
Fair-Rite Products Corp. Your Signal Solution®

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 2661000301 Printed: 2010-11-09

Part Number:	2661000301
Frequency Range:	Higher Frequencies 250-1000 MHz (61 material)
Description:	61 SHIELD BEAD
Application:	Suppression Components
Where Used:	Board Component
Part Type:	EMI Suppression Beads
Preferred Part:	\checkmark

(g)

Mechanical Specifications

Weight: .180

Part Type Information

Fair-Rite offers a broad selection of ferrite EMI suppression beads with guaranteed minimum impedance specifications.

-Beads with a '1' as the last digit of the part number are not burnished. Parts that are burnished to break the sharp edges have a '2' as the last digit.

-Upon request beads can be supplied with a Parylene coating. The last digit of the Parylene coated part is a '4'. The minimum coating thickness beads is 0.005 mm (.0002").

-The column 'H (Oe)' gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of 'H' times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note www.fair-rite.com/newfair/pdf/CUP%20Paper.pdf document for 'How to choose Ferrite Components for EMI Suppression.

-Suppression beads are controlled for impedances only. The impedances listed are typical values. Minimum impedance values are specified for the + marked frequencies. The minimum guaranteed impedance is the listed typical impedance less 20%.

-Single turn impedance tests for 73 and 43 material beads are performed on the 4193A Vector Impedance Analyzer. The 61 material beads are tested on the 4191A RF Impedance Analyzer. Beads are tested with the shortest practical wire length.

-Preferred beads are the suggested choice for new designs. Samples are readily available and orders have typically shorter lead times than other beads. For any EMI suppression bead requirement not listed here, feel free to contact our customer service for availability and pricing.

-The 'C' dimension, the bead length, can be modified to suit specific applications.

-Our 'Shield Bead Kit' (part number 0199000019) contains a selection of these beads.

-Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade and last digit 1= not burnished, 2 = burnished and 4 = Parylene coated.

Fair-Rite Products Corp. Your Signal Solution®

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com Fair-Rite Product's Catalog Part Data Sheet, 2661000301 Printed: 2010-11-09

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
А	3.50	±0.20	0.138	-
В	1.30	±0.10	0.051	-
С	6.00	±0.25	0.236	-
D	-	-	-	-
Е	-	-	-	-
F	-	-	-	-
G	-	-	-	-
H	-	-	-	-
J	-	-	-	-
К	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)		
100 MHz	54	
250 MHz+	82	
500 MHz+	103	
1000 MHz	120	

Electrical Properties	
H(Oe)	2.00

V	W	Х	Y	Ζ
	ref			
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∑I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_{I} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

N/AWG - Number of Turns/Wire Size for Test Coil Downloaded from Elcodis.com electronic components distributor I e: Effective Path Length

Ve: Effective Core Volume

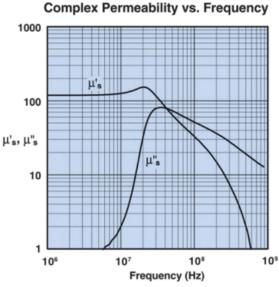
NI - Value of dc Ampere-turns

Fair-Rite Product's Catalog Part Data Sheet, 2661000301 Printed: 2010-11-09

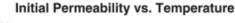
Ferrite Material Constants

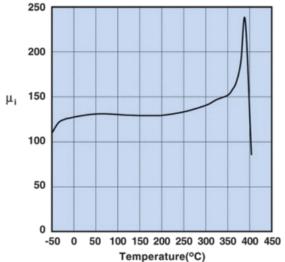
Specific Heat	0.25 cal/g/ºC
Thermal Conductivity	10x10 ⁻³ cal/sec/cm/°C
Coefficient of Linear Expansion	8 - 10x10 ⁻⁶ /ºC
Tensile Strength	4.9 kgf/mm ²
Compressive Strength	42 kgf/mm ²
Young's Modulus	15x10 ³ kgf/mm ²
Hardness (Knoop)	650
Specific Gravity	\approx 4.7 g/cm ³
The above quoted properties are typical for Fair-Rit	e MnZn and NiZn ferrites.

See next page for further material specifications.


Fair-Rite Products Corp. Your Signal Solution®

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

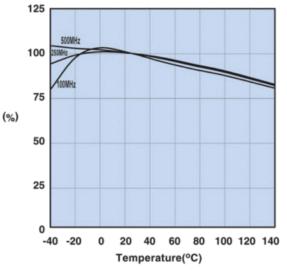

A high frequency NiZn ferrite developed for a range of inductive applications up to 25 MHz. This material is also used in EMI applications for suppression of noise frequencies above 200 MHz.


EMI suppression beads, beads on leads, SM beads, wound beads, multi-aperture cores, round cable snap-its, rods, antenna/RFID rods, and toroids are all available in 61 material.

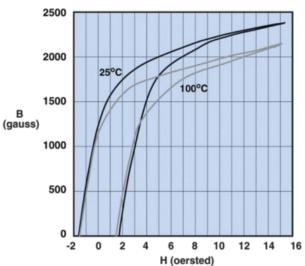
Strong magnetic fields or excessive mechanical stresses may result in irreversible changes in permeability and losses.

Measured on a 19/10/6mm toroid using the HP 4284A and the HP 4291A.

Measured on a 19/10/6mm toroid at 100kHz.


Fair-Rite Product's Catalog Part Data Sheet, 2661000301 Printed: 2010-11-09

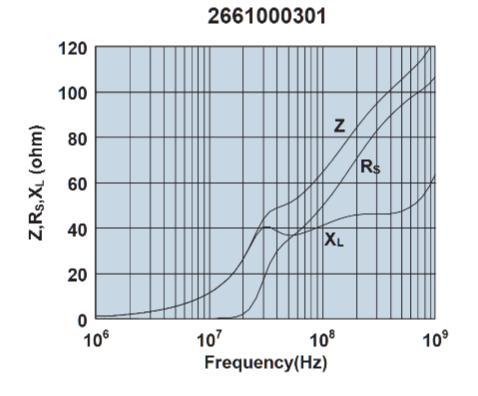
61 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability @ B < 10 gauss		μ	125
Flux Density	gauss	в	2350
@ Field Strength	oersted	н	15
Residual Flux Density	gauss	B,	1200
Coercive Force	oersted	Hc	1.8
Loss Factor	10-6	tanδ/μ,	30
@ Frequency	MHz		1.0
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		0.10
Curie Temperature	°C	Tc	>300
Resistivity	Ωcm	ρ	1x10 ⁸

Percent of Original Impedance vs. Temperature

Measured on a 2661000301 using the HP4291A.

Hysteresis Loop



Measured on a 19/10/6mm toroid at 10kHz.

Fair-Rite Product's Catalog Part Data Sheet, 2661000301 Printed: 2010-11-09

Impedance, reactance, and resistance vs. frequency.