

Solid-State Memory Card (No Moving Parts)

Capacity: 128MB - 16GB

CFA 4.1 and ATA-7 Compatible PCMCIA Memory Mode:

- UDMA Modes Supported: Up to 4
- PIO Modes Timing: up to 80ns

PCMCIA I/O Mode:

- UDMA Modes Supported: Up to 4
- PIO Modes Timing: Up to 80ns

TrueIDE Mode:

- UDMA Modes Supported: Up to 4
- MWDMA Modes Supported: Up to 4
- PIO Modes Supported: Up to 6

Options:

- Standard LBA/CHS Configuration
- Maximized Performance for Multiple Simultaneous Random Writes
- SMART, Security, and HPA Command Sets
- TrueIDE PIO-Only Configuration
- Commercial/Industrial Operating Temperature

Form Factors:

- CompactFlash Type I
- CompactFlash Adapter

Guaranteed 2M Write Operations

Card Information Structure (CIS)
Programmed into Internal Memory

PC Card and Socket Services Release 2.1 or later compatible

5V or 3.3V Power Supply

Full Data-Path Protection with built-in ECC Engine

10 Year Data Retention

RoHS-6 Compliant

SLCFxxxM2TU(I)(-x)

General Description

STEC's MACH2 CompactFlash (CF) card is an extremely high-performance, multi-channel solution available in capacities from 128MB to 16GB using SLC NAND flash. The standard CompactFlash interface provides designers with a true plug-n-play storage device, allowing for short design cycles and fast time to market, while the extreme performance enables hard disk drive performance in a much smaller and more reliable design.

CompactFlash cards have quickly become the product of choice for applications requiring high reliability and high tolerance to shock, vibration, humidity, altitude, and temperature. Because the MACH2 CompactFlash uses NAND flash technology (e.g. no moving parts), it is more reliable and has much lower latency compared to a traditional hard disk drive and consumes far less power (approximately 1 watt compared to 12 watts for a standard 7200rpm ATA disk drive). With its small footprint, high capacity, and rugged design, the MACH2 CompactFlash is an ideal hard disk drive replacement or alternate storage solution in space-constrained applications or those requiring less capacity than available hard disk drives offer including blade servers and embedded PCs.

STEC's MACH2 CF Card is available in a CompactFlash Type I package and adheres to the latest industry compliance and regulatory standards including UL, FCC, RoHS, and the Compact Flash Association (CFA). Because the MACH2 CF incorporates a proprietary state-of-the-art flash memory controller, it provides the greatest flexibility to customer-specific applications while supporting key flash management features resulting in the industry's highest reliability and endurance. Key features include:

- Full datapath protection with built-in 8-bit BCH ECC engine to detect and correct up to 8-bit errors per 512 Bytes of data
- Sophisticated bad block management and wear leveling algorithms dramatically enhance flash memory endurance
- Power-down data protection ensures data integrity in case of power loss
- Lifecycle management feature allows users to monitor the card's lifetime by monitoring the card's remaining spare blocks

STEC's MACH2 CF card offers the highest reliability and tolerance to shock, vibration, humidity, altitude, ESD, and temperature. The rugged industrial design combined with temperature testing and adherence to rigid JEDEC JESD22 standards ensures flawless execution in the harshest environments. In addition to custom hardware and firmware designs, STEC also offers value-added services including:

- Custom labeling and packaging
- Custom software imaging and ID strings
- Full BOM control and product change notification
- Total supply-chain management to ensure continuity of supply
- In-field application engineering to help customers through product design-ins

Table of Contents

1.0	Ord	Ordering Information					
2.0	Pro	duct Specifications	5				
	2.1	Product Marking	5				
		2.1.1 Front Label	5				
		2.1.2 Back Label	6				
	2.2	Package Dimensions and Pin Locations	8				
	2.3	Pin Assignments	9				
	2.4	Signal Description	10				
	2.5	Performance	16				
	2.6	LBA and CHS Parameters	17				
	2.7	Standards Compliance	18				
		2.7.1 CE and FCC Class B & D					
		2.7.2 RoHS	18				
3.0	Env	rironmental Specifications	19				
	3.1	Recommended Operating Conditions	19				
	3.2	Reliability	19				
	3.3	Shock, Vibration, and Humidity	19				
4.0	Ele	ctrical Specifications	20				
	4.1	Absolute Maximum Ratings	20				
	4.2	DC Characteristics					
	4.3	AC Characteristics	21				
		4.3.1 PC Card Memory Mode Attribute Memory Read	21				
		4.3.2 PC Card Memory Mode Attribute Memory Write	22				
		4.3.3 PC Card Memory Mode Common Memory Read	23				
		4.3.4 PC Card Memory Mode Common Memory Write	24				
		4.3.5 PC Card I/O Mode Read AC Characteristics	25				
		4.3.6 PC Card I/O Mode Write AC Characteristics	26				
		4.3.7 TrueIDE Mode Register & PIO Access	27				
		4.3.8 TrueIDE Mode Multiword DMA	29				
		4.3.9 Ultra DMA AC Characteristics	30				
5.0	Hos	st Access Specification	39				
	5.1	1 Task File Register and Byte/Word/Odd-Byte Mode Mappings					
	5.2	Host Access Interface Modes					
	5.3	3 Card Information Structure (CIS)					
	5.4	5.4 Identify Drive Parameter4					
6.0	Reg	gisters	54				
	6.1	Configuration Registers	54				
	6.2	Task File Registers	55				

7.0	Supported ATA Commands	56
8.0	Security Mode Feature Set	59
	8.1 Security Mode Feature Set Support and Identify Command	59
	8.2 Security Commands	60
9.0	Host Protected Area Feature Set	61
	9.1 HPA Feature Set Support and Identify Command	61
	9.2 HPA Commands	61
10.0	OSMART Feature Set	62
	10.1 SMART Support and Identify Command	62
	10.2 SMART Commands	
	10.3 SMART Attributes	63
11.0	0 Appendix: CompactFlash Adapter	64
	11.1 CF Adapter Ordering Information	64
	11.2 CF Adapter Specifications	
	11.3 CF Adapter Package Dimensions and Pin Locations	65
	11.4 CF Adapter Pin Assignment	66
12.0	0 Contact Information	67
	12.1 STEC Worldwide Headquarters	67
	12.2 STEC Worldwide Locations	67
13 (ORevision History	68

1.0 Ordering Information

Table 1 lists the Ordering Part Number for STEC MACH2 CompactFlash cards.

Cards can be ordered with options by appending the part number with designators (I, -P, -S):

- Configured for STEC Standard LBA/CHS (Part Numbers without -S): Card is optimized for applications requiring STEC Standard LBA/CHS configurations
- Maximized Performance for multiple simultaneous random writes (-S): Card performance is optimized to handle multiple simultaneous random writes.
- Security Command Set Support (-S)
- HPA Command Set Support (-S)
- TrueIDE PIO-only modes (-P): Card has UDMA and MWDMA transfer modes turned off. Use this
 option if required for compatibility.
- Industrial (I): Card has an expanded operating temperature range of -40°C to +85°C.
- SMART Command Set Support (as shown in Table 1): Card issues advisory notification on product wear parameters for scheduled replacement.

Note: While cards are shipped formatted for most applications, STEC recommends reformatting the cards as needed for the customer's application.

Ordering Part Number	Capacity	SMART Support
SLCF128M2TU(I,-P,-S)	128MB	-S
SLCF256M2TU(I,-P,-S)	256MB	-S
SLCF512M2TU(I,-P,-S)	512MB	-S
SLCF1GM2TU(I, -P,-S)	1GB	-S
SLCF2GM2TU(I, -P,-S)	2GB	Standard & -S
SLCF4GM2TU(I, -P)	4GB	Standard
SLCF8GM2TU(I, -P)	8GB	Standard
SLCF16GM2TU(I, -P)	16GB	Standard

Table 1: Ordering Information

Ordering Part Number Legend:

- SLCF = STEC standard CompactFlash card part number prefix
- 128/256/512/1G/2G/4G/8G/16G = 128MB / 256MB / 512MB / 1GB / 2GB / 4GB / 8GB / 16GB Capacity
- M2T = MACH2 controller (2nd Generation)
- U = RoHS-6 compliant lead-free
- Part numbers without "I" = Commercial temperature range (0°C to 70°C)
- I = Industrial temperature range (-40°C to +85°C)
- P = TrueIDE PIO-only modes
- Part numbers without "-S" = Configured for STEC Standard LBA/CHS
- -S = Maximized Performance, Security and HPA Command Sets

2.0 Product Specifications

2.1 Product Marking

STEC cards are labeled as specified by customer, using STEC standard labeling or custom labeling printed from customer-supplied artwork.

2.1.1 Front Label

The STEC standard front label is described in Figure 1 and Table 2.

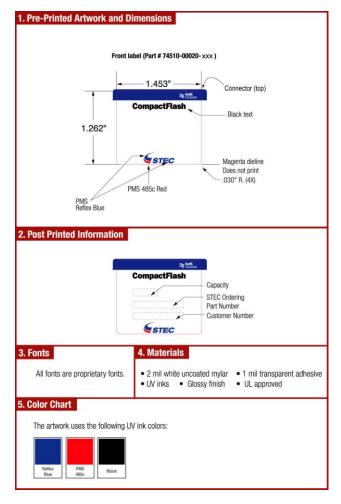


Figure 1: STEC Standard Front Label

Table 2: Front Label Post Printed Fields

Capacity	STEC Ordering Part Number	Customer Number	
As listed in Ordering Information	As listed in Ordering Information	As supplied by customer	

2.1.2 Back Label

The STEC RoHS Back Label is described in Figure 2 and Table 3.

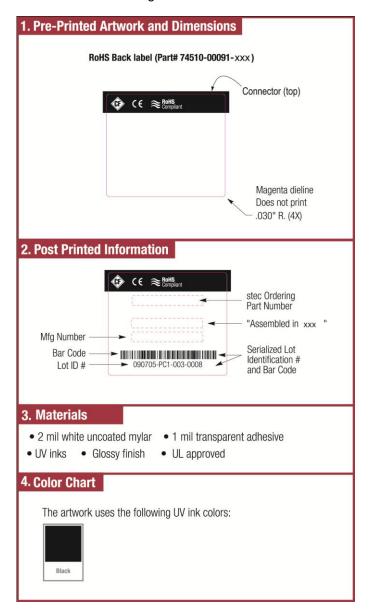


Figure 2: RoHS Back Label

Table 3: Back Label Post Printed Fields

STEC Ordering Part Number	Mfg Number	Assembly Location
SLCF128M2TU	94000-01889-3A2TCU	
SLCF256M2TU	94000-01889-3A3TCU	
SLCF512M2TU	94000-01889-3A4TCU	
SLCF1GM2TU	94000-01889-3A5TCU	
SLCF2GM2TU	94000-01889-3A6TCU	
SLCF4GM2TU	94000-01864-3C7TCU	
SLCF8GM2TU	94000-01864-3C8TCU	
SLCF16GM2TU	94000-01864-3C9TCU	
SLCF128M2TUI	94000-01889-3A2IU	
SLCF256M2TUI	94000-01889-3A3IU	
SLCF512M2TUI	94000-01889-3A4TIU	
SLCF1GM2TUI	94000-01889-3A5TIU	
SLCF2GM2TUI	94000-01889-3A6TIU	Assembled in Malaysia
SLCF4GM2TUI	94000-01864-3C7TIU	Assembled in Malaysia
SLCF8GM2TUI	94000-01864-3C8TIU	
SLCF16GM2TUI	94000-01864-3C9TIU	
SLCF128M2TU-S	94000-01889-5A2TCU	
SLCF256M2TU-S	94000-01889-5A3TCU	
SLCF512M2TU-S	94000-01889-5A4TCU	
SLCF1GM2TU-S	94000-01889-5A5TCU	
SLCF2GM2TU-S	94000-01889-5A6TCU	
SLCF128M2TUI-S	94000-01889-5A2TIU	
SLCF256M2TUI-S	94000-01889-5A3TIU	
SLCF512M2TUI-S	94000-01889-5A4TIU	
SLCF1GM2TUI-S	94000-01889-5A5TIU	
SLCF2GM2TUI-S	94000-01889-5A6TIU	

Mfg Number Legend:

- 94000 =STEC designation for OEM Flash products
- 01889/01864 = PCB # 1889 / 1864
- 3A/3C/5A/5C = Product revision
- 2-9 = Capacity Designator randomly assigned per PCB number based on designator availability
- **T** = Model Revision
- **C/I** = Commercial / Industrial Operating Temperature
- **U** = RoHS-6 compliant lead free

Note: Mfg Number for products not listed is assigned when BOM is created.

2.2 Package Dimensions and Pin Locations

Table 4 and Figure 3 show the mechanical dimensions of the CF Card Type I.

Table 4: Mechanical dimensions CF Card Type I

Parameter	Value
Length	36.40 ± 0.15 mm (1.433 ±. 0.006 in)
Width	42.80 ± 0.10 mm (1.685 ± 0.004 in)
Height (including label area)	3.30 ± 0.10 mm (0.130 ± 0.004 in)

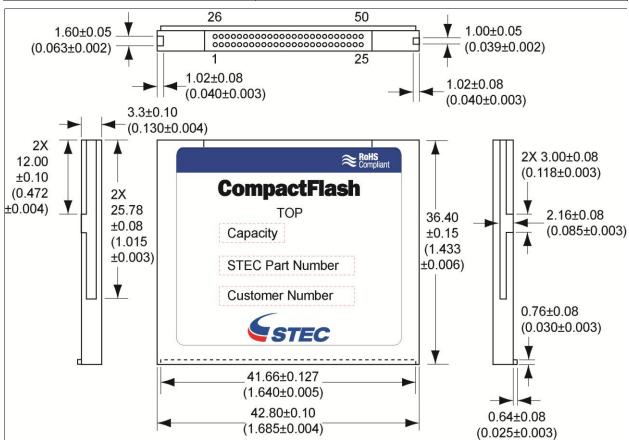


Figure 3: Mechanical dimensions CF Card Type I

2.3 Pin Assignments

Table 5: CF Card Pin Assignment

Pin	Signal Name	Pin Type	Pin	Signal Name	Pin Type
Number	Signal Name	Fill Type	Number	Signal Name	riii i ype
1	GND	Ground	26	-CD1	0
2	D03	I/O	27	D11	I/O
3	D04	I/O	28	D12	I/O
4	D05	I/O	29	D13	I/O
5	D06	I/O	30	D14	I/O
6	D07	I/O	31	D15	I/O
7	-CE1 -CS0	I	32	-CE2 -CS1	1
8	A10	I	33	-VS1	0
9	-OE -ATASEL	I	34	-IORD HSTROBE (-)HDMARDY	I
10	A09	I	35	-IOWR STOP	1
11	A08	I	36	-WE	I
12	A07	I	37	READY -IREQ INTRQ	0
13	VCC	Power	38	VCC	Power
14	A06	I	39	-CSEL	I
15	A05	I	40	-VS2	0
16	A04	I	41	(-)RESET	I
17	A03	I	42	-WAIT IORDY -DDMARDY DSTROBE	0
18	A02	I	43	-INPACK (-)DMARQ	0
19	A01	I	44	-REG (-)DMACK	I
20	A00	I	45	BVD2 -SPKR -DASP	I/O
21	D00	I/O	46	BVD1 -STSCHG -PDIAG	I/O
22	D01	I/O	47	D08	I/O
23	D02	I/O	48	D09	I/O
24	WP -IOIS16 -IOCS16	О	49	D10	I/O
25	-CD2	0	50	GND	Ground

Legend: "-" = Low active

2.4 Signal Description

Note: Part numbers with -P extension do not support MDWMA and UMDA.

Table 6: CF Card Signal Description

Signal Name	Туре	Pin Number	Description
BVD2 (PC Card Memory Mode)	I/O	45	This output line is always driven to a high state in Memory Mode since a battery is not required for this product.
-SPKR (PC Card I/O Mode)			This output line is always driven to a high state in I/O Mode since this product produces no audio.
-DASP (TrueIDE Mode)			In the TrueIDE Mode, this input/output is the Disk Active/Slave Present signal in the Master/Slave handshake protocol.
-CD1, -CD2 (PC Card Memory Mode)	I/O	26, 25	These Card Detect pins are connected to ground on the card. They are used by the host to determine that the card is fully inserted into the socket.
-CD1, -CD2 (PC Card I/O Mode)			This signal is the same as Memory Mode.
-CD1, -CD2 (TrueIDE Mode)			These signals are not used in TrueIDE Mode.
D15 - D00 (PC Card Memory Mode)	I/O	31, 30, 29, 28, 27, 49, 48, 47, 6, 5, 4, 3, 2, 23, 22, 21	These lines carry the Data, Commands and Status information between the host and the controller. D00 is the LSB of the Even Byte of the Word. D08 is the LSB of the Odd Byte of the Word.
D15 - D00 PC Card I/O Mode			This signal is the same as the PC Card Memory Mode signal.
D15 - D00 (TrueIDE Mode)			In TrueIDE Mode, all Task File operations occur in byte mode on the low order bus D00-D07 while all data transfers are 16 bit using D00-D15.
-IOWR (PC Card Memory Mode except UDMA protocol active)	1	35	This signal is not used in this mode.
STOP (All Modes: UDMA protocol active)			In all modes, while UDMA mode protocol is active, the assertion of this signal causes the termination of the UDMA data burst.
-IOWR (PC Card I/O Mode except UDMA protocol active)			The I/O Write strobe pulse is used to clock I/O data onto the data bus and into the controller registers. The clocking occurs on the negative to positive edge of the signal (trailing edge).
STOP (All Modes: UDMA protocol active)			Same as STOP above.
-IOWR (TrueIDE Mode except UDMA protocol active)			In TrueIDE Mode, this signal has the same function as in PC Card I/O Mode.
STOP (All Modes: UDMA protocol active)			Same as STOP above.

Signal Name	Туре	Pin Number	Description
-IORD (PC Card Memory Mode except UDMA protocol active)	I	34	This signal is not used in this mode.
-HDMARDY (All Modes: UDMA protocol DMA Read)			In all modes when UDMA mode DMA Read is active, this signal is asserted by the host to indicate that the host is ready to receive UDMA data-in bursts. The host may negate -HDMARDY to pause an UDMA transfer
HSTROBE (All Modes: UDMA protocol DMA Write)			In all modes when UDMA mode DMA Write is active, this signal is the data out strobe generated by the host. Both the rising and falling edge of HSTROBE cause data to be latched by the device. The host may stop generating HSTROBE edges to pause an UDMA data-out burst.
-IORD (PC Card I/O Mode except UDMA protocol active)			This is an I/O Read strobe generated by the host. This signal gates I/O data onto the bus from the CF Card.
-HDMARDY (All Modes: UDMA protocol DMA Read)			Same as -HDMARDY above.
HSTROBE (All Modes: UDMA protocol DMA Write)			Same as HSTROBE above.
-IORD (TrueIDE Mode except UDMA protocol active)			In TrueIDE Mode, this signal has the same function as in PC Card I/O Mode.
-HDMARDY (All Modes: UDMA protocol DMA Read)			Same as -HDMARDY above.
HSTROBE (All Modes: UDMA protocol DMA Write)			Same as HSTROBE above.
-WE (PC Card Memory Mode)	I	36	This is a signal driven by the host and used for strobing memory write data into the registers. It is also used for writing the configuration registers.
-WE (PC Card I/O Mode)			In PC Card I/O Mode, this signal is used for writing the configuration registers.
-WE (TrueIDE Mode)			In TrueIDE Mode, this input signal is not used and should be connected to VCC.
-OE (PC Card Memory Mode)	I	9	This is an Output Enable strobe generated by the host interface. It is used to read data from the CF Card in PC Card Memory Mode and to read the CIS and configuration registers.
-OE (PC Card I/O Mode)			In PC Card I/O Mode, this signal is used to read the CIS and configuration registers.
-ATASEL (TruelDE Mode)			To enable TrueIDE Mode, this input should be grounded by the host.

Signal Name	Туре	Pin Number	Description
READY (PC Card Memory Mode)	0	37	In Memory Mode, this signal is set high when the CF Card is ready to accept a new data transfer operation and held low when the CF Card is busy. The host must provide a pull-up resistor. At power up and at reset, the READY signal is held low (busy) until the CF Card completes its power up or reset function. No access of any type should be made to the CF Card during this time. The READY signal is held high (disabled from being busy) when the CF Card is powered up with RESET continuously disconnected or asserted high.
-IREQ (PC Card I/O Mode)			After card has been configured for I/O operation, signal is used as active low interrupt request. Strobe low to generate pulse mode interrupt or hold low for level mode interrupt.
INTRQ (TrueIDE Mode)			In TrueIDE Mode, this signal is the active high interrupt request to the host.
A10 - A0 (PC Card Memory Mode)	I	8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20	These address lines along with the -REG signal are used to select the following: the I/O port address registers within the CF Card, the memory mapped port address registers within the CF Card, a byte in the CIS and the Configuration Control and Status Registers.
A10 - A0 (PC Card I/O Mode)			This signal is the same as the PC Card Memory Mode signal.
A2 - A0 (TrueIDE Mode)		18, 19, 20	In TrueIDE Mode only, A2:A0 are used to select the one of eight registers in the Task File. The remaining address lines should be grounded.
-CE1, -CE2 (PC Card Memory Mode) Card Enable	I	7, 32	These input signals are used both to select the CF Card and to indicate to the CF Card whether a byte or a word operation is being performedCE2 always accesses the odd byte of the wordCE1 accesses the even byte or the odd byte of the word depending on A0 and -CE2. A multiplexing scheme based on A0, -CE1, -CE2 allows 8-bit hosts to access all data on D0-D7.
-CE1, -CE2 (PC Card I/O Mode) Card Enable			This signal is the same as the PC Card Memory Mode signal.
-CS0, -CS1 (TrueIDE Mode)			In the TrueIDE Mode, -CS0 is the chip enable for the task file registers while -CS1 is used to select the Alternate Status Register and the CF Card Control Register.
-CSEL (PC Card Memory Mode)	I	39	This signal is not used for this mode.
-CSEL (PC Card I/O Mode)			This signal is not used for this mode.
-CSEL (TrueIDE Mode)			This internally pulled up signal is used to configure the card as a Master or Slave. When the pin is grounded, the card is configured as a Master. When the pin is open, the card is configured as a Slave.

Signal Name	Туре	Pin Number	Description
-REG (PC Card Memory Mode except UDMA protocol active) Attribute Memory Select	I	44	This signal distinguishes between accesses to Common Memory (high) and Register Attribute Memory (low). In PC Card Memory Mode, when UDMA protocol is supported by host and host has enable UDMA on the card, the host shall keep the –REG signal negated during the execution of any DMA Command by the device.
-DMACK (PC Card Memory Mode when UDMA protocol is active)			This is a DMA Acknowledge signal that is asserted by the host in response to (-)DMARQ to initiate DMA transfers. In TrueIDE Mode, while DMA operations are not active, the card shall ignore the (-)DMARQ signal, including a floating condition. If DMA operation is not supported by a TrueIDE Mode only host, this signal should be driven high or connected to VCC by the host. A host that does not support DMA and implements both PC Card and TrueIDE modes of operation need not alter the PC Card mode connections while in TrueIDE mode as long as this does not prevent proper operation all modes
-REG (PC Card I/O Mode except UDMA protocol active) DMACK (PC Card I/O Mode when			The signal must also be active (low) during I/O Cycles when the I/O address is on the bus. In PC Card I/O Mode, when UDMA protocol is support by host and host has enable UDMA on card, the host shall keep the –REG signal asserted during the execution of any DMA Command by the device. Same as (-)DMACK above.
UDMA protocol is active) -DMACK			Same as (-)DMACK above.
(TrueIDE Mode) WP (PC Card Memory Mode) Write Protect	0	24	The CF Card does not have a write protect switch; therefore, this signal is held low after the completion of the reset initialization sequence.
-IOIS16 (PC Card I/O Mode)			A low signal indicates that a 16 bit or odd byte only operation can be performed at the addressed port.
-IOCS16 (TrueIDE Mode)			In TrueIDE Mode this output signal is asserted low when this device is expecting a word data transfer cycle.

Signal Name	Туре	Pin Number	Description
-INPACK (PC Card Memory Mode except UDMA protocol active)	0	43	This signal is not used in this mode.
-DMARQ (PC Card Memory Mode: UDMA protocol active)			This signal is a DMA Request that is used for DMA data transfers between host and device. It shall be asserted by the device when it is ready to transfer data to or from the host. For Multiword DMA transfers, the direction of data transfer is controlled by -IORD and -IOWR. This signal is used in a handshake manner with (-)DMACK, i.e., the device shall wait until the host asserts (-)DMACK before negating (-)DMARQ, and re-asserting (-)DMARQ if there is more data to transfer.
			In PCMCIA I/O Mode, the -DMARQ shall be ignored by the host while the host is performing an I/O Read cycle to the device. The host shall not initiate an I/O Read cycle while -DMARQ is asserted by the device.
			In TrueIDE Mode, DMARQ shall not be driven when the device is not selected in the Drive-Head register.
			While a DMA operation is in progress, -CS0 (-CE1)and -CS1 (-CE2) shall be held negated and the width of the transfers shall be 16 bits.
			If there is no hardware support for TrueIDE DMA mode in the host, this output signal is not used and should not be connected at the host. In this case, the BIOS must report that DMA mode is not supported by the host so that device drivers will not attempt DMA mode operation.
			A host that does not support DMA mode and implements both PC Card and TrueIDE modes of operation need not alter the PC Card mode connections while in TrueIDE mode as long as this does not prevent proper operation in any mode.
-INPACK (PC Card I/O Mode except UDMA protocol active) Input Acknowledge			The Input Acknowledge signal is asserted by the CF Card when it is selected and responding to an I/O read cycle at the address that is on the bus. The host uses this signal to control the enable of any input data buffers between the CF Card and the host's CPU.
-DMARQ (PC Card I/O Mode: UDMA protocol active)			Same as (-)DMARQ above.
DMARQ (TrueIDE Mode)			Same as (-)DMARQ above.
BVD1 (PC Card Memory Mode)	I/O	46	This signal is asserted high as since a battery is not used with this product.
-STSCHG (PC Card I/O Mode) Status Changed			Asserted low to alert host to changes in READY, Write Protect states. Use is controlled by Configuration and Status Register.
-PDIAG (TrueIDE Mode)			In TrueIDE Mode, this input/output signal is the Pass Diagnostic signal in the Master/Slave handshake protocol.

Signal Name	Туре	Pin Number	Description
-WAIT (PC Card Memory Mode except UDMA protocol active)	0	42	This signal is not used by the CF Card, and is pulled up to VCC through a 4.7K ohm resistor.
-DDMARDY (All Modes: UDMA Write protocol active)			In all modes, when Ultra DMA mode DMA Write is active, this signal is asserted by the device during a data burst to indicate that the device is ready to receive Ultra DMA data out bursts. The device may negate -DDMARDY to pause an Ultra DMA transfer.
DSTROBE (All Modes: UDMA Read protocol active)			In all modes, when Ultra DMA mode DMA Read is active, this signal is the data in strobe generated by the device. Both the rising and falling edge of DSTROBE cause data to be latched by the host. The device may stop generating DSTROBE edges to pause an Ultra DMA data in burst
-WAIT (PC Card I/O Mode except UDMA protocol active)			This signal is not used by the CF Card, and is pulled up to VCC through a 4.7K ohm resistor.
-DDMARDY (All Modes: UDMA Write protocol active)			Same as -DDMARDY above.
DSTROBE (All Modes: UDMA Read protocol active)			Same as DSTROBE above.
IORDY (TrueIDE Mode except UDMA protocol active)			This signal is not used by the CF Card, and is pulled up to VCC through a 4.7K ohm resistor.
-DDMARDY (All Modes: UDMA Write protocol active)			Same as -DDMARDY above.
DSTROBE (All Modes: UDMA Read protocol active)			Same as DSTROBE above.
GND (PC Card Memory Mode)	GND	1, 50	Ground
GND (PC Card I/O Mode)			Ground
GND (TrueIDE Mode)			Ground
VCC (PC Card Memory Mode)	VCC	13, 38	+5 V or 3.3V power
VCC (PC Card I/O Mode)			+5 V or 3.3V power
VCC (TrueIDE Mode)			+5 V or 3.3V power
RESET (PC Card Memory Mode)	1	41	When RESET is high, this signal resets the CF Card. The CF Card is reset only at power up if this signal is left high or open from power-up. The CF Card can also be reset when the soft reset bit in the Configuration Option Register is set.
RESET (PC Card I/O Mode)			This signal is the same as the PC Card Memory Mode signal.
-RESET (TrueIDE Mode)			In the TrueIDE Mode this input pin is the active low hardware reset from the host.

Signal Name	Туре	Pin Number	Description
-VS1 -VS2 (PC Card Memory Mode)	0	33, 40	-VS1 is grounded, so that the card CIS can be read 3.3 voltsVS2 is reserved for a secondary voltage and is not connected.
-VS1 -VS2 (PC Card I/O Mode)			This signal is the same for all modes.
-VS1 -VS2 (TrueIDE Mode)			This signal is not used in IDE Mode.

2.5 Performance

Table 7: CF Card Read/Write Performance

Parameter	Flash Type	128MB-2GB	4GB-16GB
Data transfer rate to/from host	SLC	66 MBytes/s (burst)	66 MBytes/s (burst)
Sustained read	SLC	up to 20 MBytes/s	up to 37 MBytes/s
Sustained write	SLC	up to 12 MBytes/s	up to 22 MBytes/s

Note: Performance may vary under extreme temperatures.

2.6 LBA and CHS Parameters

Table 8: LBA and CHS Parameters per capacity

Capacity	Flash Type	Logical Block Addresses (LBA)	Cylinders (C) (standard)	Heads (H)	Sectors/Track (S)
128MB	SLC	250,880	980	8	32
128MB (S option)	SLC	236,544	924	8	32
256MB	SLC	501,760	980	16	32
256MB (S option)	SLC	473,088	924	16	32
512MB	SLC	1,000,944	993	16	63
512MB (S option)	SLC	946,512	939	16	63
1GB	SLC	2,001,888	1,986	16	63
1GB (S option)	SLC	1,893,024	1,878	16	63
2GB	SLC	4,001,760	3,970	16	63
2GB (S option)	SLC	3,786,048	3,756	16	63
4GB	SLC	7,276,752	7,219	16	63
8GB	SLC	14,568,624	14,453	16	63
16GB	SLC	29,191,680	28,960	16	63

Notes: The unformatted capacity of the card may be less than the perceived or stated capacity on the label. Please use the LBA count in this table for reference.

2.7 Standards Compliance

STEC products specified in this document are certified for compliance with the following industry standards:

- CFA v4.1, PCMCIA v7.0
- UL 950
- CE, and FCC Class B & D
- RoHS

2.7.1 CE and FCC Class B & D

The STEC products specified in this document meet the following requirements and limits of the European Standards:

Class B requirements of the following European Standard:

EN 55022: 1998 – "Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement"

Class D limits of the following European Standards:

EN 61000-3-2 "Electromagnetic compatibility (EMC) Part 3-2: Limits – Limits for harmonic current emissions (equipment input current up to and including 16 A per phase)"

EN 61000-3-3: 1995 – "Part 3: Limits – Section 3: Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current ≤ 16A"

EN 55024 - "Information technology equipment - Immunity characteristics - Limits and methods of measurement"

2.7.2 RoHS

STEC certifies that its products do not contain any of the restricted substances as stated below and are in compliance with RoHS EU directive 2002/95/EC, specifically:

- Mercury (Hg)
- Cadmium Cd)
- Chromium VI (Cr +6)
- Polybrominated biphenyl (PBB)
- Polybrominated biphenyl ether (PBDE)
- Lead (Pb)

Materials used in the STEC's products are limited to the following:

- Steel, Nylon 6/6, PCB laminate
- Copper, Gold, Nickel
- Silicon on ICs and Components
- Polyester on Labels

3.0 Environmental Specifications

3.1 Recommended Operating Conditions

Table 9: CF Card Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Commercial Operating Temperature	Ta1	0	25	70	°C
Industrial Operating Temperature	Ta2	-40	-	+85	°C
VCC voltage (5V)	VCC5.0	4.5	5.0	5.5	V
VCC voltage (3.3V)	VCC3.3	3.13	3.3	3.46	V

3.2 Reliability

Table 10: CF Card Reliability

Parameter	Value
MTBF	>4,000,000 power on hours, (per MIL-HDBK-217F, rated at 40°C, ground benign environment)
Endurance	2M write operations
Uncorrectable Bit Error Rate (UBER)	<1 uncorrectable error per 10 ¹⁴ bits read
Data retention	10 years

3.3 Shock, Vibration, and Humidity

Table 11: CF Card Shock, Vibration & Humidity

Parameter	Value
Shock	1.5K G peak, 0.5ms pulse duration, five (5) pulses per each of six (6) directions (per JEDEC JESD22 standard, method B110)
Vibration	20 G peak, 20Hz-2000Hz, 4 cycles per direction (per JEDEC JESD22 standard, method B103)
Humidity	85°C 85% RH, 500 hrs

4.0 Electrical Specifications

4.1 Absolute Maximum Ratings

Table 12: CF Card Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage	Vin, Vout	-0.5 to VCC +0.5	V
Storage temperature range	Storage temperature range Tstg		°C

4.2 DC Characteristics

Measurements at Recommended Operating Conditions unless otherwise specified.

Table 13: CF Card DC Characteristics

Symbol	Parameter	Min	Max	Unit	Notes
VIL (5V)	Input LOW Voltage		+0.8	V	VCC= 5.0V
VIL (3.3V)	Input LOW Voltage		+0.6	V	VCC= 3.3V
VIH (5V)	Input HIGH Voltage	4.0		V	VCC= 5.0V
VIH (3.3V)	Input HIGH Voltage	2.4		V	VCC= 3.3V
VOL	Output LOW Voltage		GND+0.4	V	VCC=5.0V or 3.3V
VOH	Output HIGH Voltage	VCC-0.8		V	VCC=5.0V or 3.3V
ICCSB	Standby Mode		3	mA	ICC at VCC=5.0V or 3.3V
	Operating Current (128MB-2GB)		95	mA	
ICC	Operating Current (4GB-8GB)		145	mA	ICC at VCC=5.0V or 3.3V
	Operating Current (16GB)		180	mA	

4.3 AC Characteristics

Measurements at Recommended Operating Conditions, unless otherwise specified.

4.3.1 PC Card Memory Mode Attribute Memory Read

Table 14: PC Card Memory Mode Attribute Memory Read AC Characteristics

Parameter	Symbol	IEEE Symbol	Min (ns)	Max (ns)
Read Cycle Time	tc(R)	tAVAV	300	
Address Access Time	ta(A)	tAVQV		300
Card Enable Access Time	ta(CE)	tELQV		300
Output Enable Access Time	ta(OE)	tGLQV		150
Output Disable Time from -CE	tdis(CE)	tEHQZ		100
Output Disable Time from -OE	tdis(OE)	tGHQZ		100
Address Setup Time	tsu(A)	tAVGL	30	
Output Enable Time from -CE	ten(CE)	tELQNZ	5	
Output Enable Time from -OE	ten(OE)	tGLQNZ	5	
Data Valid from Address Change	tv(A)	tAXQX	0	



Figure 4: PC Card Memory Mode Attribute Memory Read Timing Diagram

4.3.2 PC Card Memory Mode Attribute Memory Write

Table 15: PC Card Memory Mode Attribute Memory Write AC Characteristics

Parameter	Symbol	IEEE Symbol	Min (ns)	Max (ns)
Write Cycle Time	tc(W)	tAVAV	250	
Write Pulse Width	tw(WE)	tWLWH	150	
Address Setup Time	tsu(A)	tAVWL	30	
Data Setup Time (-WE)	tsu(D-WEH)	tDVWH	80	
Data Hold Time	th(D)	tWMDX	30	
Write Recovery Time	trec(WE)	tWMAX	30	

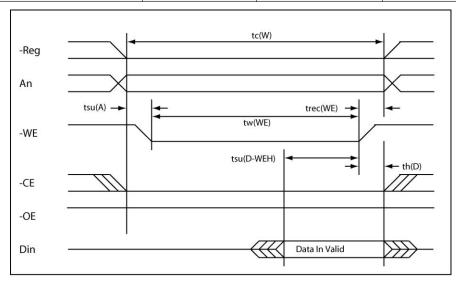


Figure 5: PC Card Memory Mode Attribute Memory Write Timing Diagram

4.3.3 PC Card Memory Mode Common Memory Read

Table 16: PC Card Memory Mode Common Memory Read AC Characteristics

Parameter	Symbol	IEEE Symbol	250 ns Cycle Time Mode	120 ns Cycle Time Mode	100 ns Cycle Time Mode	80 ns Cycle Time Mode
Output Enable Access Time (max)	ta(OE)	tGLQV	125	60	50	45
Output Disable Time from OE (max)	tdis(OE)	tGHQZ	100	60	50	45
Address Setup Time (min)	tsu(A)	tAVGL	30	15	10	10
Address Hold Time (min)	th(A)	tGHAX	20	15	15	10
CE Setup before OE (min)	tsu(CE)	tELGL	0	0	0	0
CE Hold following OE (min)	th(CE)	tGHEH	20	15	15	10
Wait Delay Falling from OE (max)	tv(WT-OE)	tGLWTV	35	35	35	N/A
Data Setup for Wait Release (max)	tv(WT)	tQVWTH	0	0	0	N/A
Wait Width Time (max)	tw(WT)	tWTLWTH	350	350	350	N/A

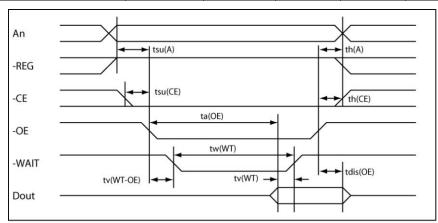


Figure 6: PC Card Memory Mode Common Memory Read Timing Diagram

4.3.4 PC Card Memory Mode Common Memory Write

Table 17: PC Card Memory Mode Common Memory Write AC Characteristics

Parameter	Symbol	IEEE Symbol	250 ns Cycle Time Mode	120 ns Cycle Time Mode	100 ns Cycle Time Mode	80 ns Cycle Time Mode
Data Setup before WE(min)	tsu(D-WEH)	tDVWH	80	50	40	30
Data Hold following WE (min)	th(D)	tWMDX	30	15	10	10
WE Pulse Width (min)	tw(WE)	tWLWH	150	70	60	55
Address Setup Time (min)	tsu(A)	tAVWL	30	15	10	10
CE Setup before WE (min)	tsu(CE)	tELWL	0	0	0	0
Write Recovery Time (min)	trec(WE)	tWMAX	30	15	15	15
Address Hold Time (min)	th(A)	tGHAX	20	15	15	15
CE Hold following WE (min)	th(CE)	tGHEH	20	15	15	10
Wait Delay Falling from WE (max)	tv(WT-WE)	tWLWTV	35	35	35	N/A
WE High from Wait Release (min)	tv(WT)	tWTHWH	0	0	0	N/A
Wait Width Time (max)	tw(WT)	tWTLWTH	350	350	350	N/A

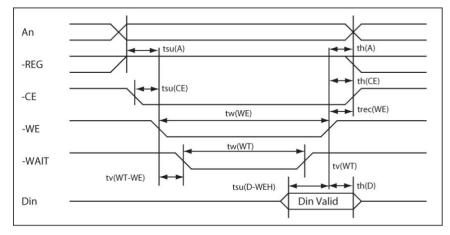


Figure 7: PC Card Memory Mode Common Memory Write Timing Diagram

4.3.5 PC Card I/O Mode Read AC Characteristics

Table 18: PC Card I/O Mode Read AC Characteristics

Parameter	Symbol	IEEE Symbol	250 ns Cycle Time Mode	120 ns Cycle Time Mode	100 ns Cycle Time Mode	80 ns Cycle Time Mode
Data Delay after -IORD (max)	td(IORD)	tIGLQV	100	50	50	45
Data Hold following -IORD (min)	th(IORD)	tIGHQX	0	5	5	5
-IORD Width Time (min)	tw(IORD)	tIGLIGH	165	70	65	55
Address Setup before -IORD (min)	tsuA(IORD)	tAVIGL	70	25	25	15
Address Hold following -IORD (min)	thA(IORD)	tIGHAX	20	10	10	10
-CE Setup before -IORD (min)	tsuCE(IORD)	tELIGL	5	5	5	5
-CE Hold following -IORD (min)	thCE(IORD)	tIGHEH	20	10	10	10
-REG Setup before -IORD (min)	tsuREG(IORD)	tRGLIGL	5	5	5	5
-REG Hold following -IORD (min)	thREG(IORD)	tIGHRGH	0	0	0	0

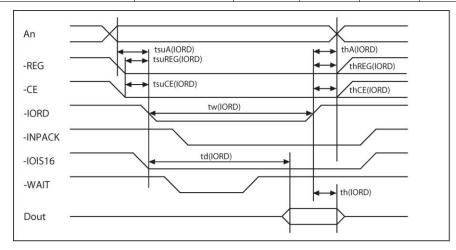


Figure 8: PC Card I/O Mode Read Timing Diagram

4.3.6 PC Card I/O Mode Write AC Characteristics

Table 19: PC Card I/O Mode Write AC Characteristics

Parameter	Symbol	IEEE Symbol	250 ns Cycle Time Mode	120 ns Cycle Time Mode	100 ns Cycle Time Mode	80 ns Cycle Time Mode
Data Setup before -IOWR (min)	tsu(IOWR)	tDVIWH	60	20	20	15
Data Hold following -IOWR (min)	th(IOWR)	tIWHDX	30	10	5	5
-IOWR Width Time (min)	tw(IOWR)	tIWLIWH	165	70	65	55
Address Setup before -IOWR (min)	tsuA(IOWR)	tAVIWL	70	25	25	15
Address Hold following -IOWR (min)	thA(IOWR)	tIWHAX	20	20	10	10
-CE Setup before -IOWR (min)	tsuCE(IOWR)	tELIWL	5	5	5	5
-CE Hold following -IOWR (min)	thCE(IOWR)	tIWHEH	20	20	10	10
-REG Setup before -IOWR (min)	tsuREG(IOWR)	tRGLIWL	5	5	5	5
-REG Hold following -IOWR (min)	thREG(IOWR)	tIWHRGH	0	0	0	0

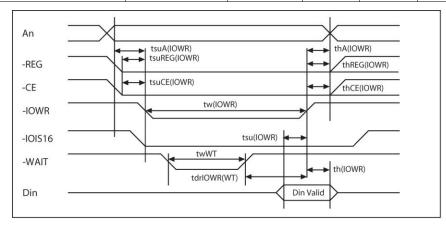


Figure 9: PC Card I/O Mode Write Timing Diagram

4.3.7 TrueIDE Mode Register & PIO Access

Table 20: TrueIDE Mode Register & PIO Access AC Characteristics

Parameter	Symbol	Mode0	Mode1	Mode2	Mode3	Mode4	Mode5	Mode6	Unit
Cycle time (min)	t0	600	383	240	180	120	100	80	ns
Address valid to -IORD/-IOWR (min) setup	t1	70	50	30	30	25	15	10	ns
-IORD/-IOWR (min)	t2	165	125	100	80	70	65	55	ns
-IORD/-IOWR register (min) 8bit	t2	290	290	290	80	70	65	55	ns
-IORD/-IOWR recovery time (min)	t2i	_	_	_	70	25	25	20	ns
-IOWR data setup (min)	t3	60	45	30	30	20	20	15	ns
-IOWR data hold (min)	t4	30	20	15	10	10	5	5	ns
-IORD data setup (min)	t5	50	35	20	20	20	15	10	ns
-IORD data hold (min)	t6	5	5	5	5	5	5	5	ns
-IORD data tristate (max)	t6z	30	30	30	30	30	20	20	ns
Addresses valid to -IOCS16 assert. (max)	t7	90	50	40	N/A	N/A	N/A	N/A	ns
Address valid to - IOCS16 release (max)	t8	60	45	30	N/A	N/A	N/A	N/A	ns
-IORD/-IOWR to address valid hold	t9	20	15	10	10	10	10	10	ns
Read Data valid to IORDY active (min), if IORDY initially low after tA	tRD	0	0	0	0	0	0	0	ns
IORDY setup	tA	35	35	35	35	35	N/A	N/A	ns
IORDY pulse width (max)	tB	1,250	1,250	1,250	1,250	1,250	N/A	N/A	ns
IORDY assertion to release (max)	tC	5	5	5	5	5	N/A	N/A	ns

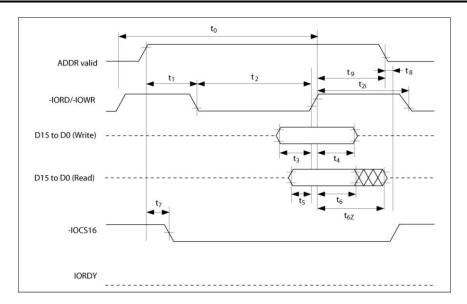


Figure 10: TrueIDE Mode PIO Access Timing Diagram

4.3.8 TrueIDE Mode Multiword DMA

Note: Part numbers with -P extension do not support MWDMA.

Table 21: TrueIDE Mode Multiword DMA AC Characteristics

Parameter	Symbol	Mode 0	Mode 1	Mode 2	Mode 3	Mode 4	Unit
Cycle time (min)	t ₀	480	150	120	100	80	ns
-IORD/-IOWR Asserted Width (min)	t _D	215	80	70	65	55	ns
-IORD data access (max)	t _E	150	60	50	50	45	ns
-IORD data hold (min)	t _F	5	5	5	5	5	ns
-IORD/-IOWR data setup (min)	t _G	100	30	20	15	10	ns
-IOWR data hold (min)	t _H	20	15	10	5	5	ns
DMACK to -IORD/-IOWR setup (min)	tı	0	0	0	0	0	ns
-IORD/-IOWR to DMACK hold (min)	t∪	20	5	5	5	5	ns
-IORD negated pulse width (max)	t _{KR}	50	50	25	25	20	ns
-IOWR negated pulse width (min)	t _{KW}	215	50	25	25	20	ns
-IORD to DMARQ delay (max)	t _{LR}	120	40	35	35	35	ns
-IOWR to DMARQ delay (max)	t _{LW}	40	40	35	35	35	ns

Figure 11: TrueIDE Mode Multiword DMA Timing Diagram

4.3.9 Ultra DMA AC Characteristics

Note: Part numbers with -P extension do not support TrueIDE UDMA.

Table 22: UDMA Burst Timing Requirements

Symbol	UDMA0 (ns)	UDMA1 (ns)	UDMA2 (ns)	UDMA3 (ns)	UDMA4 (ns)	Measure location (see Note2)
t2CYCTYP (min)	240	160	120	90	60	Sender
tCYC (min)	112	73	54	39	25	Note3
t2CYC (min)	230	153	115	86	57	Sender
tDS (min)	15.0	10.0	7.0	7.0	5.0	Recip'nt
tDH (min)	5.0	5.0	5.0	5.0	5.0	Recip'nt
tDVS (min)	70.0	48.0	31.0	20.0	6.7	Sender
tDVH (min)	6.2	6.2	6.2	6.2	6.2	Sender
tCS (min)	15.0	10.0	7.0	7.0	5.0	Device
tCH (min)	5.0	5.0	5.0	5.0	5.0	Device
tCVS (min)	70.0	48.0	31.0	20.0	6.7	Host
tCVH (min)	6.2	6.2	6.2	6.2	6.2	Host
tZFS (min)	0	0	0	0	0	Device
tDZFS (min)	70.0	48.0	31.0	20.0	6.7	Sender
tFS (max)	230	200	170	130	120	Device
tLI (min)	0	0	0	0	0	Note4
tLI (max)	150	150	150	100	100	Note4
tMLI (min)	20	20	20	20	20	Host
tUI (min)	0	0	0	0	0	Host
tAZ (max)	10	10	10	10	10	Note5
tZAH (min)	20	20	20	20	20	Host
tZAD (min)	0	0	0	0	0	Device
tENV (min)	20	20	20	20	20	Host
tENV (max)	70	70	70	55	55	Host
tRFS (max)	75	70	60	60	60	Sender
tRP (min)	160	125	100	100	100	Recip'nt
tIORDYZ (max)	20	20	20	20	20	Device
tZIORDY (min)	0	0	0	0	0	Device
tACK (min)	20	20	20	20	20	Host
tSS (min)	50	50	50	50	50	Sender

Notes:

- 1. All timing measurement switching points (low to high and high to low) shall be taken at 1.5 V.
- 2. All signal transitions for a timing parameter shall be measured at the connector specified in the measurement location column. For example, in the case of tRFS, both STROBE and -DMARDY transitions are measured at the sender connector.
- 3. The parameter tCYC shall be measured at the recipient's connector farthest from the sender.
- 4. The parameter tLI shall be measured at the connector of the sender or recipient that is responding to an incoming transition from the recipient or sender respectively. Both the incoming signal and the outgoing response shall be measured at the same connector.
- 5. The parameter tAZ shall be measured at the connector of the sender or recipient that is driving the bus but must release the bus to allow for a bus turnaround.

Table 23: UDMA Timing Parameter Descriptions

Symbol	Parameter
t2CYCTYP	Typical sustained average two cycle time
tCYC	Cycle time allowing for asymmetry and clock variations (from STROBE edge to STROBE edge)
t2CYC	Two cycle time allowing for clock variations (from rising edge to next rising edge or from falling edge to next falling edge of STROBE)
tDS	Data setup time at recipient (from data valid until STROBE edge)
tDH	Data hold time at recipient (from STROBE edge until data may become invalid)
tDVS	Data valid setup time at sender (from data valid until STROBE edge)
tDVH	Data valid hold time at sender (from STROBE edge until data may become invalid)
tCS	CRC word setup time at device
tCH	CRC word hold time device
tCVS	CRC word valid setup time at host (from CRC valid until -DMACK negation)
tCVH	CRC word valid hold time at sender (from -DMACK negation until CRC may become invalid)
tZFS	Time from STROBE output released-to-driving until the first transition of critical timing.
tDZFS	Time from data output released-to-driving until the first transition of critical timing.
tFS	First STROBE time (for device to first negate DSTROBE from STOP during a data in burst)
tLl	Limited interlock time
tMLI	Interlock time with minimum
tUI	Unlimited interlock time
tAZ	Maximum time allowed for output drivers to release (from asserted or negated)
tZAH	Minimum delay time required for output
tZAD	Drivers to assert or negate (from released)
tENV	Envelope time (from -DMACK to STOP and -HDMARDY during data in burst initiation and from DMACK to STOP during data out burst initiation)
tRFS	Ready-to-final-STROBE time (no STROBE edges shall be sent this long after negation of - DMARDY)
tRP	Ready-to-pause time (that recipient shall wait to pause after negating -DMARDY)
tIORDYZ	Maximum time before releasing IORDY
tZIORDY	Minimum time before driving IORDY
tACK	Setup and hold times for -DMACK (before assertion or negation)
tSS	Time from STROBE edge to negation of DMARQ or assertion of STOP (when sender terminates a burst)

Table 24: Ultra DMA Sender and Recipient IC Timing Requirements

Symbol	UDMA0	UDMA1	UDMA2	UDMA3	UDMA4	Unit
tDSIC (min)	14.7	9.7	6.8	6.8	4.8	ns
tDHIC (min)	4.8	4.8	4.8	4.8	4.8	ns
tDVSIC (min)	72.9	50.9	33.9	22.6	9.5	ns
tDVHIC (min)	9.0	9.0	9.0	9.0	9.0	ns

Table 25: Ultra DMA Sender and Recipient IC Timing Parameter Descriptions

Symbol	Parameter
tDSIC	Recipient IC data setup time (from data valid until STROBE edge)
tDHIC	Recipient IC data hold time (from STROBE edge until data may become invalid)
tDVSIC	Sender IC data valid setup time (from data valid until STROBE edge)
tDVHIC	Sender IC data valid hold time (from STROBE edge until data may become invalid

Table 26: Ultra DMA AC Signal Requirements

Symbol	Parameter	Max (V/ns)
SRISE	Rising Edge Slew Rate for any signal	1.25
SFALL	Falling Edge Slew Rate for any signal	1.25

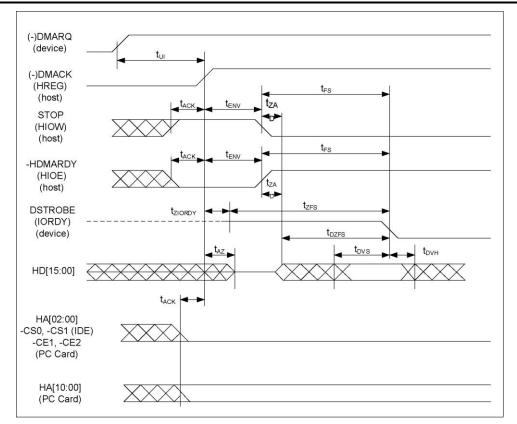


Figure 12: UDMA Data-In Burst Initiation Timing

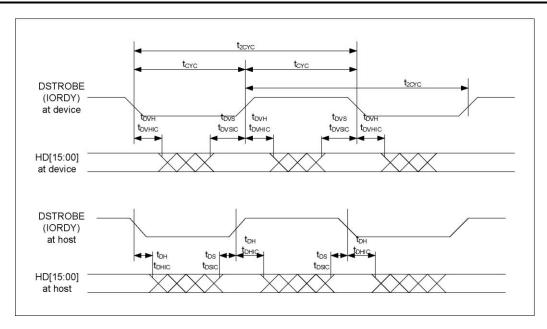


Figure 13: Sustained UDMA Data-In Burst Timing

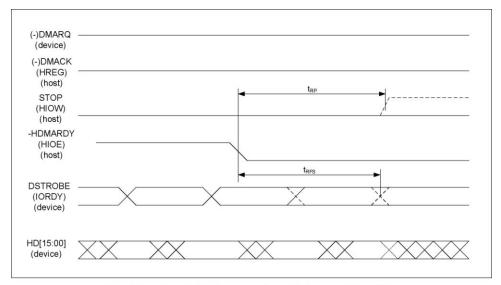


Figure 14: UDMA Data-In Burst Host Pause Timing

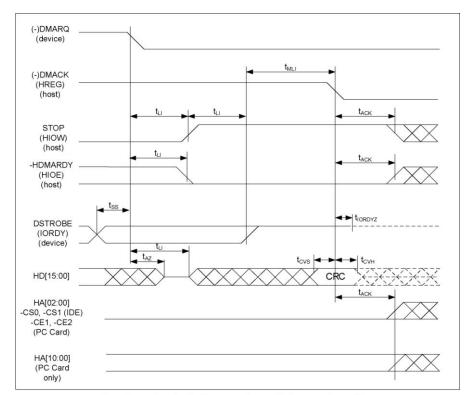


Figure 15: UDMA Data-In Burst Device Termination Timing

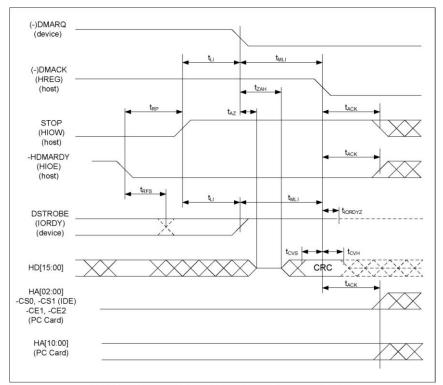


Figure 16: UDMA Data-In Burst Host Termination Timing

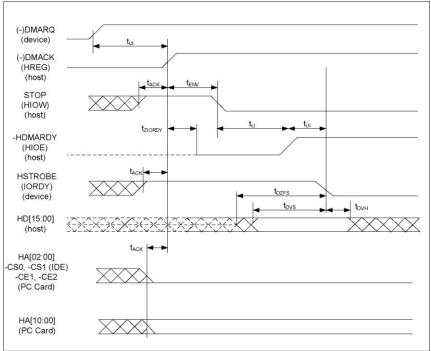
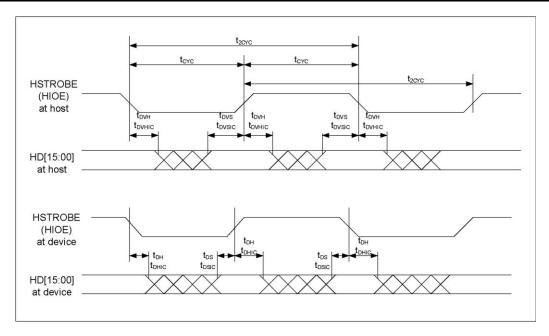
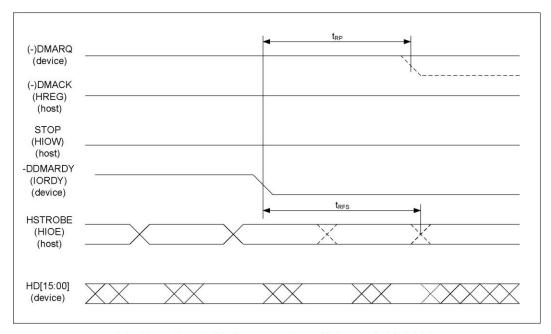
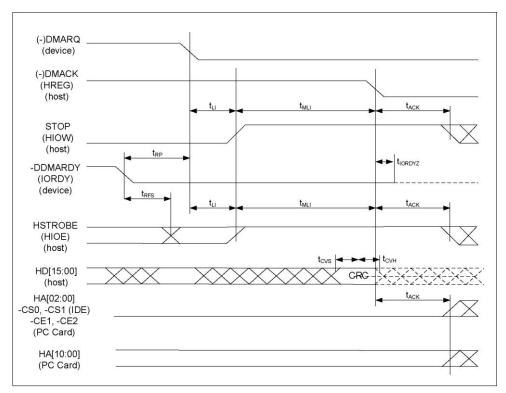


Figure 17: UDMA Data-Out Burst Initiation Timing


Figure 18: Sustained UDMA Data-Out Burst Timing

Note: All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.

Figure 19: UDMA Data-Out Burst Device Pause Timing

Note: All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.

(-)DMARQ (device) (-)DMACK t_{MLI} (HREG) (host) **t**ACK STOP (HIOW) (host) -DDMARDY (IORDY) (device) **HSTROBE** (HIOE) (host) HD[15:00] (host) HA[02:00] -CS0, -CS1 (IDE) -CE1, -CE2 (PC Card) HA[10:00] (PC Card)

Figure 20: UDMA Data-Out Burst Device Termination Timing

Note: All waveforms in this diagram are shown with the asserted state high. Negative true signals appear inverted on the bus relative to the diagram.

Figure 21: UDMA Data-Out Burst Host Termination Timing

5.0 Host Access Specification

5.1 Task File Register and Byte/Word/Odd-Byte Mode Mappings

Please refer to the CompactFlash standard for complete details on the following items:

- Task File Register mapping for the interface modes
- Byte/Word/Odd-byte mode mapping within each of the interface modes

5.2 Host Access Interface Modes

The host can access the CF Card by using the following interface modes with the Task Registers:

PC Card Memory Mode, Attribute Memory

The Card Information Structure (CIS) in Attribute Memory can be accessed by Byte/Word/Odd-byte modes in PC Card Memory Mode. The -REG signal must be asserted when accessing Attribute Memory. The CF Card is mapped to PC Card Memory Mode by the Index bits in the Configuration Option Register. An example of a CIS is listed in *5.3, Card Information Structure (CIS)*.

PC Card Memory Mode, Common Memory

Common Memory can be accessed in the Byte/Word/Odd Byte modes in PC Card Memory Mode. The -REG signal must be de-asserted when accessing the Common Memory. The CF Card is mapped to PC Card Memory Mode by the Index bits in the Configuration Option Register

PC Card I/O Mode

The CF Card can be accessed by Byte/Word/Odd Byte modes in PC Card I/O Mode. The CF Card is mapped to PC Card I/O Mode by the Index bits in the Configuration Option Register. The Index bits also select Contiguous I/O, Primary I/O, or Secondary I/O mapping when using the PC Card I/O Mode.

True-IDE mode

The CF Card is configured in a TrueIDE Mode of operation when the -ATASEL input signal is asserted GND by the host at power up. In the TrueIDE Mode, Attribute Registers are not accessible from the host. The Data Register is accessed in word (16-bit) mode at power up. The CF Card permits 8-bit accesses if the host issues a Set Feature Command to put the CF Card in 8-bit mode. Parameter information that the CF Card uses in TrueIDE mode is returned when the Identify Drive command (ECh) is invoked. Refer to 5.4 Identify Drive Parameter for an example.

5.3 Card Information Structure (CIS)

The card uses a Card Information Structure (CIS) as summarized below:

0000h: Code 01h, link 04h
 0D 79 01 FFh
 Tuple CISTPL_DEVICE (01h), length 4 (04h) at offset 0h

- Device type is FUNCSPEC
- Device speed is 80ns
- Write protect switch is not in control
- Device size is 2K bytes
- 0006h: Code 1Ch, link 05h
 DF 79 01 FFh
 Tuple CISTPL_DEVICE_OC (1Ch), length 5 (05h) at offset 6h
 - Device conditions: minimum cycle with WAIT at Vcc = 3.3V
 - Device type is FUNCSPEC
 - Device speed is 80ns
 - Write protect switch is not in control
 - Device size is 2K bytes
- 000Dh: Code 18h, link 02h
 DF 01h
 Tuple CISTPL_JEDEC_C (18h), length 2 (02h) at offset Bh
 - Device 0 JEDEC id: Manufacturer DF, ID 01h
- 0011h: Code 20h, link 04h
 4F 00 00 00h
 Tuple CISTPL_MANFID (20h), length 4h (04h) at offset 11h
 - Manufacturer # 0x004F hardware rev 0.00
- 5. 0017h: Code 15h, link 14h 04 01 53 54 45 43 20 4D 32 00 53 54 45 43 20 4D 32 00 00 FFh Tuple CISTPL_VERS_1 (15h), length 20 (14h) at offset 17h
 - Major version 4, minor version 1
 - Product Information: "STEC M2" (Manufacturer) "STEC M2" (Product Name)
- 002Dh: Code 21h, link 02h
 04 01h
 Tuple CISTPL_FUNCID (21h), length 2 (02h) at offset 2Dh
 - Function code 04h (Fixed) system init 01
- 0031h: Code 22h, link 02h
 01 01h
 Tuple CISTPL_FUNCE (22h), length 2 (02h) at offset 31h
 - This is an PC Card ATA Disk

8. 0035h: Code 22h, link 03h 02 0C 0Fh

Tuple CISTPL_FUNCE (22h), length 3 (03h) at offset 35h

- Vpp is not required
- This is a silicon device
- Identify Drive Model/Serial Number is guaranteed unique
- Low-Power Modes supported: Sleep Standby Idle
- Drive automatically minimizes power
- All modes include 3F7h or 377h
- Index bit is not supported
- -IOIS16 is unspecified in Twin configurations
- 003Ah: Code 1Ah, link 05h
 01 03 00 02 0Fh
 Tuple CISTPL_CONFIG (1Ah), length 5 (05h) at offset 3Ah
 - Last valid configuration index is 3h
 - Configuration Register Base Address is 200h
 - Configuration Registers Present:
 - Configuration Option Register at 200h
 - Card Configuration and Status Register at 202h
 - Pin Replacement Register at 204h
 - Socket and Copy Register at 206h
- 10. 0041h: Code 1Bh, link 08h C0 C0 A1 01 55 08 00 20h

Tuple CISTPL_CFTABLE_ENTRY (1Bh), length 8 (08h) at offset 41h

- Configuration Table Index is 00h (default)
- Interface type is Memory
- BVDs not active, WP not active, RdyBsy active
- Wait signal support required
- Vcc Power Description: Nom V = 5.0 V
- Map 2048 bytes of memory to CF Card address 0
- Miscellaneous Features: Max Twins 0, -Audio, -ReadOnly, +PowerDown
- 11. 004Bh: Code 1Bh, link 06h 00 01 21 B5 1E 4Dh

Tuple CISTPL_CFTABLE_ENTRY (1Bh), length 6 (06h) at offset 4Bh

- Configuration Table Index is 00h
- Vcc Power Description: Nom V = 3.30 V, Peak I = 45.0 mA

12. 0053h: Code 1Bh, link 0Ah C1 41 99 01 55 64 F0 FF FF 20h

Tuple CISTPL_CFTABLE_ENTRY (1Bh), length 10 (0Ah) at offset 53h

- Configuration Table Index is 01 (default)
- Interface type is I/O
- BVDs not active, WP not active, RdyBsy active
- Wait signal support not required
- Vcc Power Description: Nom V = 5.0 V
- Decode 4 I/O lines, bus size 8 or 16
- IRQ may be shared, pulse and level mode interrupts are supported
- Interrupts in mask FFFF are supported
- Miscellaneous Features: Max Twins 0, -Audio, -ReadOnly, +PowerDown
- 005Fh: Code 1Bh, link 06h
 01 01 21 B5 1E 4Dh
 Tuple CISTPL_CFTABLE_ENTRY (1Bh), length 6 (06h) at offset 5Fh
 - Configuration Table Index is 01
 - Vcc Power Description: Nom V = 3.30 V, Peak I = 45.0 mA
- 14. 0067h: Code 1Bh, link 0Fh C2 41 99 01 55 EA 61 F0 01 07 F6 03 01 EE 20h Tuple CISTPL_CFTABLE_ENTRY (1Bh), length 15 (0Fh) at offset 67h
 - Configuration Table Index is 02h (default)
 - Interface type is I/O
 - BVDs not active, WP not active, RdyBsy active
 - Wait signal support not required
 - Vcc Power Description: Nom V = 5.0 V
 - Decode 10 I/O lines, bus size 8 or 16
 - I/O block at 01F0h, length 8h
 - I/O block at 03F6h, length 2h
 - IRQ may be shared, pulse and level mode interrupts are supported
 - Only IRQ14 is supported
 - Miscellaneous Features: Max Twins 0, -Audio, -ReadOnly, +PowerDown
- 0078h: Code 1Bh, link 06h
 02 01 21 B5 1E 4Dh
 Tuple CISTPL_CFTABLE_ENTRY (1Bh), length 6 (06h) at offset 78h
 - Configuration Table Index is 02h
 - Vcc Power Description: Nom V = 3.30 V, Peak I = 45.0 mA

- 0080h: Code 1Bh, link 0Fh
 C3 41 99 01 55 EA 61 70 01 07 76 03 01 EE 20h
 Tuple CISTPL_CFTABLE_ENTRY (1Bh), length 15 (0Fh) at offset 80h
 - Configuration Table Index is 03h (default)
 - Interface type is I/O
 - BVDs not active, WP not active, RdyBsy active
 - Wait signal support not required
 - Vcc Power Description: Nom V = 5.0 V
 - Decode 10 I/O lines, bus size 8 or 16
 - I/O block at 0170h, length 8h
 - I/O block at 0376h, length 2h
 - IRQ may be shared, pulse and level mode interrupts are supported
 - Only IRQ14 is supported
 - Miscellaneous Features: Max Twins 0, -Audio, -ReadOnly, +PowerDown
- 17. 0091h: Code 1Bh, link 06h03 01 21 B5 1E 4DhTuple CISTPL_CFTABLE_ENTRY (1Bh), length 6 (06h) at offset 91h
 - Configuration Table Index is 03h
 - Vcc Power Description: Nom V = 3.30 V, Peak I = 45.0 mA
- 18. 0099h: Code 14h, link 00h Tuple CISTPL_NO_LINK (14h), length 0 (00h) at offset 99h
- 19. 009Bh: Code FFh
 Tuple CISTPL_END (FFh) at offset 9Bh

5.4 Identify Drive Parameter

An example of the parameter information received from the CF Card when invoking the IDENTIFY DRIVE command (ECh) is listed Table 27.

Note: For reference only, data subject to change.

Table 27: Identify Drive Parameters

Word	Hex	Data Field Type Information	Subset	Fixed (F) Variable (V) or Both (X)	Description
0	848Ah or	General Configuration		_	848Ah (Removable): When card is in PCMCIA transfer modes, this word is set to CF Standard Configuration Values
O	044Ah	bit significant information		-	044Ah (Non-Removable): When card is in TrueIDE transfer modes, this word is set to CF Alternate Configuration Values
1	XXXXh	Default Number of Cylinders		X	Default Number of Cylinders
2	0000h	Reserved		V	
3	XXXXh	Default Number of Heads		X	Default Number of Heads
4-5	0000h 0200h	Obsolete		X	
6	XXXXh	Default Number of Sectors per Track		X	Default Number of Sectors per Track
7.0	2 @	Number of	Word 7	V	Number of Sectors per Card (MSW)
7-8	XXXXh	Sectors per Card	Word 8		Number of Sectors per Card (LSW)
9		Obsolete		X	
10-19	Unique	Serial Number		F	Reserved (20 ASCII Characters)
20-21	2 @ 0000h	Obsolete		X	
22	0004h	ECC Count		X	Number of ECC Bytes used on each sector in the READ/WRITE LONG commands
23-26	4 Words	Firmware Revision		F	Reserved (8 ASCII Characters)
27-46	20 Words	Model Number		F	Reserved (40 ASCII Characters)
		Read/Write h Multiple Sector Count	Bit 15-8	F	Permitted Value of 00h
47	7 0001h		Bit 7-0	F	Maximum number of sectors per block (1) that the card supports for READ/WRITE MULTIPLE commands
48	0000h	Reserved		F	

Word	Hex	Data Field Type Information	Subset	Fixed (F) Variable (V) or Both (X)	Description
			Bit 15-14	F	Reserved
			Bit 13	F	Standby timer is supported as defined in IDLE command
			Bit 12	F	Reserved
	2B00h		Bit 11	F	IORDY supported
49	or	Capabilities	Bit 10	F	IORDY shall not be disabled
45	2A00h	Capabilities	Bit 9	F	LBA transition supported
	(-P)		Bit 8	F	1 (P/Ns without -P) READ DMA and WRITE DMA commands supported
			Dit 0	F	0 (P/Ns with -P) READ DMA and WRITE DMA commands not supported
			Bit 7-0	X	Reserved
50	0000h	Reserved		X	
					PIO Modes 0-2 supported
51	0200h	PIO Data Transfer Cycle Timing Mode (Modes 0-2)	Bit 15-8	Х	Support for PIO Modes 3 and 4 are reported in Word 64
31	51 0200n				Support for PIO Modes 5 and 6 are reported in Word 163
			Bit 7-0	Х	Reserved
52	0000h	Obsolete		Х	
			Bit 15-3	F	Reserved
50	0007h or	Translation Parameters Valid	Bit 2	F	1(P/Ns without -P): Word 88 is valid and reflects the supported TrueIDE UDMA transfer modes
53	0003h				0 (P/Ns with -P): Word 88 is not valid
	(-P)		Bit 1	Х	1 (Default): Words 64 to 70 are valid
			Bit 0	F	Words 54 to 58 are valid and reflect current number of cylinders, heads, and sectors
54-56	3 @ XXXXh	Current Number of Cylinders, Heads, Sectors/Track		Х	Current number of user addressable Cylinders, Heads, Sectors/Track in the current translation mode
57-58	2 @ XXXXh	Current Capacity		Х	Capacity = Cylinders x Heads x Sectors
		NA III I O	Bit 15-9	F	Reserved
59		Multiple Sector Setting Validity	Bit 8	V	1 (Default): Multiple Sector Setting is valid
	0101h	and Current Setting	Bit 0-7	F	1 (Default): Current setting for the number of sectors (1) that shall be transferred per interrupt on Read/Write Multiple commands
60-61	2 @ XXXXh	Total Sectors Addressable in LBA		F	Total sectors addressable in LBA
62	0000h	Reserved		X	

Word	Hex	Data Field Type Information	Subset	Fixed (F) Variable (V) or Both (X)	Description
			Bit 15-11	F	Reserved
	04075		Dit 40.0	V	100 (Default for P/Ns without -P): MWDMA 2 is selected
63	0407h or	MWDMA Transfer	Bit 10-8	V	000 (Default for P/Ns with -P): MWDMA not supported
	0000h (-P)	(Modes 0-2)	Bit 7-3	F	Reserved
	(-۲)		Bit 2-0	F	111 (P/Ns without -P): MWDMA modes 0-2 supported
					000 (P/Ns with -P): MWDMA not supported
					PIO Modes 3 and 4 are supported
64	0003h	PIO Transfer Modes Support		F	Support for PIO Mode 2 is reported in Word 51
		(Modes 3 & 4)			Support for PIO Modes 5 and above are reported in Word 163
	0078h	Minimum			0078h (P/Ns without -P): 120ns
65	or 0000h (-P)	MWDMA Transfer Cycle Time		F	0000h (P/Ns with -P): 0ns
	0078h	Recommended			0078h (P/Ns without -P): 120ns
66	or MWDMA Transfer Cycle Time		F	0000h (P/Ns with -P): 0ns	
67	0078h	Minimum PIO Transfer Cycle Time without flow control		F	120ns
68	0078h	Minimum PIO Transfer Cycle Time with IORDY		F	120ns
69-79	11 @ 0000h	Reserved		F	
			Bit 15-7	F	Reserved
			Bit 6	F	ATA/ATAPI-6 supported
		Major Varaian	Bit 5	F	ATA/ATAPI-5 supported
80	0078h	Major Version Number	Bit 4	F	ATA/ATAPI-4 supported
			Bit 3	F	ATA-3 supported
			Bit 2-1	Х	Obsolete
			Bit 0	F	Reserved
81	0000h	Minor Version Number		F	Device does not report version

Word	Hex	Data Field Type Information	Subset	Fixed (F) Variable (V) or Both (X)	Description
			Bit 15	F	Obsolete
			Bit 14	F	NOP command is supported
			Bit 13	F	READ BUFFER command is supported
			Bit 12	F	WRITE BUFFER command is supported
			Bit 11	F	Obsolete
			Di+ 10	F	1 (P/Ns with -S): Host Protected Area (HPA) feature set is supported
		Command Sets	Bit 10	F	0 (P/Ns without -S): Host Protected Area (HPA) is not supported
	742Bh		Bit 9	F	DEVICE RESET command in not supported
	(SMART) (-S),		Bit 8	F	SERVICE interrupt is not supported
82	7029h		Bit 7	F	Release interrupt is not supported
0_	(SMART)	Supported	Bit 6	F	Look-ahead is not supported
	or		Bit 5	F	Write cache is supported (for compatibility)
	7028h		Bit 4	F	Packet command feature set is not supported
			Bit 3	F	Power Management feature set is supported
			Bit 2	F	Removable Media feature set is not supported
			Bit 1	F	1 (P/Ns with -S): Security Mode feature set is supported
			DIL 1	Γ	0 (P/Ns without -S): Security Mode feature set is not supported
					1 (SMART): SMART feature set is supported
			Bit 0	F	0 (No SMART): SMART feature set is not supported

Word	Hex	Data Field Type Information	Subset	Fixed (F) Variable (V) or Both (X)	Description
			Bit 15-14	F	Reserved
			Bit 13	F	FLUSH CACHE EXT command not supported
			Bit 12	F	FLUSH CACHE command not supported
			Bit 11	F	Device Configuration Overlay feature set not supported
			Bit 10	F	48-bit Address feature set not supported
			Bit 9	F	Automatic Acoustic Management feature set not supported
			Bit 8	F	SET MAX security extension not supported
			Bit 7	F	Address Offset Reserved Area
83	4004h	Command Set Supported	Bit 6	F	SET FEATURES subcommand not required to spinup after power-up
			Bit 5	F	Power-Up in Standby feature set not supported
			Bit 4	F	Removable Media Status Notification feature set not supported
			Bit 3	F	Advanced Power Management feature set not supported
			Bit 2	F	CFA feature set supported
			Bit 1	F	READ/WRITE DMA QUEUED not supported
			Bit 0	F	DOWNLOAD MICROCODE command not supported
		Command Set/Feature Supported Extension	Bit 15-11	F	Reserved
			Bit 10	F	URG bit not supported for WRITE STREAM DMA and WRITE STREAM PIO
			Bit 9	F	URG bit not supported for READ STREAM DMA and READ STREAM PIO
			Bit 8	F	World wide name not supported
			Bit 7	F	WRITE DMA QUEUED FUA EXT command not supported
84	4002h (SMART)		Bit 6	F	WRITE DMA FUA EXT and WRITE MULTIPLE FUA EXT commands not supported
	or 4000h		Bit 5	F	General Purpose Logging feature set not supported
			Bit 4	F	Streaming feature set not supported
			Bit 3	F	Media Card Pass Through Command feature set not supported
			Bit 2	F	Media serial number not supported
					1 (SMART): SMART self-test is supported
			Bit 1	F	0 (No SMART): SMART self-test is not supported
			Bit 0	F	SMART error logging not supported

Word	Hex	Data Field Type Information	Subset	Fixed (F) Variable (V) or Both (X)	Description
			Bit 15	Х	Obsolete
			Bit 14	F	NOP command enabled
			Bit 13	F	READ BUFFER command enabled
			Bit 12	F	WRITE BUFFER command enabled
			Bit 11	Х	Obsolete
			Bit 10	V	1 (Default for P/Ns with -S): Host Protected Area (HPA) feature set enabled
			DIL 10	V	0 (Default for P/Ns without -S): Host Protected Area (HPA) feature set not enabled
		Command Set/Feature	Bit 9	F	DEVICE RESET command not supported
	742Bh		Bit 8	-	SERVICE interrupt not supported
	(SMART)		Bit 7	-	Release interrupt not supported
	(-S),		Bit 6	V	0 (Default): Look-ahead cached is disabled
85	7029h (SMART)		Bit 5	V	1 (Default): Write cache is enabled (Default for compatibility)
	or 7028h		Bit 4	F	Packet Command feature set is not supported
	7028N		Bit 3	F	Power Management feature set is enabled
			Bit 2	F	Removable Media feature set is not supported
			Bit 1	V	1 (Default for P/Ns with -S): Security Mode feature set enabled via the SECURITY SET PASSWORD command
					0 (Default for P/Ns without -S): Security Mode feature set not enabled via the SECURITY SET PASSWORD command
			Bit 0	V	1 (Default with SMART): SMART feature set enabled
			DIL U	V	0 (Default with No SMART): SMART feature set not enabled

Word	Hex	Data Field Type	Subset	Fixed (F) Variable (V)	Description
		Information	Bit 15-14	or Both (X)	Reserved
			Bit 13-14	F	FLUSH CACHE EXT command not supported
			Bit 12	F	FLASH CACHE command not supported
			Bit 11	F	Device Configuration Overlay not supported
			Bit 10	F	48-bit Address features set not supported
			Bit 9	-	Automatic Acoustic Management feature set not supported
			Bit 8	F	SET MAX security extension not supported
			Bit 7	F	Address Offset Reserved Area Boot
86	0004h	Command Set/Feature	Bit 6	F	SET FEATURES subcommand not required to spin-up after power-up
		Enabled	Bit 5	-	Power-Up In Standby feature set not supported
			Bit 4	-	Removable Media Status Notification feature set not supported
			Bit 3	-	Advanced Power Management feature set not supported
			Bit 2	F	CFA feature set enabled
			Bit 1	F	READ/WRITE DMA QUEUED command not supported
			Bit 0	F	DOWNLOAD MICROCODE command not supported
			Bit 15-11	F	Reserved
		Command	Bit 10	F	URG bit not supported for WRITE STREAM DMA and WRITE STREAM PIO
			Bit 9	F	URG bit not supported for READ STREAM DMA and READ STREAM PIO
			Bit 8	F	World wide name not supported
			Bit 7	F	WRITE DMA QUEUE FUA EXT command not supported
	4002h (SMART)		Bit 6	F	WRITE DMA FUA EXT and WRITE MULTIPLE FUA EXT commands not supported
87	or	Set/Feature Default	Bit 5	F	General Purpose Logging feature set not supported
	4000h)		Bit 4	-	Valid CONFIGURE STREAM command not supported
			Bit 3	-	Media Card Pass Through Command feature set not supported
			Bit 2	-	Media serial number is not valid
			Bit 1	F	1 (Default for SMART): SMART self-test is enabled
			DIL I	I ⁻	0 (Default for No SMART): SMART self-test is not supported
			Bit 0	F	SMART error logging is not supported

Word	Hex	Data Field Type Information	Subset	Fixed (F) Variable (V) or Both (X)	Description
			Bit 15	F	Reserved
	001Fb	TrueIDE UDMA	Bit 14-8	V	0 (Default): TrueIDE UDMA modes 6-0 not selected
	001Fh or	Modes	Bit 7	F	Reserved
88	0000h	Supported and Selected	Bit 6-5	F	TrueIDE UDMA modes 5-6 not supported
	(-P)	(Modes 0-6)	Bit 4-0	F	1111 (P/Ns without -P): TrueIDE UDMA modes 4-0 supported
			Bit 4-0	F	0000 (P/Ns with -P): TrueIDE UDMA modes not supported
89	0000h	Time required for security erase unit compleation		F	Not Specified (Not Supported)
90	0000h	Time required for Enhanced security erase unit completion		F	Not Specified (Not Supported)
91	0000h	Advanced Power Management level value		-	Not Specified (Not Supported)
		Master Password Revision Code		V	0001h-FFFEh (P/Ns with -S): Master Password Revision Code set when the Master Password from when last changed
92	XXXXh				Factory Set Master Password Revision Code is FFFEh.
					0000h (P/Ns without -S): Master Password Revision Code is not supported
			Bit 15-14	F	Reserved
00	VVVVVI-	Hardware Reset Result	D:: 40		1 = 80-pin PATA cable is detected in TrueIDE mode.
93	XXXXh		Bit 13	V	0 = 80-pin PATA cable is not detected in TrueIDE mode
			Bit 12-0		Reserved
94-127	35 @ 0000h	Reserved		Х	

Word	Hex	Data Field Type Information	Subset	Fixed (F) Variable (V) or Both (X)	Description
			Bit 15-9	F	Reserved
			Bit 8	V	0 (Default): High Security Level,
			DIL 0	V	1 = Maximum Security Level
			Bit 7-6	F	Reserved
	0001h (-S),		Bit 5	F	Enhanced security erase unit feature set not supported
128	or	Security Status	Bit 4	V	0 (Default): Security count not expired
	0000h		Bit 3	V	0 (Default): Security not frozen
			Bit 2	V	0 (Default): Security not locked
			Bit 1	V	0 (Default:) Security is disabled
			Bit 0	F	1 (P/Ns with -S): Security supported
			DIL U	Г	0 (P/Ns without -S): Security not supported
129- 159	31 @ 0000h	Reserved		Х	
		CFA Power Mode	Bit 15	F	This Word does not contain a valid power requirement description
			Bit 14	F	Reserved
160	0000h		Bit 13	F	CF has Power Level 1 commands
			Bit 12	V	0 (Default): Power Level 1 commands are enabled
			Bit 11-0	F	Maximum current in mA
161	0000h	Reserved		X	
		Key	Bit 15-1	F	Reserved
162	0000h	Management Schemes Supported	Bit 0	F	Device does not support CPRM Scheme (Content Protection for Recoardable Media)
			Bit 15-12	F	Reserved
					010 (Default for P/Ns without -P): Current MWDMA timing mode 4 is selected
163	0012h or 0000 (-P)	CF Advanced TrueIDE Timing Modes Capabilities and Settings (PIO Modes 5/6 & MWDMA Modes 3/4)	Bit 11-9	9 V	000 (Default for P/Ns with -P): Current MWDMA timing mode selected is specified in Word 63
			Bit 8-6	V	010 (Default): Current PIO timing mode 6 is selected
			Dit C O	F	010 (P/Ns without -P): Maximum MWDMA time mode 4 is supported
			Bit 5-3	F	000 (P/Ns with -P): Maximum MWDMA time mode supported is specified in Word 63
			Bit 2-0	F	Maximum PIO mode 6 is supported

Word	Hex	Data Field Type Information	Subset	Fixed (F) Variable (V) or Both (X)	Description
			Bit 15	F	PCMCIA UMDA support values in bits 11-6 are valid
		CF Advanced PCMCIA I/O	Bit 14-12	V	010 (Default): PCMCIA Memory or I/O UMDA timing mode 2 is selected
164	A91Bh	and Memory Timing Modes and Capabilities and Settings	Bit 11-9	F	Maximum PCMCIA Memory UMDA timing mode 4 is supported
			Bit 8-6	F	Maximum PCMCIA I/O UMDA timing mode 4 is supported
			Bit 5-3	F	Maximum Memory timing mode is 80ns
			Bit 2-0	F	Maximium I/O timing mode is 80ns
165- 254	0000h	Reserved		F	
255	VVVVh	Integrity Word	Bit 15-8	Х	Checksum
255	XXXXh		Bit 7-0	Х	Signature

6.0 Registers

This chapter lists the registers of the CF Card. Refer to CompactFlash standards for further details.

6.1 Configuration Registers

In PC Card Mode, four configuration registers, as listed in Table 28, are used.

Note: In TrueIDE Mode, these registers cannot be used.

Table 28: Configuration Registers

Configuration Register	Description				
Configuration Option Register	This register is used to configure and observe the status of the CF Card, and to issue soft resets to it. Also, the Index bits of this register are used to select the PC Card mapping mode that the CF Card uses: 1) PC Card Memory, 2) PC Card Contiguous I/O, 3).PC Card Primary I/O, and 4) PC Card Secondary I/O				
Configuration and Status Register	This register is used for observing the CF Card state.				
Pin Replacement Register	This register is used for providing the signal state of -IREQ when the CF Card is configured in the PC Card I/O Mode.				
Socket and Copy Register.	This read/write register is used to identify the CF Card from other devices. This register should be set by the host before this Configuration Option register is set.				

6.2 Task File Registers

Table 29: CF Card Task File Registers

Task File Register	Description
Data Register	The Data Register is a 16-bit read/write register used for transferring data between the CF Card and the host. This register can be accessed in word mode and byte mode.
Error Register	The Error Register is a read-only register that is used for analyzing an error. This register is valid when the BSY bit in the Status register and Alternate Status register are set to "0" (Ready). Diagnostic Codes are returned in the Error Register after an EXECUTE DRIVE DIAGNOSTIC command (code 90h). Extended Error Codes returned in the Error Register after a REQUEST SENSE command (code 03h).
Sector Count Register	This register contains the numbers of sectors of data requested to be transferred on a read or write operation between the host and the CF Card. If the value in the register is 0, a count of 256 sectors is indicated.
Sector Number Register	When the LBA bit in the Drive/Head register is 0, this register contains the starting sector number for any media access. When the LBA bit is set to 1, this register contains bits 7:0 of the LBA for any media access.
Cylinder Low Register	In CHS mode (LBA=0), this register contains the low-order bits of the starting cylinder address. In LBA mode, it contains bits 15:8 of the LBA.
Cylinder High Register	In CHS mode (LBA=0), this register contains the high-order bits of the starting cylinder address. In LBA mode, it contains bits 23:16 of the LBA.
Drive/Head Register	This register selects the CF Card address translation (CHS or LBA) and provides head address (CHS) or high-order address bits 27:24 for LBA.
Status Register	This read-only register indicates status of a command execution. When the BSY bit is "0", the other bits are valid; when the BSY bit is "1", the other bits are not valid. When the register is read, the interrupt pin is cleared.
Alternate Status Register	This register is the same as the Status register, except that is not negated when the register is read.
Device Control Register	This write-only register is used for controlling the interrupt request and issuing an ATA soft reset to the CF Card.
Drive Address Register	This read-only register is used for confirming the CF Card's status. This register is provided for compatibility with the AT disk drive interface and it is not recommended that this register be mapped into the host's I/O space because of potential conflicts on bit 7.
Command Register	This write-only register is used for writing the command that executes the CF Card's operation. The command code is written in the command register after its parameters are written in the Task File during the CF Card ready state.

7.0 Supported ATA Commands

The ATA commands used by the CF Card are listed in Table 30. Refer to CompactFlash standards for details.

Table 30: CF Card Supported ATA Commands

Command Set	Code	Description	
CHECK POWER MODE	E5h or 98h	This command checks the power mode.	
EXECUTE DRIVE DIAGNOSTIC	90h	Command performs internal diagnostic tests implemented by the CF Card. Diagnostic Code is returned in Error Register.	
ERASE SECTOR(S)	C0h	Cmd is used to pre-erase/condition data sectors in advance.	
FORMAT TRACK	50h	This command writes the desired head and cylinder of the selected drive with a vender unique data pattern (typically 00h or FFh). Card accepts a sector buffer of data from the host to follow the command with the same protocol as the WRITE SECTOR(S) Command although the information in the buffer is not used.	
IDENTIFY DRIVE	ECh	This command lets the host receive parameter information from the CF Card in the same protocol as READ SECTOR(S) command.	
IDLE	E3h or 97h	Command causes the CF Card to set BSY, enter the Idle mode, clear BSY, and generate an interrupt. If the sector count is non-zero, automatic power down mode is enabled. If the sector count is zero, the automatic power down mode is disabled.	
IDLE IMMEDIATE	E1h or 95h	This command causes the CF Card to set BSY, enter the Idle mode, clear BSY, and generate an interrupt.	
INITIALIZE DRIVE PARAMETERS	91h	This command enables the host to set the number of sectors per track and the number of heads per cylinder.	
NOP	00h	No Operation.	
READ BUFFER	E4h	Command enables host to read contents of card's sector buffer.	
READ DMA	C8h	If UDMA is enabled, this command is the sector read command used for UDMA transfer. If UDMA is not enabled, this command is the sector read command used for MWDMA transfer.	
READ MULTIPLE	C4h	This command performs similarly to the READ SECTOR(S) command. Interrupts are not generated on each sector, but on the transfer of a block which contains the number of sectors defined by a SET MULTIPLE command.	
READ LONG SECTOR	22h or 23h	Command performs similarly to the READ SECTOR(S) command except that it returns 516 bytes of data instead of 512 bytes.	
READ SECTOR(S)	20h (w/ retry) 21h (w/o retry)	Command reads from 1 to 256 sectors as specified in Sector Count register. A sector count of 0 requests 256 sectors. Transfer begins at sector specified in Sector Number register.	

Command Set	Code	Description	
READ VERIFY SECTOR(S)	40h (w/ retry) 41h (w/o retry	This command verifies one or more sectors on the CF Card by transferring data from the flash media to the data buffer in the CF Card and verifying that the ECC is correct. This command is identical to the READ SECTOR(S) command, except that DRQ is never set and no data is transferred to the host.	
RECALIBRATE	1Xh	The CF Card performs only the interface timing and register operations. When this command is issued, the CF Card sets BSY and waits for an appropriate length of time, after which it clears BSY and issues an interrupt. When this command ends normally, the CF Card is initialized.	
REQUEST SENSE (EXTENDED ERROR)	03h	Command requests extended error code after command ends with error. Extended error code is returned in Error Register.	
SEEK	7Xh	This command is effectively a NOP command to the CF Card although it does perform a range check.	
SET FEATURES	EFh	Command is used by the host to establish or select features.	
SET MULTIPLE MODE	C6h	Command enables card to perform multiple read and write operations and establishes block count for these commands.	
SET SLEEP MODE	E6h or 99h	This is the only command that allows the host to set the CF Card into Sleep mode. When the CF Card is set to sleep mode, the CF Card clears the BSY line and issues an interrupt. The CF Card enters sleep mode and the only method to make the CF Card active again (back to normal operation) is by performing a hardware reset or a software reset.	
STAND BY	E2h or 96h	This command sets the CF Card in Standby mode. If the Sector Count Register is a value other than 0H, an Auto Power Down is enabled and when the CF Card returns to the Idle mode, the timer starts a countdown. Time is set in Sector Count Register.	
STAND BY IMMEDIATE	E0h or 94h	This command causes the CF Card to set BSY, enter the Standby mode, clear BSY and return the interrupt immediately.	
WEAR LEVEL / SECURITY FREEZE LOCK	F5h	When Security Command Set is not supported: The command code is effectively a NOP command and only implemented for backward compatibility. The Sector Count Register is always returned with a 00h indicating Wear Level is not needed. When Security Command Set is supported and Security is enabled or disabled: The command code invokes the SECURITY FREEZE LOCK command.	
WRITE BUFFER	E8h	This command enables the host to overwrite the contents of the CF Card's sector buffer with any data pattern desired.	
WRITE DMA	CAh	If UDMA is enabled, this command is the sector write command used for UDMA transfer. If UDMA is not enabled, this command is the sector write command used for MWDMA transfer.	

Command Set	Code	Description				
WRITE LONG SECTOR	32h or 33h	This command is provided for compatibility purposes and is similar to the WRITE SECTOR(S) command except that it writes 516 bytes instead of 512 bytes.				
WRITE MULTIPLE	C5h	Command is similar to the WRITE SECTOR(S) command. Interrupts are not presented on each sector, but on transfer of block which contains number of sectors defined by SET MULTIPLE command.				
WRITE MULTIPLE W/O	CDh	This command is similar to the WRITE MULTIPLE command, except that an implied erase before the write operation is not performed.				
ERASE		performed. Note: Before using this command, it is required to erase the respective sectors using the Erase Sectors command				
WRITE SECTOR(S)	30h (w/ retry) 31h (w/o retry)	This command writes from 1 to 256 sectors as specified in the Sector Count register. A sector count of zero requests 256 sectors. The transfer begins at the sector specified in the Sector Number register.				
WRITE SECTOR(S) W/O	38h	This command is similar to the WRITE SECTOR(S) command, except that an implied erase before the write operation is not performed.				
ERASE		Portoned. Note: Before using this command, it is required to erase the respective sectors using the Erase Sectors command This command writes from 1 to 256 sectors as specified in the Sector Count register. A sector count of zero requests 256 sectors. The transfer begins at the sector specified in the Sector Number register. This command is similar to the WRITE SECTOR(S) command, except that an implied erase before the write				
WRITE VERIFY	3Ch					

8.0 Security Mode Feature Set

Note: Part Numbers with -S support the Security Mode feature set.

The Security Mode feature set allows the host to set and use a security password system to prevent unauthorized CF Card access.

After the initial setting of the User Password, the card enters Lock mode on the next power-up or hardware reset. When card is in Lock mode the card rejects access commands until a SECURITY UNLOCK command is invoked.

To prevent accidental or malicious password activation or setting, it is recommended that the host issue a SECURITY FREEZE LOCK command on initialization. This command places the card in Frozen mode which disables the following commands until a power off or hardware reset:

- Security Set Password
- Security Unlock
- Security Disable Password
- Security Erase Unit

If SECURITY FREEZE LOCK is issued when card is already in Frozen mode, the command executes and card remains in Frozen mode.

When the passwords are set, the Security Level parameter may be set to High or Maximum. If the User Password is forgotten, the Master Password can be used to unlock the card only if the Security Level has been set to High. If the Security Level was set at Maximum and the User Password is forgotten, data on the card is lost and only a SECURITY ERASE UNIT command can be invoke (along with the Master Password) to recover use of the card.

During a power up session, the card keeps security count of failed User and Master Password SECRUITY UNLOCK commands. After 5 failed attempts, the Expire bit 4 of Word 128 in IDENTIFY DRIVE information is set and SECURITY UNLOCK and SECURITY ERASE UNIT commands are aborted until power down or hardware reset.

8.1 Security Mode Feature Set Support and Identify Command

When Security Mode feature set is implemented, the IDENTIFY DRIVE Command returns the following information for Word 128:

- Word 128 bit 0 shall be set to "1" to configure the card for Security feature set support.
- Word 128 bit 5 shall be cleared to "0" to indicate that Enhanced Security Erase feature set is not supported.
- Word 128 bit 1 shall be cleared to "0" at first use turning off (disabling) security in until a SECURITY SET PASSWORD command is issued by host.
- Word 128 bit 2 shall be cleared to "0" at first use to indicate card is not locked until a SECURITY SET PASSWORD command is issued by host.
- Word 128 bit 3 shall be cleared to "0" at power up or hardware reset to indicate card is not frozen. If a SECURITY FREEZE LOCK is issued when card is already frozen, Word 128 bit 4 shall be set to "1" even at power up or hardware reset to indicate CF card is frozen.
- Word 128 bit 4 shall be cleared to "0" at power up or hardware reset to indicate security count is not expired.
- Word 128 bit 8 shall be cleared to "0" at first use to indicate a high security level until changed by a SECURITY SET PASSWORD command.

8.2 Security Commands

Security commands are invoked by writing the command code to the Command Register. Refer to Table 33 for a description of the supported Security Commands.

Table 31: Supported Security Commands

Command	Code	Description
SECURITY DISABLE PASSWORD	F6	This command requests transfer of single sector of data from host which contains Control Word 0 (to select Master or User Password compare), and Password 1-16 (32 Bytes). If password matches password previously saved by the card, the card disables lock mode. Command does not change Master password which may be reactivated later by setting a User password.
SECURITY ERASE PREPARE	F3	This command shall be issued immediately before SECURITY ERASE UNIT command to enable device erasing and unlocking. Command prevents accidental erase of card.
SECURITY ERASE UNIT	F4	This command requests transfer of single sector of data with control and password. If password is matched, command executes. The SECURITY ERASE PREPARE command shall be completed immediately prior to this command.
SECURITY FREEZE LOCK	F5	This command sets the card to Frozen mode in which the following commands are disabled: 1) Security Set Password, 2) Security Unlock, 3) Security Disable Password, and 4) Security Erase Unit. Frozen mode is disabled by power off or hardware reset. If Security Freeze Lock is issued when card is in Frozen mode, command executes and card remains in Frozen mode.
SECURITY SET PASSWORD	F1	This command requests transfer of single sector of data with Control and Passwords. Depending on the content of the Control Word, the User or Master Password, and the High or Maximum Security Level is set.
SECURITY UNLOCK	F2	This command requests transfer of single sector of data from host. If identifier bit is set to Master and the device is in high security level, then the password supplied shall be compared with the stored Master password. If card is in maximum security level, then the unlock command shall be rejected. If the identifier bit is set to user, then card compares the supplied password with the stored User password. If the password compare fails then card returns command aborted to host and decrements the unlock counter. Counter is initially set to five and is decremented for each password mismatch when Security Unlock is issued and card is locked. Once this counter reaches zero, SECURITY UNLOCK and SECURITY ERASE UNIT commands are command aborted until after a power-on reset or a hardware reset is received. SECURITY UNLOCK commands issued when the device is unlocked have no effect on the unlock counter.

9.0 Host Protected Area Feature Set

Note: Part Numbers with -S support the Host Protected Area feature set.

The Host Protected Area (HPA) feature set allows data storage outside the normal OS file system when the card is initially configured.

For example, during initialization the BIOS can obtain full access to the card by issuing a SET MAX ADDRESS to the card's native address. The BIOS can read hidden configuration data, and then when exiting initialization, the BIOS issue another SET MAX ADDRESS command to lower the maximum address and hide the configuration data from the OS.

The SET MAX ADDRESS command also allows the maximum address to be volatile (card returns to the last set maximum address after power or hardware reset cycle) or non-volatile, (card retains the set maximum address after a power or reset cycle).

When the BIOS receives control prior to power down, the BIOS can READ NATIVE MAX ADDRESS, then issue a volatile SET MAX ADDRESS to the native maximum address. The BIOS can write configuration data to the HPA. On power down, the maximum address returns to the last non-volatile setting.

9.1 HPA Feature Set Support and Identify Command

When HPA feature set is implemented, the IDENTIFY DRIVE Command returns the following information for Words 82, 83, 85, and 86:

- Word 82 bit 10 shall be set to "1" to configure the card for Host Protected Area feature set support.
- Word 85 bit 10 shall be set to "1" to at power on to indicate that Host Protected Area feature set is enabled.
- Words 83 and 86 bit 8 shall be cleared to "0" to indicate that SET MAX SECURITY EXT is not supported.

9.2 HPA Commands

HPA command set is invoked by writing the command code to the Command Register. Refer to Table 33 for a description of the supported Security Commands.

Table 32: HPA Commands

Command	Code	Description
READ NATIVE MAX ADDRESS	F8	This command returns the native maximum address. The native maximum address is the highest address accepted by the device in the factory default condition. The native maximum address is the maximum address that is valid when using the SET MAX ADDRESS command.
SET MAX ADDRESS	F9	After successful command completion, all read and write access attempts to addresses greater than specified by the successful SET MAX ADDRESS command shall be rejected with an IDNF error. After a successful SET MAX ADDRESS command using a new maximum LBA the content of IDENTIFY DEVICE words (61:60) shall be equal to the new Maximum LBA + 1. More than one non-volatile SET MAX ADDRESS command after a power-on or hardware reset will report an IDNF error.

10.0 SMART Feature Set

Note: The following part numbers support the SMART feature set:

- Part Numbers without -S (capacities > 2GB)
- Part Numbers with -S (all capacities)

Self-Monitoring, Analysis, and Reporting Technology (the SMART feature set) is used to protect the user from unscheduled downtime. By monitoring and storing critical performance and calibration parameters, SMART feature set devices attempt to predict the likelihood of near-term degradation or fault condition. Informing the host system of a negative reliability condition allows the host system to warn the user of the impending risk of a data loss and advise the user of appropriate action.

10.1 SMART Support and Identify Command

When SMART feature set is implemented, the IDENTIFY DRIVE Command returns the following information for Words 82, 84, and 85:

- Word 82 bit 0 shall be set to "1" to configure the card for SMART feature set support.
- Word 84 bit 1 shall be set to "1" to indicate that SMART self test is supported.
- Word 84 bit 0 shall be cleared to "0" to indicate that SMART error logging is not supported.
- Word 85 bit 0 shall be set to "1" turning on (enabling) the SMART features at plug in until a SMART DISABLE OPERATIONS command is issued by host.
- Word 87 bit 1 shall be set to "1" turning on (enabling) the SMART self test at plug in.

10.2 SMART Commands

A command code of 0xB0 with a SMART command selected in the Feature Register invokes a SMART command. Refer to Table 33 for the Feature Register values associated with each SMART command.

Table 33: Supported SMART Commands

Feature Register	Command
D0h	SMART READ ATTRIBUTE DATA
D1h	SMART READ ATTRIBUTE THRESHOLDS
D2h	SMART ENABLE/DISABLE ATTRIBUTE AUTOSAVE
D4h	SMART EXECUTE OFF-LINE IMMEDIATE
D5h	SMART READ LOG
D6h	SMART WRITE LOG
D8h	SMART ENABLE OPERATIONS
D9h	SMART DISABLE OPERATIONS
DAh	SMART RETURN STATUS

10.3 SMART Attributes

The SMART attributes used by the card are listed in Table 34.

Table 34: CF Card Supported SMART Attributes

ID	Name	Description	Туре
9	Power On Hours	Number of hours elapsed in the Power-On state.	Advisory
12	Power Cycle	Number of power-on events.	Advisory
13	Soft Read Error Rate	Number of corrected read errors reported to the operating system (SLC = 3 or more bits; MLC =5 or more bits).	Advisory
100	Erase/Program Cycles	Count of erase program cycles for entire card.	Advisory
170	Reserved Block Count	Numbers of reserved spares for bad block handling.	Warranty
187	Reported Uncorrectable Errors	Number of uncorrectable errors reported at the interface.	Advisory
188	Command Timeout	Tracks the number of command time outs as defined by an active command being interrupted.	Advisory
199	UDMA CRC Error	Number of CRC errors during UDMA mode.	Advisory

11.0 Appendix: CompactFlash Adapter

In addition to the CF Card form factors, passive CompactFlash Adapters allow the card to be used in a PC Card Type II slot. This appendix provides information on the CompactFlash Adapter available from STEC.

11.1 CF Adapter Ordering Information

Refer to Table 35 for the CF Adapter ordering part number.

Table 35: CF Adapter Ordering Information

Part Number	CF Form Factor	PC Card Form Factor
SLCFADU	Type I	Type II

Legend:

- SLCFAD = STEC standard CompactFlash Adapter part number prefix.
- Part numbers without (I) = Commercial temperature range (0°C to 70°C).
- **U** = RoHS-6 compliant lead-free.

11.2 CF Adapter Specifications

Table 36: CF Adapter Specifications

Parameter	Value	
Mating/unmating life	10,000 cycles	
Operating voltage	240 VAC max	
Current rating	1A max	
Contact resistance	3 ohms max	
Insulation resistance	200M ohms min (300V DC)	
Commercial Operating Temperature	0°C to 70°C	
Lead content	RoHS-6 compliant, lead-free	

11.3 CF Adapter Package Dimensions and Pin Locations

Table 37 and Figure 22 show the mechanical dimensions of the CF Adapter Type I.

Table 37: Mechanical dimensions CF Adapter Type I

Parameter	Value
Length	85.50 ± 0.20 mm (3.366 ±. 0.008 in)
Width	54.40 ± 0.10 mm (2.126 ± 0.004 in)
Height (including label area)	5.00 mm (0.197 in) max

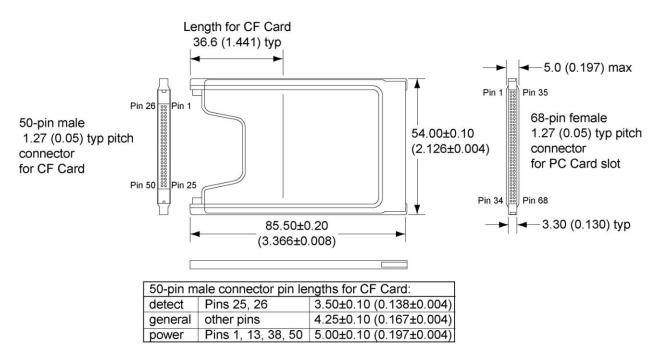


Figure 22: Mechanical dimensions CF Adapter Type I

11.4 CF Adapter Pin Assignment

Table 38: CF Adapter Pin Assignment

CE Adoptor	CF Adapter 68-Pin 50-Pin CF Card CF Adapter 68-Pin 50-Pin CF Card						
CF Adapter 68-Pin	68-Pin Number	50-Pin Number	CF Card 50-Pin	CF Adapter 68-Pin	Number	50-Pin Number	CF Card 50-Pin
GND	Pin 1	Pin 1	GND	GND	Pin 35	Pin 1	GND
D03	Pin 2	Pin 2	D03	-CD1	Pin 36	Pin 26	-CD1
D04	Pin 3	Pin 3	D04	D11	Pin 37	Pin 27	D11
D05	Pin 4	Pin 4	D05	D12	Pin 38	Pin 28	D12
D06	Pin 5	Pin 5	D06	D13	Pin 39	Pin 29	D13
D07	Pin 6	Pin 6	D07	D14	Pin 40	Pin 30	D14
-CE1	Pin 7	Pin 7	-CE1 (-CS0)	D15	Pin 41	Pin 31	D15 (-CS1)
A10	Pin 8	Pin 8	`A10	-CE2	Pin 42	Pin 32	-CE2
-OE	Pin 9	Pin 9	-OE (-ATASEL)	-VS1	Pin 43	Pin 33	-VS1
A11	Pin 10		-IORD	Pin 44	Pin 34	-IORD	
A09	Pin 11	Pin 10	A09	-IOWR	Pin 45	Pin 35	-IOWR
A08	Pin 12	Pin 11	A08	A17	Pin 46		
A13	Pin 13		A18	Pin 47			
A14	Pin 14		A19	Pin 48			
-WE	Pin 15	Pin 36	-WE	A20	Pin 49		
READY / -IREQ	Pin 16	Pin 37	READY / -IREQ (INTRQ)	A21	Pin 50		
VCC	Pin 17	Pin 13	VCC	VCC	Pin 51	Pin 38	VCC
VPP1	Pin 18		VPP2	Pin 52			
A16	Pin 19		A22	Pin 53			
A15	Pin 20		A23	Pin 54			
A12	Pin 21		A24	Pin 55			
A07	Pin 22	Pin 12	A07	A25	Pin 56	Pin 39	CSEL
A06	Pin 23	Pin 14	A06	-VS2	Pin 57	Pin 40	-VS2
A05	Pin 24	Pin 15	A05	RESET	Pin 58	Pin 41	RESET (-RESET)
A04	Pin 25	Pin 16	A04	-WAIT	Pin 59	Pin 42	-WAIT (IORDY)
A03	Pin 26	Pin 17	A03	-INPACK	Pin 60	Pin 43	-INPACK (-DMARQ*)
A02	Pin 27	Pin 18	A02	-REG	Pin 61	Pin 44	-REG (DMACK*)
A01	Pin 28	Pin 19	A01	BVD2/ -SPKR	Pin 62	Pin 45	BVD2 / -SPKR (-DASP)
A00	Pin 29	Pin 20	A00	BVD1/ -STSCHG	Pin 63	Pin 46	BVD1 / -STSCHG (-PDIAG)
D00	Pin 30	Pin 21	D00	D08	Pin 64	Pin 47	D08
D01	Pin 31	Pin 22	D01	D09	Pin 65	Pin 48	D09
D02	Pin 32	Pin 23	D02	D10	Pin 66	Pin 49	D10
WP / -IOIS16	Pin 33	Pin 24	WP / -IOIS16 (-IOCS16)	-CD2	Pin 67	Pin 25	-CD2
GND	Pin 34	Pin 50	GND	GND	Pin 68	Pin 50	GND

- A signal name appearing alone is a PC Card memory mode, PC Card I/O and TrueIDE signal name
- A signal appearing alone before a "(" is both a PC Card memory mode and PC Card I/O mode signal name.
- A signal appearing before "/" is a PC Card memory mode signal name.
- A signal appearing after "/" is a PC Card I/O mode signal
- 5. A signal appearing in "()" is a TrueIDE mode signal name.
- 6. A signal appearing in "(*)" is a TrueIDE mode DMA-only signal name.
- 7. Legend: "-" = Low active

12.0 Contact Information

12.1 STEC Worldwide Headquarters

STEC INC				
3001 Daimler Street	General Support:	1-949-476-1180		
Santa Ana, California 92705	Fax Number:	1-949-476-1209		
United States of America (USA)	E-mail:	oemsupport@stec-inc.com		

12.2 STEC Worldwide Locations

STEC ITALY S. R. L.	STEC TAIWAN	STEC JAPAN G.K.
Via del Caravaggio, 3	RM1101, 11F, No. 495	Shinyurigaoka-City Building 4-402
20111 Milano	Guang-Fu S. Road	1-1-1, Manpukuji, Aso-ku, Kawaski-shi
Italy	Taipei	Kanagawa-ken 215-0004
	Taiwan	Japan
Phone: +39 02 497 56 213	Phone: +886 2 8780 8000 Ext. 1101	Phone: +81 44-959-2883
	Fax: +886 2 8725 7711	Fax: +81 44-959-2887
STEC MALAYSIA	STEC CHINA	
STEC Technology Sdn	RM1805, 18F Bund Centre	
Plot 107 Bayan Lepas Industrial Park	222 Yan An Road East	
Phase 4	HuangPu District Shanghai 200002	
11900 Penang, Malaysia	P.R. China	
Phone: +60 (4) 8887888	Phone: +86 21 6132 3892 Ext. 629	
	Fax: +86 21 6335 1336	

13.0 Revision History

Revision	Date	Description
-101	03/23/2011	Initial Release
-102	04/08/2011	Reliability table corrected (paper error only).
-103	04/20/2011	Features (transfer modes and option bullets); Ordering Information (options) clarified; ID Parameters table (Words 82 and 85)
-104	04/22/2011	Preliminary notice removed.
-105	05/11/2011	Note on formatting added to Ordering Information.
-106	05/16/2011	Transposed settings in ID table, Word 0 corrected.

DISCLAIMER OF LIABILITY

STEC™ Inc. reserves the right to make changes to specifications and product descriptions such as but not limited to numbers, parameters and other technical information contained herein without notice. Please contact the STEC™ Inc. sales office to obtain the latest specifications. STEC™ Inc. grants no warranty with respect to this datasheet, neither explicit or implied, and is not liable for direct or indirect damages. Some states do not grant the exclusion of incidental damages and as such this statement may not be valid in such states. The provisions of the datasheet do not convey to the purchaser of the device any license under any patent rights or other intellectual property rights of STEC Inc. or others.

EXPORT ADMINISTRATION REGULATIONS

The information provided may be subject to United States Export Controls. Such information should not be downloaded or exported (i), into (or to a national or resident of) Cuba, Iraq, Libya, North Korea, Iran, Syria, or any other country to which the United States has embargoed goods; or given to (ii), anyone on the United States Treasury Department's list of Specially Designated Nationals or the U.S. Commerce Departments's Table of Deny Orders. By using the information, you represent and warrant that you are not located in, under the control of, or a national or resident of any such country or on any such list.

COPYRIGHT NOTICE

Copyright © 2011 by STEC™ Inc. All rights reserved. Information contained in this document, including but not limited to any instructions, descriptions and product specifications, is considered proprietary and confidential to STEC™, Inc. and shall not be modified, used, copied, reproduced or disclosed in whole or in part, in any form or by any means, electronic or mechanical, for any purpose, without the written consent of STEC™ Inc

