Data Sheet

Description

The HEDS-974x series is a high performance, low cost, optical incremental encoder module. When operated in conjunction with codestrip, this module detects linear position. The module consists of a lensed LED source and a detector ICenclosed in a smallC-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.

The two-channel digital outputs and 5 V supply input are accessed through four solder-plated leads located on 2.54 mm (0.1 inch) centers.

Applications

The HEDS-974x provides sophisticated motion detection at a low cost, making close-loop control very costcompetitive! Typical applications include printers, plotters, copiers, and office automation equipment.

Note: Agilent Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.

Theory of Operation

The HEDS-974x is a C-shaped emitter/detector module. Coupled with a codewheel, it translates rotary motion into a two-channel digital output. Coupled with a codestrip, it translates linear motion into digital outputs.

As seen in the block diagram, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit.

This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codestrip. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the count density of the codestrip. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are fed through the signal processing circuitry. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with channel B (90 degrees out of phase).

Features

- Small size
- Multiple mounting options
- Wide resolution range
- Linear options available
- No signal adjustment required
- Insensitive to radial and axial play
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature
- High resolution version of the HEDS-970x
- Two-channel quadrature output
- TTL or 5.0 V CMOS compatible
- Single 5 V supply
- Wave solderable
- Integrated 2.5 K Ω pullup on outputs

Definitions

Count (N) = the number of bar and window pairs or Counts Per Revolution (CPR) of the codewheel, or the number of Lines Per Inch (LPI) of the codestrip.

$$
\begin{aligned}
1 \text { Shaft Rotation }= & 360 \text { mechanical } \\
& \text { degrees } \\
= & \mathrm{N} \text { cycles }
\end{aligned}
$$

1 Cycle (c) $=360$ electrical degrees (${ }^{\circ}$ e)
$=1$ bar and window pair
Pulse Width (P): The number of electrical degrees that an output is high during one cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.

Pulse Width Error ($\Delta \mathbf{P}$): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} e$.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are four states per cycle, each nominally $90^{\circ} \mathrm{e}$.

State Width Error ($\Delta \mathbf{S}$): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B.

This value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.

Phase Error ($\Delta \phi$): The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates counterclockwise, as viewed looking down on the module (so the marking is visible), channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (ROP): The distance from the codewheel's center of rotation to the optical center (OC) of the encoder module.

Angular Misalignment Error

$\left(\mathbf{E}_{\mathbf{A}}\right)$: Angular misalignment of the sensor in relation to the tangential direction. This applies for both rotary and linear motion.

Mounting Position ($\mathbf{R}_{\mathbf{M}}$):

Distance from motor shaft center of rotation to center of alignment tab receiving hole.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	-0.5	7	V	
Output Voltage	V_{0}	-0.5	$\mathrm{~V}_{\text {CC }}$	V	
Output Current per Channel	I_{0}	-1.0	5	mA	
Soldering Temperature			260	${ }^{\circ} \mathrm{C}$	$\mathrm{t} \leq 5$ sec.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Temperature	T	-40		85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	Vcc	4.5	5.0	5.5	V	Ripple < 100 mV p-p. Recommended one bypass capacitor ($1 \mu \mathrm{~F}$) between V_{CC} and GND less than 15 cm from the encoder.
Load Capacitance	C_{L}			100	pF	
Pullup Resistor	RL		none			Recommended no pullup. Device has integrated $2.5 \mathrm{k} \Omega$ on outputs.
Count Frequency				40	kHz	(Velocity (rpm) x N) / 60
Angular Misalignment	$\mathrm{E}_{\text {A }}$	-2.0	0	+2.0	deg.	Mounting considerations.

Electrical Characteristics over Recommended Operating Range, Typical at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	I_{CC}	12	21	40	mA	
High Level Output Voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
Low Level Output Voltage	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
Rise Time	t_{r}		70		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
Fall Time	t_{f}		45		ns	$\mathrm{R}_{\mathrm{L}}=$ (NO pullup)

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances.
These characteristics do not include codewheel/codestrip contribution. The Typical Values are averages over the full rotation of the codewheel.

Parameter	Symbol	Typical	Maximum	Units
Pulse Width Error	$\Delta \mathrm{P}$	5	40	${ }^{\circ} \mathrm{e}$
Logic State Width Error	$\Delta \mathrm{S}$	3	40	${ }^{\circ} \mathrm{e}$
Phase Error	$\Delta \phi$	2	15	${ }^{\circ} \mathrm{e}$

Recommended Codewheel and Codestrip Characteristics

Parameter	Symbol	Min.	Max.	Units	Notes
Window/Bar Ratio	Ww/Wb	0.7	1.4		
Center of Post to Inside	W1	1.04		mm	
Edge of Window		(0.041)		(inch)	
Center of Post to Outside	W2	0.76		mm	
\quad Edge of Window		(0.030)		(inch)	
Center of Post to Inside Edge	L		3.60	mm	
\quad of Codestrip			(0.142)	(inch)	

Mounting Considerations

IMAGE SIDE OF
CODEWHEEL/CODESTRIP

For linear motion, angular misalignment, E_{A}, must be $\leq \pm 2$ degrees to achieve Encoding Characteristics.
All dimensions for mounting the module and codestrip should be measured with respect to the two mounting posts, shown above.
Recommended Screw Size: M2.5 x 0.45 or 2-56

Recommended Wave Solder
 Conditions

Flux - RMA Water Soluble (per MIL-F-14256D)
Process Parameters

1. Flux
2. Pre-heat 60 seconds total Nominal preheat temp: $90^{\circ} \mathrm{C}$ Min: $85^{\circ} \mathrm{C} \quad$ Max: $110^{\circ} \mathrm{C}$
3. Solder Pot Zone

Nominal dip in time:
2.5-4.5 seconds

Min: 2.5 seconds
Max: 5 seconds
PCB top side: $140-160^{\circ} \mathrm{C}$
PCB bottom side: $240-260^{\circ} \mathrm{C}$
4. Wave Solder $255^{\circ} \mathrm{C}$,
1.2 meters/minute line speed

Ordering Information

		50	51	52	53	54	55
HEDS-9740	0	$*$					
	2	$*$					
	1	$*$					
HEDS-9741	0						
	2	$*$					
	1						

5. Hot Water Wash

1st: $30^{\circ} \mathrm{C} 45$ seconds
2nd: $70^{\circ} \mathrm{C} 90$ seconds
6. Rinse

1st: $23^{\circ} \mathrm{C} 45$ seconds
2nd: $23^{\circ} \mathrm{C} 45$ seconds
7. Dry

1st: $80^{\circ} \mathrm{C} 105$ seconds
2nd: $95^{\circ} \mathrm{C} 105$ seconds

Package Dimensions
Mounting Option \#50

Note:

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2008 Avago Technologies Limited. All rights reserved. Obsoletes 5988-6067
5988-8042EN January 23, 2008

