0.3 \mathrm{~V}$ to +6.5 V
Voltage on Any Pin
with GND $=0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{l}}\right)$
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature Range (T_{S})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (solder 4 sec .)
(T_{L})

Recommended Operating Conditions

Power Supply Voltage	
$V_{C C}$	2.7 V to 5.5 V
V_{P}	$\mathrm{~V}_{\mathrm{CC}}$ to +5.5 V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: This device is a high performance RF integrated circuit with an ESD rating <2 keV and is ESD sensitive. Handling and assembly of this device should only be done at ESD protected work stations.

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=3.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$, except as specified

Symbol	Parameter		Conditions	Value			Units	
			Min	Typ	Max			
I_{CC}	Power Supply Current	LMX2330L RF + IF		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V		5.0	6.6	mA
		LMX2330L RF Only			4.0	5.2		
		LMX2331L RF + IF			4.0	5.4		
		LMX2331L RF Only			3.0	4.0		
		LMX2332L IF + RF			3.0	4.1		
		LMX2332L RF Only			2.0	2.7		
		LMX233xL IF Only			1.0	1.4		
$\mathrm{I}_{\text {CC-PWDN }}$	Powerdown Current		(Note 3)		1	10	$\mu \mathrm{A}$	
$\mathrm{f}_{\mathrm{IN}} \mathrm{RF}$	Operating Frequency	LMX2330L		0.5		2.5	GHz	
		LMX2331L		0.2		2.0		
		LMX2332L		0.1		1.2		
$\mathrm{f}_{\mathrm{IN}} \mathrm{IF}$	Operating Frequency	$\text { LM } \times 233 \times 1$		45		510	MHz	
$\mathrm{f}_{\mathrm{OSC}}$	Oscillator Frequency			5		40	MHz	
f_{φ}	Maximum Phase Detector Frequency			10			MHz	
$\overline{\mathrm{Pf}_{\text {IN }} \mathrm{RF}}$	RF Input Sensitivity		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-15		0	dBm	
			$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-10		0	dBm	
$\xrightarrow{\mathrm{Pf}_{\text {IN }} \mathrm{IF}}$	IF Input Sensitivity		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	-10		0	dBm	
$\mathrm{V}_{\text {OSC }}$	Oscillator Sensitivity		$\mathrm{OSC}_{\text {in }}$	0.5			V_{PP}	
V_{IH}	High-Level Input Voltage		(Note 4)	$0.8 \mathrm{~V}_{\mathrm{CC}}$			V	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		(Note 4)			$0.2 \mathrm{~V}_{\mathrm{CC}}$	V	
I_{IH}	High-Level Input Current		$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { (Note } \\ & \text { 4) } \end{aligned}$	-1.0		1.0	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}$	Low-Level Input Current		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Note 4)	-1.0		1.0	$\mu \mathrm{A}$	
$\xrightarrow{\mathrm{I}_{\mathrm{H}}}$	Oscillator Input Current		$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$	
I	Oscillator Input Current		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100			$\mu \mathrm{A}$	
V_{OH}	High-Level Output Voltage (for F_{0} LD, pin number 10)		$\mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V	
V_{OL}	Low-Level Output Voltage (for F_{0} LD, pin number 10)		$\mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}$			0.4	V	
t_{CS}	Data to Clock Set Up Time		See Data Input Timing	50			ns	

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
t_{CH}	Data to Clock Hold Time	See Data Input Timing	10			ns
${ }^{\text {t }}$ cWH	Clock Pulse Width High	See Data Input Timing	50			ns
$\mathrm{t}_{\text {cWL }}$	Clock Pulse Width Low	See Data Input Timing	50			ns
$\mathrm{t}_{\text {ES }}$	Clock to Load Enable Set Up Time	See Data Input Timing	50			ns
t_{EW}	Load Enable Pulse Width	See Data Input Timing	50			ns

Note 3: Clock, Data and LE = GND or V_{cc}.
Note 4: Clock, Data and LE does not include $f_{I N}$ RF, $f_{I N} I F$ and $O S C_{I N}$.
Charge Pump Characteristics
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=3.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, except as specified

Symbol	Parameter	Conditions	Value			Units
			Min	Typ	Max	
I ${ }_{\text {Do }}$-SOURCE	Charge Pump Output Current	$\mathrm{V}_{\mathrm{Do}}=\mathrm{V}_{\mathrm{P}} / 2, \mathrm{I}_{\mathrm{CPo}}=$ HIGH (Note 5)		-4.0		mA
$\mathrm{I}_{\mathrm{D}_{0}-\text { SINK }}$		$\mathrm{V}_{\mathrm{Do}=}=\mathrm{V}_{\mathrm{P}} / 2, \mathrm{I}_{\mathrm{CPo}}=\mathrm{HIGH}($ Note 5$)$		4.0		mA
$\mathrm{I}_{\text {Do }}$-SOURCE		$\mathrm{V}_{\mathrm{Do}=} \mathrm{V}_{\mathrm{P}} / 2, \mathrm{I}_{\mathrm{CPo}}=$ LOW (Note 5)		-1		mA
$\mathrm{I}_{\mathrm{D}_{0}-\text { SINK }}$		$\mathrm{V}_{\mathrm{Do}}=\mathrm{V}_{\mathrm{P}} / 2, \mathrm{I}_{\mathrm{CPo}}=$ LOW (Note 5)		1		mA
I_{Do}-TRI	Charge Pump TRI-STATE Current	$\begin{aligned} & 0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Do}} \leq \mathrm{V}_{\mathrm{P}}-0.5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \end{aligned}$	-2.5		2.5	nA
I_{Do}-SINK vs I_{Do} SOURCE	CP Sink vs Source Mismatch (Note 7)	$\begin{aligned} & \mathrm{V}_{\mathrm{Do}}=\mathrm{V}_{\mathrm{P}} / 2 \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3	10	\%
I_{Do} vs $\mathrm{V}_{\text {Do }}$	CP Current vs Voltage (Note 6)	$\begin{aligned} & 0.5 \leq \mathrm{V}_{\mathrm{Do}} \leq \mathrm{V}_{\mathrm{P}}-0.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		10	15	\%
$\mathrm{I}_{\mathrm{Do}} \mathrm{vs} \mathrm{T}_{\mathrm{A}}$	CP Current vs Temperature (Note 8)	$\begin{aligned} & \mathrm{V}_{\mathrm{Do}}=\mathrm{V}_{\mathrm{P}} / 2 \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85 \end{aligned}$		10		\%

Note 5: See PROGRAMMABLE MODES for $\mathrm{I}_{\mathrm{CPo}}$ description

Charge Pump Current Specification Definitions

$\mathrm{I} 1=\mathrm{CP}$ sink current at $\mathrm{V}_{\mathrm{Do}}=\mathrm{V}_{\mathrm{P}}-\Delta \mathrm{V}$
$\mathrm{I} 2=\mathrm{CP}$ sink current at $\mathrm{V}_{\mathrm{Do}_{0}}=\mathrm{V}_{\mathrm{P}} / 2$
$13=C P$ sink current at $V_{D o}=\Delta V$
$14=C P$ source current at $V_{D o}=V_{P}-\Delta V$
$15=C P$ source current at $V_{D o}=V_{P} / 2$
I6 $=C P$ source current at $V_{D o}=\Delta V$
$\Delta \mathrm{V}=$ Voltage offset from positive and negative rails. Dependent on VCO tuning range relative to V_{CC} and ground. Typical values are between 0.5 V and 1.0 V .
Note 6: I_{Do} vs $\mathrm{V}_{\mathrm{Do}}=$ Charge Pump Output Current magnitude variation vs Voltage $=$
$\left[1 / 22^{*}\left\{| | 1|-||3|\}] /\left[1 / 22^{*}\left\{| | 1|+||3|\}]\right.\right.\right.\right.$ * 100% and $\left[1 / 22^{*}\left\{| | 4\left|-||6|\} /\left[\left[^{1 / 2} *\{| | 4|+||6|\}] * 100 \%\right.\right.\right.\right.\right.$
Note 7: $I_{\text {Do-sink }}$ vs $I_{\text {Do-source }}=$ Charge Pump Output Current Sink vs Source Mismatch = $\left[\left||2|-||5|] /\left[\frac{1}{2}{ }^{*}\{| | 2|+||5|\}]\right.\right.\right.$ * 100%
Note 8: $I_{D o}$ vs $T_{A}=$ Charge Pump Output Current magnitude variation vs Temperature $=$

RF Sensitivity Test Block Diagram

Typical Performance Characteristics

1280620

Marker $1=1 \mathrm{GHz}$, Real $=123$, Imaginary $=-141$
Marker $2=2 \mathrm{GHz}$, Real $=39$, Imaginary $=-52$
Marker $3=3 \mathrm{GHz}$, Real $=21$, Imaginary $=-3$
Marker $4=500 \mathrm{MHz}$, Real $=237$, Imaginary $=-185$
Marker $5=1 \mathrm{GHz}$, Real $=128$, Imaginary $=-144$
Marker $6=2 \mathrm{GHz}$, Real $=38$, Imaginary $=-64$
Marker $7=3 \mathrm{GHz}$, Real $=24$, Imaginary $=-18$
Marker $8=500 \mathrm{MHz}$, Real $=207$, Imaginary $=-184$

Marker $1=100 \mathrm{MHz}$, Real $=443$, Imaginary $=-249$
Marker $2=200 \mathrm{MHz}$, Real $=348$, Imaginary $=-214$
Marker $3=300 \mathrm{MHz}$, Real $=297$, Imaginary $=-208$
Marker $4=500 \mathrm{MHz}$, Real $=222$, Imaginary $=-198$

LMX233xSLD RF Input Impedance
LMX233xSLD IF Input Impedance
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=500 \mathrm{MHz}$ to $3 \mathrm{GHz}, \overline{\mathrm{f}_{\mathrm{IN}}} \mathrm{RF} \mathrm{CAP}=100 \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}} \mathrm{IF}=100 \mathrm{MHz}$ to $400 \mathrm{MHz}, \overline{\mathrm{f}_{\mathrm{IN}}} \mathrm{IF} \mathrm{CAP}=100$

Marker $1=500 \mathrm{MH}$
Mark $=500 \mathrm{MHz}, \quad$ Real $=202.98$, \quad Imaginary $=-200.09$ Real $=32.36, \quad$ Imaginary $=-91.42$
Real $30.46, \quad$ Imagnary $=-46.41$
1280641

Marker $4=3.0 \mathrm{GHz}, \quad$ Real $=30.46, \quad$ Imaginary $=-9.50$
80641
Marker $1=100 \mathrm{MHz}$,
Marker $2=200 \mathrm{MHz}$,
Marker $3=300 \mathrm{MHz}$,
Marker $4=400 \mathrm{MHz}$,
Real $=374.33, \quad$ Imaginary $=-301.45$
Real $=257.14, \quad$ Imaginary $=-245.79$
Real $=194.08, \quad$ Imagniary $=-224.24$
Marker $4=400 \mathrm{MHz}, \quad$ Real $=89.03, \quad$ Imaginary $=-131.21$

1280629

LMX2331L RF Sensitivity vs Frequency

1280630

The simplified block diagram below shows the 22 -bit data register, two 15 -bit R Counters and the $15-$ and 18 -bit N Counters (intermediate latches are not shown). The data stream is clocked (on the rising edge of Clock) into the DATA register, MSB first. The data stored in the shift register is loaded into one of 4 appropriate latches on the rising edge of LE. The last two bits are the Control Bits. The DATA is transferred into the counters as follows:

Control Bits		DATA Location
C 1	C 2	
0	0	IF R Counter
0	1	RF R Counter
1	0	IF N Counter
1	1	RF N Counter

PROGRAMMABLE REFERENCE DIVIDERS (IF AND RF R COUNTERS)

If the Control Bits are 00 or 01 (00 for IF and 01 for RF) data is transferred from the 22-bit shift register into a latch which sets the 15 -bit R Counter. Serial data format is shown below.

1280607

15-BIT PROGRAMMABLE REFERENCE DIVIDER RATIO (R COUNTER)

Ratio	$\begin{array}{\|c} R \\ 15 \\ 15 \end{array}$	$\begin{gathered} \mathrm{R} \\ 14 \end{gathered}$	$\left.\begin{gathered} \mathbf{P} \\ 13 \end{gathered} \right\rvert\,$	$\begin{gathered} \hline R \\ 12 \end{gathered}$	$\begin{array}{\|c\|} \hline R \\ 11 \end{array}$	$\begin{array}{\|c\|} \hline R \\ 10 \end{array}$	$\begin{gathered} \mathbf{R} \\ 9 \end{gathered}$	$\begin{gathered} R \\ 8 \end{gathered}$	$\begin{aligned} & R \\ & 7 \end{aligned}$	$\begin{aligned} & R \\ & 6 \end{aligned}$	$\begin{gathered} \hline R \\ 5 \end{gathered}$	$\begin{aligned} & R \\ & 4 \end{aligned}$	$\begin{aligned} & R \\ & 3 \end{aligned}$	$\begin{aligned} & R \\ & 2 \end{aligned}$	R 1
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
		-	-		-		-		-			-			
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Notes:

Divide ratios less than 3 are prohibited
Divide ratio: 3 to 32767
R1 to R15: These bits select the divide ratio of the programmable reference divider.
Data is shifted in MSB first.

PROGRAMMABLE DIVIDER (N COUNTER)

The N counter consists of the 7 -bit swallow counter (A counter) and the 11-bit programmable counter (B counter). If the Control Bits are 10 or 11 (10 for IF counter and 11 for RF counter) data is transferred from the 22-bit shift register into a 4-bit or 7 -bit latch (which sets the Swallow (A) Counter) and an 11-bit latch (which sets the 11-bit programmable (B) Counter), MSB first. Serial data format is shown below. For the IF N counter bits 5, 6, and 7 are don't care bits. The RF N counter does not have don't care bits.

7-BIT SWALLOW COUNTER DIVIDE RATIO (A COUNTER)

RF

Divide Ratio A	\mathbf{N}	$\mathbf{7}$	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}
$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	\mathbf{N}				
$\mathbf{2}$	$\mathbf{1}$						
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
.	\cdot						
127	1	1	1	1	1	1	1

Notes: Divide ratio: 0 to 127
$\mathrm{X}=$ DON'T CARE condition
$B \geq A$
11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO (B COUNTER)

Divide Ratio B	\mathbf{N}	$\mathbf{1 8}$	\mathbf{N}	\mathbf{N}	16	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}
$\mathbf{1 5}$	\mathbf{N}	\mathbf{N}									
$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$						
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\cdot	-	\cdot	0	\cdot							
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio: 3 to 2047 (Divide ratios less than 3 are prohibited)
$B \geq A$

PULSE SWALLOW FUNCTION
$\mathrm{f}_{\mathrm{VCO}}=[(\mathrm{P} \times \mathrm{B})+\mathrm{A}] \times \mathrm{f}_{\mathrm{OSC}} / \mathrm{R}$
$\mathrm{f}_{\mathrm{VCO}}$: Output frequency of external voltage controlled oscillator (VCO)
B: \quad Preset divide ratio of binary 11-bit programmable counter (3 to 2047)
A: Preset divide ratio of binary 7-bit swallow counter

$$
(0 \leq \mathrm{A} \leq 127\{R F\}, 0 \leq \mathrm{A} \leq 15\{I F\}, \mathrm{A} \leq \mathrm{B})
$$

$f_{\text {OSC }}$: Output frequency of the external reference frequency oscillator
R: \quad Preset divide ratio of binary 15-bit programmable reference counter (3 to 32767)
P: \quad Preset modulus of dual modulus prescaler (for IF; $P=8$ or 16;
for RF; LMX2330L: $\mathrm{P}=32$ or 64 LMX2331L/32L: $\mathrm{P}=64$ or 128)

PROGRAMMABLE MODES
Several modes of operation can be programmed with bits R16-R20 including the phase detector polarity, charge pump TRI-STATE and the output of the $\mathrm{F}_{\mathrm{O}} \mathrm{LD}$ pin. The prescaler and powerdown modes are selected with bits N 19 and N 20 . The programmable modes are shown in Table 1. Truth table for the programmable modes and F_{0} LD output are shown in Table 2 and Table 3.

TABLE 1. Programmable Modes

C1	C2	R16	R17	R18	R19	R20
0	0	IF Phase Detector Polarity	$\mathrm{IF} \mathrm{I}_{\mathrm{CPo}}$	$\mathrm{IF} \mathrm{D}_{\circ}$ TRI-STATE	IF LD	$\mathrm{IF} \mathrm{F}_{\mathrm{o}}$
0	1	RF Phase Detector Polarity	$\mathrm{RF} \mathrm{I}_{\mathrm{CPo}}$	RF D_{\circ} TRI-STATE	RF LD	RF F_{o}

C1	C2	N19	N20
1	0	IF Prescaler	Pwdn IF
1	1	RF Prescaler	Pwdn RF

TABLE 2. Mode Select Truth Table

	Phase Detector Polarity (Note 11)	$\mathbf{D}_{\mathbf{o}}$ TRI-STATE (Note 9)	$\mathbf{I}_{\text {CPo }}$ (Note 10)	IF Prescaler	2330L RF Prescaler	2331L/32L RF Prescaler	Pwdn (Note 9)
0	Negative	Normal Operation	LOW	$8 / 9$	$32 / 33$	$64 / 65$	Pwrd Up
1	Positive	TRI-STATE	HIGH	$16 / 17$	$64 / 65$	$128 / 129$	Pwrd Dn

Note 9: Refer to POWERDOWN OPERATION in Functional Description.
Note 10: The $I_{\text {CPo }}$ LOW current state $=1 / 4 \times I_{\text {CPo }}$ HIGH current.
Note 11: PHASE DETECTOR POLARITY
Depending upon VCO characteristics, R16 bit should be set accordingly: (see figure right)
When VCO characteristics are positive like (1), R16 should be set HIGH;
When VCO characteristics are negative like (2), R16 should be set LOW.
vCO Characteristics

TABLE 3. The $\mathrm{F}_{\mathrm{o}} \mathrm{LD}($ Pin 10) Output Truth Table

$\begin{gathered} \hline \text { RF R[19] } \\ \text { (RF LD) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { IF R[19] } \\ & \text { (IF LD) } \end{aligned}$	$\begin{gathered} \text { RF R[20] } \\ \left(\text { RF } F_{0}\right) \end{gathered}$	$\begin{gathered} \text { IF R[20] } \\ \left(\text { IF F }_{0}\right) \end{gathered}$	$F_{\text {o }}$ Output State
0	0	0	0	Disabled (Note 12)
0	1	0	0	IF Lock Detect (Note 13)
1	0	0	0	RF Lock Detect (Note 13)
1	1	0	0	RF/IF Lock Detect (Note 13)
X	0	0	1	IF Reference Divider Output
X	0	1	0	RF Reference Divider Output
X	1	0	1	IF Programmable Divider Output
X	1	1	0	RF Programmable Divider Output
0	0	1	1	Fastlock (Note 14)
0	1	1	1	IF Counter Reset (Note 15)
1	0	1	1	RF Counter Reset (Note 15)
1	1	1	1	IF and RF Counter Reset (Note 15)

X = don't care condition
Note 12: When the F_{0} LD output is disabled, it is actively pulled to a low logic state.
Note 13: Lock detect output provided to indicate when the VCO frequency is in "lock." When the loop is locked and a lock detect mode is selected, the pins output is HIGH, with narrow pulses LOW. In the RF/IF lock detect mode a locked condition is indicated when RF and IF are both locked.
Note 14: The Fastlock mode utilizes the F_{0} LD output pin to switch a second loop filter damping resistor to ground during fastlock operation. Activation of Fastlock occurs whenever the RF loop's Icpo magnitude bit \#17 is selected HIGH (while the \#19 and \#20 mode bits are set for Fastlock).
Note 15: The IF Counter Reset mode resets IF PLL's R and N counters and brings IF charge pump output to a TRI-STATE condition. The RF Counter Reset mode resets RF PLL's R and N counters and brings RF charge pump output to a TRI-STATE condition. The IF and RF Counter Reset mode resets all counters and brings both charge pump outputs to a TRI-STATE condition. Upon removal of the Reset bits then N counter resumes counting in "close" alignment with the R counter. (The maximum error is one prescaler cycle.)

POWERDOWN OPERATION

Synchronous and asynchronous powerdown modes are both available by MICROWIRE selection. Synchronously powerdown occurs if the respective loop's R18 bit (Do TRI-STATE) is LOW when its N20 bit (Pwdn) becomes HI. Asynchronous powerdown occurs if the loop's R18 bit is HI when its N 20 bit becomes HI.

In the synchronous powerdown mode, the powerdown function is gated by the charge pump to prevent unwanted frequency jumps. Once the powerdown program bit N2O is loaded, the part will go into powerdown mode when the charge pump reaches a TRISTATE condition.

In the asynchronous powerdown mode, the device powers down immediately after the LE pin latches in a HI condition on the powerdown bit N20.
Activation of either the IF or RF PLL powerdown conditions in either synchronous or asynchronous modes forces the respective loop's R and N dividers to their load state condition and debiasing of its respective $f_{I N}$ input to a high impedance state. The oscillator circuitry function does not become disabled until both IF and RF powerdown bits are activated. The MICROWIRE control register remains active and capable of loading and latching data during all of the powerdown modes.

The device returns to an actively powered up condition in either synchronous or asynchronous modes immediately upon LE latching LOW data into bit N20.

Powerdown Mode Select Table

R18	N20	Powerdown Status
0	0	PLL Active
1	0	PLL Active
0	1	(Charge Pump Output TRI-STATE)
1	1	Synchronous Powerdown Initiated
1		

SERIAL DATA INPUT TIMING

Note 1: Parenthesis data indicates programmable reference divider data.
Data shifted into register on clock rising edge.
Data is shifted in MSB first.
Note 2: $\mathrm{t}_{\mathrm{cs}}=$ Data to Clock Set-Up Time
$\mathrm{t}_{\mathrm{CH}}=$ Data to Clock Hold Time
$\mathrm{t}_{\mathrm{cwH}}=$ Clock Pulse Width High
$\mathrm{t}_{\mathrm{CWL}}=$ Clock Pulse Width Low
$\mathrm{t}_{\mathrm{ES}}=$ Clock to Load Enable Set-Up Time
$\mathrm{t}_{\mathrm{EW}}=$ Load Enable Pulse Width
Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around $\mathrm{V}_{\mathrm{cd}} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of $2.2 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $2.6 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS

Notes: Phase difference detection range: -2π to $+2 \pi$
The minimum width pump up and pump down current pulses occur at the D_{o} pin when the loop is locked.
R16 $=$ HIGH

Typical Application Example

Operational Notes:

* VCO is assumed AC coupled.
** $\mathrm{R}_{\text {IN }}$ increases impedance so that VCO output power is provided to the load rather than the PLL. Typical values are 10Ω to 200Ω depending on the VCO power level. f_{IN} RF impedance ranges from 40Ω to 100Ω. f_{IN} IF impedances are higher.
*** Adding RC filters to the V_{CC} lines is recommended to reduce loop-to-loop noise coupling.

1280613

Application Hints:

Proper use of grounds and bypass capacitors is essential to achieve a high level of performance. Crosstalk between pins can be reduced by careful board layout.
This is an electrostatic sensitive device. It should be handled only at static free work stations.

Application Information

A block diagram of the basic phase locked loop is shown in Figure 1.

LOOP GAIN EQUATIONS

A linear control system model of the phase feedback for a PLL in the locked state is shown in Figure 2. The open loop gain is the product of the phase comparator gain ($\mathrm{K} \varphi$), the VCO gain ($\mathrm{K}_{\mathrm{vcO}} / \mathrm{s}$), and the loop filter gain $\mathrm{Z}(\mathrm{s})$ divided by the gain of the feedback counter modulus (N). The passive loop filter configuration used is displayed in Figure 3, while the complex impedance of the filter is given in Equation 1.

FIGURE 3. Passive Loop Filter

$$
\begin{align*}
\text { Open loop gain } & =H(s) G(s)=\Theta i / \Theta e \\
& =K_{\phi} Z(s) K_{V C 0} / N s \\
Z(s) & =\frac{s(C 2 \bullet R 2)+1}{s^{2}(C 1 \bullet C 2 \bullet R 2)+s C 1+s C 2} \tag{1}
\end{align*}
$$

The time constants which determine the pole and zero frequencies of the filter transfer function can be defined as

$$
\begin{equation*}
T 1=R 2 \cdot \frac{C_{1} \cdot C_{2}}{C 1+C 2} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{T} 2=\mathrm{R} 2 \cdot \mathrm{C} 2 \tag{3}
\end{equation*}
$$

The 3rd order PLL Open Loop Gain can be calculated in terms of frequency, ω, the filter time constants T1 and T2, and the design constants $\mathrm{K}_{\varphi}, \mathrm{K}_{\mathrm{vcO}}$, and N .

$$
\begin{equation*}
\left.G(s) \bullet H(s)\right|_{s=j \bullet \omega}=\frac{-K_{\phi} \bullet K_{V C O}(1+j \omega \bullet T 2)}{\omega^{2} C 1 \bullet N(1+j \omega \bullet T 1)} \bullet \frac{T 1}{T 2} \tag{4}
\end{equation*}
$$

From Equations 2, 3 we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in Equation 5.

$$
\begin{equation*}
\varphi(\omega)=\tan ^{-1}(\omega \cdot \mathrm{~T} 2)-\tan ^{-1}(\omega \cdot \mathrm{~T} 1)+180^{\circ} \tag{5}
\end{equation*}
$$

A plot of the magnitude and phase of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ for a stable loop, is shown in Figure 4 with a solid trace. The parameter φ_{p} shows the amount of phase margin that exists at the point the gain drops below zero (the cutoff frequency wp of the loop). In a critically damped system, the amount of phase margin would be approximately 45 degrees.
If we were now to redefine the cut off frequency, wp', as double the frequency which gave us our original loop bandwidth, wp, the loop response time would be approximately halved. Because the filter attenuation at the comparison frequency also diminishes, the spurs would have increased by approximately 6 dB . In the proposed Fastlock scheme, the higher spur levels and wider loop filter conditions would exist only during the initial lock-on phase-just long enough to reap the benefits of locking faster. The objective would be to open up the loop bandwidth but not introduce any additional complications or compromises related to our original design criteria. We would ideally like to momentarily shift the curve of Figure 4 over to a different cutoff frequency, illustrated by the dotted line, without affecting the relative open loop gain and phase
relationships. To maintain the same gain/phase relationship at twice the original cutoff frequency, other terms in the gain and phase Equation 4 and Equation 5 will have to compensate by the corresponding " $1 / \mathrm{w}$ " or " $1 / \mathrm{w}^{2}$ " factor. Examination of equations Equations 2, 3 and Equation 5 indicates the damping resistor variable R2 could be chosen to compensate the " w " terms for the phase margin. This implies that another resistor of equal value to R2 will need to be switched in parallel with R2 during the initial lock period. We must also insure
that the magnitude of the open loop gain, $\mathrm{H}(\mathrm{s}) \mathrm{G}(\mathrm{s})$ is equal to zero at $w p^{\prime}=2 w p . \mathrm{K}_{\mathrm{vco}}, \mathrm{K} \varphi, \mathrm{N}$, or the net product of these terms can be changed by a factor of 4 , to counteract the w ${ }^{2}$ term present in the denominator of Equation 2 and Equation 3. The $\mathrm{K} \varphi$ term was chosen to complete the transformation because it can readily be switched between 1 X and 4 X values. This is accomplished by increasing the charge pump output current from 1 mA in the standard mode to 4 mA in Fastlock.

FASTLOCK CIRCUIT IMPLEMENTATION

A diagram of the Fastlock scheme as implemented in National Semiconductors LMX233XL PLL is shown in Figure 5. When a new frequency is loaded, and the RF Icp ${ }_{0}$ bit is set high the charge pump circuit receives an input to deliver 4 times the normal current per unit phase error while an open drain NMOS on chip device switches in a second R2 resistor element to ground. The user calculates the loop filter component values for the normal steady state considerations. The device configuration ensures that as long as a second identical
damping resistor is wired in appropriately, the loop will lock faster without any additional stability considerations to account for. Once locked on the correct frequency, the user can return the PLL to standard low noise operation by sending a MICROWIRE instruction with the RF $\mathrm{Icp}_{\mathrm{o}}$ bit set low. This transition does not affect the charge on the loop filter capacitors and is enacted synchronous with the charge pump output. This creates a nearly seamless change between Fastlock and standard mode.

FIGURE 5. Fastlock PLL Architecture

Physical Dimensions inches (millimeters) unless otherwise noted

DIMENSIONS ARE IN MILLIMETERS

1:1 RATIO WITH PACKAGE SOLDER PADS

24-Pin Chip Scale Package
For Tape and Reel (2500 Units per Reel)
Order Number LMX2330LSLBX, LMX2331LSLBX or LMX2332LSLBX
NS Package Number SLB24A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications \& Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic ${ }^{\text {TM }}$	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2011 National Semiconductor Corporation
For the most current product information visit us at www.national.com

www.national.com	National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959	National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com	National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com	National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

