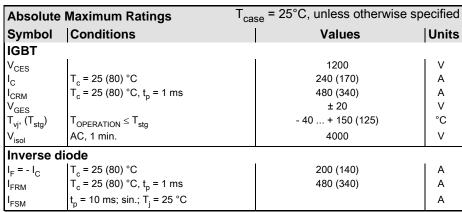
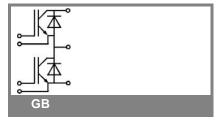

SEMiX 252GB126HD

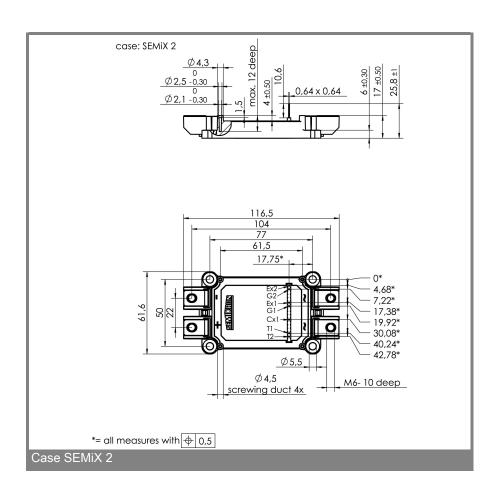
Trench IGBT Modules

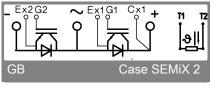
SEMiX 252GB126HD


Target Data

Features


- · Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability


Typical Applications


- AC inverter drives
- UPS
- Electronic Welding

Characteristics T _c		_{ase} = 25°C	se = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT		•				
V _{GE(th)} I _{CES}	$V_{GE} = V_{CE}, I_{C} = 6 \text{ mA}$ $V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) ^{\circ}\text{C}$	5	5,8	6,5 1	V mA	
$V_{CE(TO)}$	T _j = 25 (125) °C		1 (0,9)		V	
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		4,7 (7,3)		mΩ	
V _{CE(sat)}	I _C = 150 A, V _{GE} = 15 V, T _j = 25 (125) °C, chip level		1,7 (2)	2,15 (2,45)	V	
C _{ies}	under following conditions		10,7		nF	
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		0,6		nF	
C _{res}			0,5		nF	
L _{CE}			18		nH	
R _{CC'+EE'}	resistance, terminal-chip, T _c = 25 (125) °C				mΩ	
t _{d(on)} /t _r	V _{CC} = 600 V, I _C = 150 A				ns	
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V				ns	
$E_{on} (E_{off})$	$R_{Gon} = R_{Goff} = \Omega$, $T_j = 125 ^{\circ}C$		12,5 (25)		mJ	
Inverse d	liode					
$V_F = V_{EC}$	I_F = 150 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		1,6 (1,6)	1,8 (1,8)	V	
$V_{(TO)}$	T _j = 25 (125) °C		1 (0,8)	, , ,	V	
r _T	T _j = 25 (125) °C		4 (5,3)	4,7 (6)	mΩ	
I _{RRM}	I _F = 150 A; T _j = 25 (125) °C				A	
Q_{rr}	di/dt = A/μs				μC	
E _{rr}	V _{GE} = V				mJ	
	characteristics					
$R_{th(j-c)}$	per IGBT			0,15	K/W	
R _{th(j-c)D}	per Inverse Diode			0,3	K/W	
$R_{th(j-c)FD}$	per FWD				K/W	
R _{th(c-s)}	per module		0,045		K/W	
Tempera	ture sensor					
R ₂₅	$T_c = 25 ^{\circ}C$		5 ±5%		kΩ	
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2-1/T_1)]$; T[K];B		3420		K	
Mechanic	cal data					
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm	
w			236		g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.