feATURES

- Pulse Width Modulation (PWM) Controlled by Simple OV to 1V Analog Input
- Four Available Options Define Duty Cycle Limits
- Minimum Duty Cycle at 0\% or 5\%
- Maximum Duty Cycle at 95\% or 100\%
- Frequency Range: 3.81 Hz to 1 MHz
- Configured with 1 to 3 Resistors
- <1.7\% Maximum Frequency Error
- PWM Duty Cycle Error <3.7\% Maximum
- Frequency Modulation (VCO) Capability
- 2.25V to 5.5 V Single Supply Operation
- $115 \mu \mathrm{~A}$ Supply Current at 100 kHz
- 500 $\mu \mathrm{s}$ Start-Up Time
- CMOS Output Driver Sources/Sinks 20mA
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range
- Available in Low Profile (1 mm) SOT-23 (ThinSOT ${ }^{\text {TM }}$) and $2 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN

APPLICATIONS

- PWM Servo Loops
- Heater Control
- LED Dimming Control
- High Vibration, High Acceleration Environments
- Portable and Battery-Powered Equipment
$\overline{\mathbf{L T}}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and TimerBlox and ThinSOT are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTION

The LTC®6992 is a silicon oscillator with an easy-to-use analog voltage-controlled pulse width modulation (PWM) capability. The LTC6992 is part of the TimerBlox ${ }^{\text {TM }}$ family of versatile silicon timing devices.
A single resistor, R ${ }_{\text {SET }}$, programs the LTC6992's internal master oscillator frequency. The output frequency is determined by this master oscillator and an internal frequency divider, $\mathrm{N}_{\text {DIV }}$, programmable to eight settings from 1 to 16384.

$$
\begin{equation*}
\mathrm{f}_{\text {OUT }}=\frac{1 \mathrm{MHz}}{\mathrm{~N}_{\text {DIV }}} \cdot \frac{50 \mathrm{k} \Omega}{\mathrm{R}_{\text {SET }}}, \mathrm{N}_{\text {DIV }}=1,4,16 \ldots \tag{16384}
\end{equation*}
$$

Applying a voltage between OV and 1 V on the MOD pin sets the duty cycle, according to the following formula:

$$
\text { Duty Cycle }=\frac{V_{M O D}}{0.8 \cdot V_{\text {SET }}}-\frac{1}{8} \cong \frac{V_{M O D}-100 \mathrm{mV}}{800 \mathrm{mV}}
$$

The four versions differ in their minimum/maximum duty cycle. Note that a minimum duty cycle limit of 0% or maximum duty cycle limit of 100% allows oscillations to stop at the extreme duty cycle settings.

DEVICE NAME	PWM DUTY CYCLE RANGE
LTC6992-1	0% to 100%
LTC6992-2	5% to 95%
LTC6992-3	0% to 95%
LTC6992-4	5% to 100%

TYPICAL APPLICATION

1MHz Pulse Width Modulator

ABSOLUTE MAXIMUM RATINGS (Nole 1)

Supply Voltage (V^{+}) to GND \qquad Maximum Voltage On Any Pin

Specified Temperature Range (Note 3)	
LTC6992C	,
LTC6992\|	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992H	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 sec)	
S6 Package	$300^{\circ} \mathrm{C}$

pin Configuration

DCB PACKAGE
6 -LEAD $(2 \mathrm{~mm} \times 3 \mathrm{~mm})$ PLASTIC DFN
$T_{J M A X}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=64^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=10.6^{\circ} \mathrm{C} / \mathrm{W}$ EXPOSED PAD (PIN 7) IS GND, PCB CONNECTION IS OPTIONAL

6-LEAD PLASTIC TSOT-23
$T_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=192^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=51^{\circ} \mathrm{C} / \mathrm{W}$

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6992CDCB-1\#PBF	LTC6992CDCB-1\#TRPBF	LDXC	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IDCB-1\#PBF	LTC6992IDCB-1\#TRPBF	LDXC	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HDCB-1\#PBF	LTC6992HDCB-1\#TRPBF	LDXC	6 -Lead (2mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CS6-1\#PBF	LTC6992CS6-1\#TRPBF	LTDXB	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IS6-1\#PBF	LTC6992IS6-1\#TRPBF	LTDXB	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-1\#PBF	LTC6992HS6-1\#TRPBF	LTDXB	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CDCB-2\#PBF	LTC6992CDCB-2\#TRPBF	LDXF	6-Lead (2mm $\times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IDCB-2\#PBF	LTC6992IDCB-2\#TRPBF	LDXF	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HDCB-2\#PBF	LTC6992HDCB-2\#TRPBF	LDXF	6 -Lead (2mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CS6-2\#PBF	LTC6992CS6-2\#TRPBF	LTDXD	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IS6-2\#PBF	LTC6992IS6-2\#TRPBF	LTDXD	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-2\#PBF	LTC6992HS6-2\#TRPBF	LTDXD	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CDCB-3\#PBF	LTC6992CDCB-3\#TRPBF	LFCP	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IDCB-3\#PBF	LTC6992IDCB-3\#TRPBF	LFCP	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HDCB-3\#PBF	LTC6992HDCB-3\#TRPBF	LFCP	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CS6-3\#PBF	LTC6992CS6-3\#TRPBF	LTFCQ	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IS6-3\#PBF	LTC6992IS6-3\#TRPBF	LTFCQ	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-3\#PBF	LTC6992HS6-3\#TRPBF	LTFCQ	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6992CDCB-4\#PBF	LTC6992CDCB-4\#TRPBF	LFCR	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IDCB-4\#PBF	LTC6992IDCB-4\#TRPBF	LFCR	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HDCB-4\#PBF	LTC6992HDCB-4\#TRPBF	LFCR	6 -Lead ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
69921234fa				

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6992CS6-4\#PBF	LTC6992CS6-4\#TRPBF	LTFCS	6 -Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6992IS6-4\#PBF	LTC6992IS6-4\#TRPBF	LTFCS	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6992HS6-4\#PBF	LTC6992HS6-4\#TRPBF	LTFCS	6 -Lead Plastic TS0T-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The e denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{MOD}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {SET }}$, DIVCODE = 0 to 15 ($\mathrm{N}_{\text {DIV }}=1$ to 16,384), $\mathrm{R}_{\text {SET }}=50 \mathrm{k}$ to $800 \mathrm{k}, \mathrm{R}_{\text {LOAD }}=5 \mathrm{k}, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIIN	TYP	MAX	UNITS
Oscillation Frequency							
$\mathrm{f}_{\text {OUT }}$	Output Frequency			3.8		1000000	Hz
$\Delta f_{\text {OUT }}$	Frequency Accuracy (Note 4)	$3.81 \mathrm{~Hz} \leq \mathrm{f}_{\text {OUT }} \leq 1 \mathrm{MHz}$	\bullet		± 0.8	$\begin{aligned} & \pm 1.7 \\ & \pm 2.4 \end{aligned}$	\%
$\underline{\Delta f_{\text {OuT }} / \Delta T}$	Frequency Drift Over Temperature		\bullet		± 0.005		$\% /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{f}_{\text {OUT }} / \Delta \mathrm{V}^{+}$	Frequency Drift Over Supply	$\begin{aligned} & \mathrm{V}^{+}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.25 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.18 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
	Period Jitter (Note 9)	$\mathrm{N}_{\text {DIV }}=1$			1.2		\%p-p
		$\mathrm{N}_{\text {DIV }}=4$			$\begin{gathered} 0.4 \\ 0.07 \end{gathered}$		\%p-p \%RMS
		$N_{\text {DIV }}=16$			$\begin{gathered} 0.15 \\ 0.022 \end{gathered}$		$\begin{array}{r} \text { \%p-p } \\ \text { \%RMS } \end{array}$

Pulse Width Modulation

$\Delta \mathrm{D}$	PWM Duty Cycle Accuracy	$\begin{aligned} & \hline V_{\text {MOD }}=0.2 \cdot V_{\text {SET }} \text { to } 0.8 \cdot \vee_{\text {SET }} \\ & V_{\text {MOD }}=0.2 \cdot V_{\text {SET }} \text { to } 0.8 \cdot \vee_{\text {SET }} \\ & V_{\text {MOD }}<0.2 \cdot V_{\text {SET }} \text { or } V_{\text {MOD }}>0.8 \cdot \mathrm{~V}_{\text {SET }} \\ & \hline \end{aligned}$	\bullet		± 3.0	$\begin{aligned} & \pm 3.7 \\ & \pm 4.5 \\ & \pm 4.9 \end{aligned}$	\% $\%$ $\%$
$\mathrm{D}_{\text {MAX }}$	Maximum Duty Cycle Limit	LTC6992-1/LTC6992-4, POL = 0, V $\mathrm{V}_{\text {MOD }}=1 \mathrm{~V}$	\bullet	100			\%
		LTC6992-2/LTC6992-3, POL = 0, V $\mathrm{MOD}^{\text {a }}$ 1V	\bullet	90.5	95	99	\%
$\overline{D_{\text {MIN }}}$	Minimum Duty Cycle Limit	LTC6992-1/LTC6992-3, POL = 0, V $\mathrm{MOD}^{\text {a }}$ OV	\bullet			0	\%
		LTC6992-2/LTC6992-4, POL = 0, V $\mathrm{MOD}^{\text {a }}$ OV	\bullet	1	5	9.5	\%
$\mathrm{t}_{\mathrm{S}, \mathrm{PWM}}$	Duty Cycle Settling Time (Note 6)	$\mathrm{t}_{\text {MASTER }}=\mathrm{t}_{\text {OUT }} / \mathrm{N}_{\text {DIV }}$			$8 \bullet \mathrm{t}_{\text {MAST }}$		$\mu \mathrm{s}$

Power Supply

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{MOD}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SET}}$, DIVCODE = 0 to 15 ($N_{\text {DIV }}=1$ to 16,384), $R_{S E T}=50 \mathrm{k}$ to $800 \mathrm{k}, \mathrm{R}_{\text {LOAD }}=5 \mathrm{k}, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Analog Inputs								
$\mathrm{V}_{\text {SET }}$	Voltage at SET Pin			\bullet	0.97	1.00	1.03	V
$\Delta \mathrm{V}_{\text {SET }} / \Delta \mathrm{T}$	$\mathrm{V}_{\text {SET }}$ Drift Over Temperature			\bullet		± 75		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {SET }}$	Frequency-Setting Resistor			\bullet	50		800	$\mathrm{k} \Omega$
	MOD Pin Input Capacitance					2.5		pF
	MOD Pin Input Current			\bullet			± 10	nA
$\overline{\mathrm{V}_{\text {MOD, } \mathrm{H}}}$	$V_{\text {MOD }}$ Voltage for Maximum Duty Cycle	$\begin{aligned} & \text { LTC6992-1/LTC6992-4, POL = 0, D = 100\% } \\ & \text { LTC6992-2/LTC6992-3, POL = O, D = 95\% } \end{aligned}$		\bullet		$\begin{aligned} & 0.90 \cdot V_{\text {SET }} \\ & 0.86 \cdot V_{\text {SET }} \\ & \hline \end{aligned}$	$0.936 \bullet V_{\text {SET }}$	V
$\mathrm{V}_{\text {MOD,LO }}$	$V_{\text {MOD }}$ Voltage for Minimum Duty Cycle	$\begin{aligned} & \text { LTC6992-1/LTC6992-3, POL }=0, D=0 \% \\ & \text { LTC6992-2/LTC6992-4, POL }=0, D=5 \% \end{aligned}$		\bullet	$0.064 \cdot V_{\text {SET }}$	$\begin{aligned} & \hline 0.10 \cdot \vee_{\text {SET }} \\ & 0.14 \cdot V_{\text {SET }} \end{aligned}$		V
$\mathrm{V}_{\text {DIV }}$	DIV Pin Voltage			\bullet	0		V^{+}	V
$\Delta V_{\text {DIV }} / \Delta V^{+}$	DIV Pin Valid Code Range (Note 5)	Deviation from Ideal$\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}=(\text {DIVCODE }+0.5) / 16$		\bullet			± 1.5	\%
	DIV Pin Input Current			\bullet			$\pm 10 \mathrm{nA}$	
Digital Output								
IOUT(MAX)	Output Current	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5.5 V				± 20		mA
V_{OH}	High Level Output Voltage (Note 7)	$\mathrm{V}^{+}=5.5 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & I_{\text {OUT }}=-16 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & \hline 5.45 \\ & 4.84 \end{aligned}$	$\begin{aligned} & 5.48 \\ & 5.15 \end{aligned}$		V
		$\mathrm{V}^{+}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & I_{\text {OUT }}=-10 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 3.24 \\ & 2.75 \end{aligned}$	$\begin{aligned} & \hline 3.27 \\ & 2.99 \end{aligned}$		V
		$\mathrm{V}^{+}=2.25 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=-1 \mathrm{~mA} \\ & I_{\text {OUT }}=-8 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 2.17 \\ & 1.58 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.21 \\ & 1.88 \end{aligned}$		V
$\overline{\mathrm{V}} \mathrm{L}$	Low Level Output Voltage (Note 7)	$\mathrm{V}^{+}=5.5 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & I_{\text {OUT }}=16 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.02 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.54 \end{aligned}$	V
		$\mathrm{V}^{+}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & I_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.03 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.46 \end{aligned}$	V
		$\mathrm{V}^{+}=2.25 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT }}=1 \mathrm{~mA} \\ & I_{\text {OUT }}=8 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.03 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.54 \end{aligned}$	V
t_{r}	Output Rise Time (Note 8)	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=\infty \\ & \mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=\infty \\ & \mathrm{V}^{+}=2.25 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=\infty \\ & \hline \end{aligned}$				$\begin{aligned} & 1.1 \\ & 1.7 \\ & 2.7 \end{aligned}$		ns ns ns
t_{f}	Output Fall Time (Note 8)	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V}, \mathrm{R} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V}, \mathrm{R} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V}, \end{aligned}$				$\begin{aligned} & 1.0 \\ & 1.6 \\ & 2.4 \\ & \hline \end{aligned}$		ns ns ns

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC6992C is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 3: The LTC6992C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LTC6992C is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but it is not tested or QA sampled at these temperatures. The LTC6992l is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LTC6992H is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: Frequency accuracy is defined as the deviation from the fout equation, assuming $R_{\text {SET }}$ is used to program the frequency.

Note 5: See Operation section, Table 1 and Figure 2 for a full explanation of how the DIV pin voltage selects the value of DIVCODE.
Note 6: Duty cycle settling time is the amount of time required for the output to settle within $\pm 1 \%$ of the final duty cycle after a $\pm 10 \%$ change in the setting ($\pm 80 \mathrm{mV}$ step in $\mathrm{V}_{\text {MOD }}$).
Note 7: To conform to the Logic IC Standard, current out of a pin is arbitrarily given a negative value.
Note 8: Output rise and fall times are measured between the 10\% and the 90% power supply levels with 5 pF output load. These specifications are based on characterization.
Note 9: Jitter is the ratio of the peak-to-peak deviation of the period to the mean of the period. This specification is based on characterization and is not 100% tested.

TYPICAL PERFORMAOCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{~K}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

92 G01

Frequency Error vs Temperature

6992 G02

Frequency Error vs Temperature

6992 G03

 otherwise noted.

$\mathbf{N}_{\text {DIV }}=1$ Duty Cycle Error vs R SET

$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Error vs R RET

$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Error vs RSET

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{~K}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

6992 G19
$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Error
vs Temperature

$\mathrm{N}_{\text {DIV }}=1$ Duty Cycle Error vs Temperature

$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Error vs Temperature

6992 G21
6992622
$\mathrm{N}_{\text {DIV }}=1$ Duty Cycle Clamps
vs Temperature

$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Clamps
vs Temperature

6992 G24
6992 G25

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{~K}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

992 G29

Duty Cycle Error vs DIVCODE

6992 G30
$N_{\text {DIV }}>1$ Duty Cycle Error vs Ideal

Duty Cycle Error vs DIVCODE

6992 G31
$\mathrm{N}_{\text {DIV }}>1$ Duty Cycle Error vs Ideal

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{k}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

6992 G38

Linearity Near 5\% Duty Cycle

Linearity Near 67\% Duty Cycle

6992 G37

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{~K}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Supply Current vs Frequency, 2.5V

6992647
6992648

6992 G50

Rise and Fall Time
vs Supply Voltage

Typical ISET Current Limit vs \mathbf{V}^{+}

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}^{+}=3.3 \mathrm{~V}, \mathrm{R}_{\text {SET }}=200 \mathrm{~K}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Typical Start-Up, POL = 1

125kHz Full Modulation

PIn fUnCTIOnS

(DCB/S6)
\mathbf{V}^{+}(Pin $1 /$ Pin 5): Supply Voltage (2.25V to 5.5 V). This supply should be kept free from noise and ripple. It should be bypassed directly to the GND pin with a 0.1 䒑F capacitor.
DIV (Pin 2/Pin 4): Programmable Divider and Polarity Input. The DIV pin voltage (VII) is internally converted into a 4-bit result (DIVCODE). VIIV may be generated by a resistor divider between V^{+}and GND . Use 1% resistors to ensure an accurate result. The DIV pin and resistors should be shielded from the OUT pin or any other traces that have fast edges. Limit the capacitance on the DIV pin to less than 100 pF so that $\mathrm{V}_{\text {DIV }}$ settles quickly. The MSB of DIVCODE (POL) determines if the PWM signal is inverted before driving the output. When POL = 1 the transfer function is inverted (duty cycle decreasing as $V_{\text {mod }}$ increases).
SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage on the SET pin ($\mathrm{V}_{\text {SET }}$) is regulated to 1 V above GND. The amount of current sourced from the SET pin (ISET) programs the master oscillator frequency. The I ISET current range is $1.25 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$. The output oscillation will stop
if I ISET drops below approximately 500nA. A resistor connected between SET and GND is the most accurate way to set the frequency. For best performance, use a precision metal or thin film resistor of 0.5% or better tolerance and $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better temperature coefficient. For lower accuracy applications an inexpensive 1% thick film resistor may be used.
Limit the capacitance on the SET pin to less than 10pF to minimize jitter and ensure stability. Capacitance less than 100pF maintains the stability of the feedback circuit regulating the $\mathrm{V}_{\text {SET }}$ voltage.

PIn fUnCTIOnS
 (DCB/S6)

MOD (Pin 4/Pin 1): Pulse-Width Modulation Input. The voltage on the MOD pin controls the output duty cycle. The linear control range is between $0.1 \bullet \mathrm{~V}_{\text {SET }}$ and $0.9 \bullet \mathrm{~V}_{\text {SET }}$ (approximately 100 mV to 900 mV). Beyond those limits, the output will either clamp at 5% or 95%, or stop oscillating (0% or 100% duty cycle), depending on the version.

GND (Pin 5/Pin 2): Ground. Tie to alow inductance ground plane for best performance.
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings from GND to V^{+}with an output resistance of approximately 30Ω. The duty cycle is determined by the voltage on the MOD pin. When driving an LED or other low-impedance load a series output resistor should be used to limit the source/sink current to 20 mA .

BLOCK PIAGRAM (S6 Package Pin Numbers Shown)

operation

The LTC6992 is built around a master oscillator with a 1 MHz maximum frequency. The oscillator is controlled by the SET pin current ($\mathrm{I}_{\mathrm{SET}}$) and voltage ($\mathrm{V}_{\mathrm{SET}}$), with a $1 \mathrm{MHz} \cdot 50 \mathrm{k}$ conversion factor that is accurate to $\pm 0.8 \%$ under typical conditions.

$$
\mathrm{f}_{\text {MASTER }}=\frac{1}{\mathrm{t}_{\text {MASTER }}}=1 \mathrm{MHz} \cdot 50 \mathrm{k} \cdot \frac{\mathrm{I}_{\text {SET }}}{V_{\text {SET }}}
$$

A feedback loop maintains $\mathrm{V}_{\text {SET }}$ at $1 \mathrm{~V} \pm 30 \mathrm{mV}$, leaving $\mathrm{I}_{\text {SET }}$ as the primary means of controlling the output frequency. The simplest way to generate $I_{\text {SET }}$ is to connect a resistor ($\mathrm{R}_{\mathrm{SET}}$) between SET and GND, such that $\mathrm{I}_{\mathrm{SET}}=\mathrm{V}_{\mathrm{SET}} / \mathrm{R}_{\mathrm{SET}}$. The master oscillator equation reduces to:

$$
\mathrm{f}_{\text {MASTER }}=\frac{1}{\mathrm{t}_{\text {MASTER }}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{R}_{\text {SET }}}
$$

From this equation, it is clear that $\mathrm{V}_{\text {SET }}$ drift will not affect the output frequency when using a single program resistor ($\mathrm{R}_{\text {SET }}$). Error sources are limited to R RET tolerance and the inherent frequency accuracy $\Delta f_{0 u t}$ of the LTC6992.
$R_{\text {SET }}$ may range from 50k to 800k (equivalent to $I_{\text {SET }}$ between $1.25 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$).

The LTC6992 includes a programmable frequency divider which can further divide the frequency by $1,4,16,64$, $256,1024,4096$ or 16384 before driving the OUT pin. The divider ratio $N_{\text {DIV }}$ is set by a resistor divider attached to the DIV pin.

$$
\mathrm{f}_{\text {OUT }}=\frac{1}{\mathrm{t}_{\text {OUT }}}=\frac{1 \mathrm{MHz} \bullet 50 \mathrm{k}}{\mathrm{~N}_{\text {DIV }}} \cdot \frac{\mathrm{I}_{\text {SET }}}{\mathrm{V}_{\text {SET }}}
$$

With $\mathrm{R}_{\text {SET }}$ in place of $\mathrm{V}_{\text {SET }} / I_{\text {SET }}$ the equation reduces to:

$$
f_{\text {OUT }}=\frac{1}{t_{\text {OUT }}}=\frac{1 \mathrm{MHz} \bullet 50 \mathrm{k}}{\mathrm{~N}_{\text {DIV }} \bullet R_{\text {SET }}}
$$

DIVCODE

The DIV pin connects to an internal, V^{+}referenced 4-bit A/D converter that determines the DIVCODE value. DIVCODE programs two settings on the LTC6992:

1. DIVCODE determines the output frequency divider setting, N NIV.
2. DIVCODE determines the output polarity, via the POL bit.
$V_{\text {DIV }}$ may be generated by a resistor divider between V^{+} and GND as shown in Figure 1.
Table 1 offers recommended 1% resistor values that ac-

Figure 1. Simple Technique for Setting DIVCODE

LTC6992-1/LTC6992-2/
 LTC6992-3/LTC6992-4

operation

Table 1. DIVCODE Programming

DIVCODE	POL	$\mathbf{N}_{\text {DIV }}$	RECOMMENDED $f_{\text {OUT }}$	$\mathbf{R 1}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{R 2}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{V}_{\text {DIV }} / \mathbf{V}^{+}$
0	0	1	62.5 kHz to 1 MHz	Open	Short	$\leq 0.03125 \pm 0.015$
1	0	4	15.63 kHz to 250 kHz	976	102	0.09375 ± 0.015
2	0	16	3.906 kHz to 62.5 kHz	976	182	0.15625 ± 0.015
3	0	64	976.6 Hz to 15.63 kHz	1000	280	0.21875 ± 0.015
4	0	256	244.1 Hz to 3.906 kHz	1000	392	0.28125 ± 0.015
5	0	1024	61.04 Hz to 976.6 Hz	1000	523	0.34375 ± 0.015
6	0	4096	15.26 Hz to 244.1 Hz	1000	681	0.40625 ± 0.015
7	0	16384	3.815 Hz to 61.04 Hz	1000	887	0.46875 ± 0.015
8	1	16384	3.815 Hz to 61.04 Hz	887	1000	0.53125 ± 0.015
9	1	4096	15.26 Hz to 244.1 Hz	681	1000	0.59375 ± 0.015
10	1	1024	61.04 Hz to 976.6 Hz	523	1000	0.65625 ± 0.015
11	1	256	244.1 Hz to 3.906 kHz	392	1000	0.71875 ± 0.015
12	1	64	976.6 Hz to 15.63 kHz	280	1000	0.78125 ± 0.015
13	1	16	3.906 kHz to 62.5 kHz	182	976	0.84375 ± 0.015
14	1	4	15.63 kHz to 250 kHz	102	976	0.90625 ± 0.015
15	1	1	62.5 kHz to 1 MHz	Short	0 pen	$\geq 0.96875 \pm 0.015$

curately produce the correct voltage division as well as the corresponding $\mathrm{N}_{\text {DIV }}$ and POL values for the recommended resistor pairs. Other values may be used as long as:

1. The $\mathrm{V}_{\text {DIV }} /{ }^{+}$ratio is accurate to $\pm 1.5 \%$ (including resistor tolerances and temperature effects).
2. The driving impedance ($\mathrm{R} 1|\mid \mathrm{R} 2$) does not exceed $500 \mathrm{k} \Omega$.
If the voltage is generated by other means (i.e. the output of a DAC) it must track the V^{+}supply voltage. The last column in Table 1 shows the ideal ratio of $\mathrm{V}_{\text {DIV }}$ to the
supply voltage, which can also be calculated as:

$$
\frac{V_{\text {DIV }}}{\mathrm{V}^{+}}=\frac{\text { DIVCODE }+0.5}{16} \pm 1.5 \%
$$

For example, if the supply is 3.3 V and the desired DIVCODE is $4, \mathrm{~V}_{\text {DIV }}=0.281 \cdot 3.3 \mathrm{~V}=928 \mathrm{mV} \pm 50 \mathrm{mV}$.
Figure 2 illustrates the information in Table 1, showing that $\mathrm{N}_{\text {DIV }}$ is symmetric around the DIVCODE midpoint.

Figure 2. Frequency Range and POL Bit vs DIVCODE

OPERATION

Pulse Width (Duty Cycle) Modulation

The MOD pin is a high impedance analog input providing direct control of the output duty cycle. The duty cycle is proportional to the voltage applied to the MOD pin, VMOD.

$$
\text { Duty Cycle }=\mathrm{D}=\frac{\mathrm{V}_{\text {MOD }}}{0.8 \cdot V_{\text {SET }}}-\frac{1}{8}
$$

The PWM duty cycle accuracy $\Delta \mathrm{D}$ specifies that the above equation is valid to within $\pm 4.5 \%$ for $\mathrm{V}_{\mathrm{MOD}}$ between 0.2 • $\mathrm{V}_{\text {SET }}$ and $0.8 \cdot \mathrm{~V}_{\text {SET }}$ (12.5% to 87.5% duty cycle).
Since $V_{S E T}=1 \mathrm{~V} \pm 30 \mathrm{mV}$, the duty cycle equation may be approximated by the following equation.

$$
\text { Duty Cycle }=\mathrm{D} \cong \frac{V_{\text {MOD }}-100 \mathrm{mV}}{800 \mathrm{mV}}
$$

The $\mathrm{V}_{\mathrm{MOD}}$ control range is approximately 0.1 V to 0.9 V . Driving $\mathrm{V}_{\text {MOD }}$ beyond that range (towards GND or V^{+}) will have no further affect on the duty cycle.

Duty Cycle Limits

The only difference between the four versions of the LTC6992 is the limits, or clamps, placed on the output duty cycle. The LTC6992-1 generates output duty cycles ranging from 0% to 100%. At 0% or 100% the output will stop oscillating and rest at GND or V^{+}, respectively.

The LTC6992-2 will never stop oscillating, regardless of the $\mathrm{V}_{\mathrm{MOD}}$ level. Internal clamping circuits limit its duty cycle to a 5% to 95% range (1% to 99% guaranteed). Therefore, its $\mathrm{V}_{\mathrm{MOD}}$ control range is $0.14 \bullet \mathrm{~V}_{\text {SET }}$ to $0.86 \bullet$ $V_{\text {SET }}$ (approximately 0.14 V to 0.86 V).
The LTC6992-3 and LTC6992-4 complete the family by providing one-sided clamping. The LTC6992-3 allows 0\% to 95\% duty cycle, and the LTC6992-4 allows 5\% to 100% duty cycle.

Output Polarity (POL Bit)

The duty cycle equation describes a proportional transfer function, where duty cycle increases as $\mathrm{V}_{\text {MOD }}$ increases. The LTC6992 includes a POL bit (determined by the DIVCODE as described earlier) that inverts the output signal. This makes the duty cycle gain negative, reducing duty cycle as $\mathrm{V}_{\mathrm{MOD}}$ increases.

Figure 3. POL Bit Functionality

OPERATION

POL = 1 forces a simple logic inversion, so it changes the duty cycle range of the LTC6992-3 (making it 100\% to 5\%) and LTC6992-4 (making it 95\% to 0\%). These transfer functions are detailed in Figure 4.

Table 2. Duty Cycle Ranges

PART NUMBER	DUTY CYCLE RANGE vs $V_{\text {MOD }}=\mathbf{O V} \rightarrow \mathbf{1 V}$	
	POL $=\mathbf{0}$	POL $=\mathbf{1}$
LTC6992-1	0% to 100%	100% to 0%
LTC6992-2	5% to 95%	95% to 5%
LTC6992-3	0% to 95%	100% to 5%
LTC6992-4	5% to 100%	95% to 0%

LTC6992-1

LTC6992-3

LTC6992-2

LTC6992-4

Figure 4. PWM Transfer Functions for AII LTC6992 Family Parts

LTC6992-1/LTC6992-2/ LTC6992-3/LTC6992-4

OPERATION

Changing DIVCODE After Start-Up

Following start-up, the A/D converter will continue monitoring V DIV for changes. Changes to DIVCODE will be recognized slowly, as the LTC6992 places a priority on eliminating any "wandering" in the DIVCODE. The typical delay depends on the difference between the old and new DIVCODE settings and is proportional to the master oscillator period.

$$
\mathrm{t}_{\mathrm{DIVCODE}}=16 \cdot(\triangle \mathrm{DIVCODE}+6) \bullet \mathrm{t}_{\text {MASTER }}
$$

A change in DIVCODE will not be recognized until it is stable, and will not pass through intermediate codes. A digital filter is used to guarantee the DIVCODE has settled to a new value before making changes to the output. Then the output will make a clean (glitchless) transition to the new divider setting.

Figure 5. DIVCODE Change from 3 to 1

Start-Up Time

When power is first applied, the power-on reset (POR) circuit will initiate the start-up time, tstart. The OUT pin is held low during this time. The typical value for tstart ranges from 0.5 ms to 8 ms depending on the master oscillator frequency (independent of $\mathrm{N}_{\text {DIV }}$):

$$
\mathrm{t}_{\text {START(TYP) }}=500 \bullet \mathrm{t}_{\text {MASTER }}
$$

The output will begin oscillating after $\mathrm{t}_{\text {START }}$. If $\mathrm{POL}=0$ the first pulse has the correct width. If POL = 1 (DIVCODE ≥ 8), the first pulse width can be shorter or longer than expected, depending on the duty cycle setting, and will never be less than 25% of tout.

During start-up, the DIV pin A/D converter must determine the correct DIVCODE before the output is enabled. The start-up time may increase if the supply or DIV pin voltages are not stable. For this reason, it is recommended to minimize the capacitance on the DIV pin so it will properly track V^{+}. Less than 100 pF will not affect performance.

1ST PULSE WIDTH MAY BE INACCURATE
Figure 6. Start-Up Timing Diagram

APPLICATIONS InFORMATION

Basic Operation

The simplest and most accurate method to program the LTC6992 is to use a single resistor, $\mathrm{R}_{\text {SET }}$, between the SET and GND pins. The design procedure is a four step process. After choosing the proper LTC6992 version and POL bit setting, select the N NIV value and then calculate the value for the $\mathrm{R}_{\text {SET }}$ resistor.

Step 1: Selecting the POL Bit Setting

Most applications will use POL = 0 , resulting in a positive transferfunction. However, some applications may requirea negative transfer function, where increasing $\mathrm{V}_{\text {MOD }}$ reduces the output duty cycle. For example, if the LTC6992 is used in a feedback loop, POL = 1 may be required to achieve negative feedback.

Step 2: Selecting the LTC6992 Version

The difference between the LTC6992 versions is observed at the endpoints of the duty cycle control range. Applications that require the output to never stop oscillating should use the LTC6992-2. On the other hand, if the output should be allowed to rest at GND or V^{+}(0% or 100% duty cycle), select the LTC6992-1.

The LTC6992-3 and LTC6992-4 clamp the duty cycle at only one end of the control range, allowing the output to stop oscillating at the other extreme. If POL $=1$ the clamp will swap from low duty cycle to high, or vice-versa. Refer to Table 2 and Figure 4 for assistance in selecting the proper version.

Step 3: Selecting the $N_{\text {DII }}$ Frequency Divider Value

As explained earlier, the voltage on the DIV pin sets the DIVCODE which determines both the POL bit and the NDIV value. For a given output frequency, Nous should be selected to be within the following range.

$$
\begin{equation*}
\frac{62.5 \mathrm{kHz}}{\mathrm{f}_{\text {OUT }}} \leq \mathrm{N}_{\text {DIV }} \leq \frac{1 \mathrm{MHz}}{\mathrm{f}_{\text {OUT }}} \tag{1a}
\end{equation*}
$$

To minimize supply current, choose the lowest $N_{\text {DIV }}$ value (generally recommended). Forfaster start-up or decreased jitter, choose a higher $\mathrm{N}_{\text {DIV }}$ setting. Alternatively, use Table 1 as a guide to select the best N NIV value for the given application.

With POL already chosen, this completes the selection of DIVCODE. Use Table 1 to select the proper resistor divider or $\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}$ratio to apply to the DIV pin.

Step 4: Calculate and Select RSet

The final step is to calculate the correct value for $\mathrm{R}_{\text {SET }}$ using the following equation.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SET}}=\frac{1 \mathrm{MHz} \bullet 50 \mathrm{k}}{\mathrm{~N}_{\mathrm{DIV}} \bullet \mathrm{f}_{\mathrm{OUT}}} \tag{1b}
\end{equation*}
$$

Select the standard resistor value closest to the calculated value.

Example: Design a PWM circuit that satisfies the following requirements:

- $\mathrm{f}_{\text {OUt }}=20 \mathrm{kHz}$
- Positive $\mathrm{V}_{\mathrm{MOD}}$ to duty cycle response
- Output can reach 100\% duty cycle, but not 0\%
- Minimum power consumption

Step 1: Selecting the POL Bit Setting

For positive transfer function (duty cycle increases with $\mathrm{V}_{\mathrm{MOD}}$), choose POL $=0$.

Step 2: Selecting the LTC6992 Version

To limit the minimum duty cycle, but allow the maximum duty cycle to reach 100\%, choose LTC6992-4. (Note that if POL $=1$ the LTC6992-3 would be the correct choice.)

Step 3: Selecting the $N_{\text {DIV }}$ Frequency Divider Value

Choose an N NIV value that meets the requirements of Equation (1a).

$$
3.125 \leq \mathrm{N}_{\text {DIV }} \leq 50
$$

Potential settings for $N_{\text {DIV }}$ include 4 and $16 . \mathrm{N}_{\text {DIV }}=4$ is the best choice, as it minimizes supply current by using a large R $_{\text {SET }}$ resistor. POL $=0$ and NDIV $=4$ requires DIVCODE = 1. Using Table 1, choose the R1 and R2 values to program DIVCODE $=1$.

APPLICATIONS INFORMATION

Step 4: Select RSET
Calculate the correct value for $\mathrm{R}_{\text {SET }}$ using Equation (1b).

$$
\mathrm{R}_{\mathrm{SET}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{4 \cdot 20 \mathrm{kHz}}=625 \mathrm{k}
$$

Since 625 k is not available as a standard 1% resistor, substitute 619 k if a 0.97% frequency shift is acceptable. Otherwise, select a parallel or series pair of resistors such as 309 k and 316 k to attain a more precise resistance.

The completed design is shown in Figure 7.

Figure 7. 20kHz PWM Oscillator

Duty Cycle Sensitivity to $\Delta V_{\text {SET }}$

The output duty cycle is proportional to the ratio of $\mathrm{V}_{\text {MOD }} /$ $V_{\text {SET }}$. Since $V_{\text {SET }}$ can vary up to $\pm 30 \mathrm{mV}$ from 1 V it can effectively gain or attenuate $\mathrm{V}_{\text {MOD }}$, as shown below when $\Delta \mathrm{V}_{\text {SET }}$ is added to the equation.

$$
\mathrm{D}=\frac{\mathrm{V}_{\mathrm{MOD}}}{0.8 \cdot\left(\mathrm{~V}_{\mathrm{SET}}+\Delta \mathrm{V}_{\mathrm{SET}}\right)}-\frac{1}{8}
$$

For many designs, the absolute $\mathrm{V}_{\text {MOD }}$ to duty cycle accuracy is not critical. For others, making the simplifying assumption of $\Delta \mathrm{V}_{\text {SET }}=0 \mathrm{~V}$ creates the potential for additional duty cycle error, which increases with $\mathrm{V}_{\text {MOD }}$, reaching a maximum of 3.4% if $\Delta V_{\text {SET }}=-30 \mathrm{mV}$.

$$
\Delta \mathrm{D} \cong-\frac{\mathrm{V}_{\mathrm{MOD}}}{800 \mathrm{mV}} \cdot \frac{\Delta \mathrm{~V}_{\mathrm{SET}}}{V_{\mathrm{SET}}} \cong-\left(\mathrm{D}_{\text {ideal }}+\frac{1}{8}\right) \cdot \frac{\Delta \mathrm{V}_{\mathrm{SET}}}{\mathrm{~V}_{\mathrm{SET}}}
$$

Figure 8 demonstrates the worst-case impact of this variation (if $\mathrm{V}_{\text {SET }}$ is at its 0.97 V or 1.03 V limits).

This error is in addition to the inherent PWM duty cycle accuracy spec $\Delta \mathrm{D}(\pm 4.5 \%)$, so care should be taken if accuracy at high duty cycles ($\mathrm{V}_{\text {MOD }}$ near 0.9 V) is critical.

Sensitivity to $\Delta V_{\text {SET }}$ can be eliminated by making $V_{\text {MOD }}$ proportional to $V_{\text {SET }}$. For example, Figure 9 shows a simple circuit for generating an arbitrary duty cycle. The equation for duty cycle does not depend on $V_{\text {SET }}$ at all.

Figure 8. Duty Cycle Variation Due to $\Delta V_{\text {SET }}$

Figure 9. Fixed-Frequency, Arbitrary Duty Cycle Oscillator

APPLICATIONS INFORMATION

$I_{\text {SET }}$ Extremes (Master Oscillator Frequency Extremes)
When operating with I ISE outside of the recommended $1.25 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$ range, the master oscillator operates outside of the 62.5 kHz to 1 MHz range in which it is most accurate.
The oscillator will still function with reduced accuracy for $I_{\text {SET }}<1.25 \mu \mathrm{~A}$. Atapproximately 500 nA , the oscillator output will be frozen in its current state. The output could halt in a high or low state. This avoids introducing short pulses while frequency modulating a very low frequency output.
At the other extreme, it is not recommended to operate the master oscillator beyond 2MHz because the accuracy of the DIV pin ADC will suffer.

Pulse Width Modulation Bandwidth and Settling Time The LTC6992 has a wide PWM bandwith, making it suitable for a variety of feedback applications. Figure 10 shows that the frequency response is flat for modulation frequencies up to nearly $1 / 10$ of the output frequency. Beyond that point, some peaking may occur (depending on $\mathrm{N}_{\text {DIV }}$ and average duty cycle setting).
Duty cycle settling time depends on the master oscillator frequency. Following a $\pm 80 \mathrm{mV}$ step change in $\mathrm{V}_{\text {MOD }}$, the duty cycle takes approximately eight master clock cycles ($8 \bullet \mathrm{t}_{\text {MASTER }}$) to settle to within 1% of the final value. Examples are shown in Figures 11a and 11b.

Figure 10. PWM Frequency Response

Figure 11a. PWM Settling Time, 25\% Duty Cycle

Figure 11b. PWM Settling Time, 50\% Duty Cycle

APPLICATIONS INFORMATION

Power Supply Current

The power supply current varies with frequency, supply voltage and output loading. It can be estimated under any condition using the following equation:

$$
\begin{aligned}
& \text { If } \mathrm{N}_{\text {DIV }}=1 \text { (DIVCODE }=0 \text { or } 15 \text {): } \\
& \mathrm{I}_{\mathrm{S}(\mathrm{TYP})} \approx \mathrm{V}^{+} \bullet \mathrm{f}_{\text {OUT }} \bullet\left(39 \mathrm{pF}+\mathrm{C}_{\mathrm{LOAD}}\right) \\
& \cdots+\frac{\mathrm{V}^{+}}{320 \mathrm{k} \Omega}+\frac{\mathrm{V}^{+} \cdot \text { Duty Cycle }}{\mathrm{R}_{\mathrm{LOAD}}}+2.2 \cdot \mathrm{I}_{\mathrm{SET}}+85 \mu \mathrm{~A} \\
& \text { If } N_{\text {DIV }}>1 \text { (DIVCODE }=1 \text { or } 14 \text {): } \\
& \mathrm{I}_{\mathrm{S}(\mathrm{TYP})} \approx \mathrm{V}^{+} \bullet \mathrm{N}_{\mathrm{DIV}} \bullet \mathrm{f}_{\mathrm{OUT}} \bullet 27 \mathrm{pF} \\
& \cdots+\mathrm{V}^{+} \bullet \mathrm{f}_{\text {OUT }} \bullet\left(28 \mathrm{pF}+\mathrm{C}_{\text {LOAD }}\right)
\end{aligned}
$$

SUPPLY BYPASSING AND PCB LAYOUT GUIDELINES

The LTC6992 is a 2.4% accurate silicon oscillator when used in the appropriate manner. The part is simple to use and by following a few rules, the expected performance is easily achieved. Adequate supply bypassing and proper PCB layout are important to ensure this.
Figure 14 shows example PCB layouts for both the TSOT-23 and DFN packages using 0603 sized passive components. The layouts assume a two layer board with a ground plane layer beneath and around the LTC6992. These layouts are a guide and need not be followed exactly.

1. Connect the bypass capacitor, C , directly to the V^{+}and GND pins using a low inductance path. The connection from C 1 to the V^{+}pin is easily done directly on the top layer. For the DFN package, C1's connection to GND is also simply done on the top layer. For the TSOT-23, OUT can be routed through the C1 pads to allow a good C1 GND connection. If the PCB design rules do not allow that, C1's GND connection can be accomplished through multiple vias to the ground plane. Multiple vias for both the GND pin connection to the ground plane and the C1 connection to the ground plane are recommended to minimize the inductance. Capacitor C1 should be a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
2. Place all passive components on the top side of the board. This minimizes trace inductance.
3. Place $R_{\text {SET }}$ as close as possible to the SET pin and make a direct, short connection. The SET pin is a current summing node and currents injected into this pin directly modulate the operating frequency. Having a short connection minimizes the exposure to signal pickup.
4. Connect $\mathrm{R}_{\text {SET }}$ directly to the GND pin. Using a long path or vias to the ground plane will not have a significant affect on accuracy, but a direct, short connection is recommended and easy to apply.
5. Use a ground trace to shield the SET pin. This provides another layer of protection from radiated signals.
6. Place R1 and R2 close to the DIV pin. A direct, short connection to the DIV pin minimizes the external signal coupling.

APPLICATIONS INFORMATION

DFN PACKAGE

TSOT-23 PACKAGE

Figure 14. Supply Bypassing and PCB Layout

TYPICAL APPLICATIONS

Constant On-Time Modulator

*OPTIONAL RESISTOR ADJUSTS FOR DESIRED VIN RANGE.

IF $\frac{\mathrm{R}_{\mathrm{M} 2}}{\mathrm{R}_{\mathrm{M} 1}+\mathrm{R}_{\mathrm{M} 2}}=0.9$ THEN $\mathrm{t}_{\mathrm{ON}}=\mathrm{N}_{\mathrm{DIV}} \bullet 1.125 \mu \mathrm{~s} \cdot \frac{\mathrm{R}_{\text {SET }}}{50 \mathrm{k}}$
AS $V_{\text {IN }}$ INCREASES, $\mathrm{t}_{\mathrm{OUT}}$ INCREASES AND DUTY CYCLE
DECREASES (BECAUSE POL = 1) TO MAINTAIN A CONSTANT ton. FOR CONSTANT OFF-TIME, JUST CHANGE DIVCODE SO POL $=0$.

TYPICAL APPLICATIONS

Digitally Controlled Duty Cycle with Internal $V_{\text {REF }}$ Reference Variation Eliminated

Programming $N_{\text {DIV }}$ Using an 8-Bit DAC

Changing Between Two Frequencies

NOTES
WHILE THIS CIRCUIT IS SIMPLER THAN THE CIRCUIT TO THE RIGHT,
ITS FREQUENCY ACCURACY IS WORSE DUE TO THE EFFECT OF
${ }^{+}$SUPPLY VARIATION FROM SYSTEM TO SYSTEM AND OVER TEMPERATURE.

NOTES

1. WHEN THE NMOSFET IS OFF, THE FREQUENCY IS SET BY RSET = RSET1.
2. WHEN THE NMOSFET IS ON, THE FREQUENCY IS SET BY R RET = R RET1 || RSET2.
3. V^{+}SUPPLY VARIATION IS NOT A FACTOR AS THE SWITCHING RESISTOR IS EITHER FLOATING OR CONNECTED TO GROUND.

Simple Diode Temperature Sensor

TYPICAL APPLICATIONS

Motor Speed/Direction Control for Full H-Bridge (Locked Anti-Phase Drive)

Motor Speed/Direction Control for Full H-Bridge (Sign/Magnitude Drive)

Ratiometric Sensor to Pulse Width, Non-Inverting Response

Ratiometric Sensor to Pulse Width, Inverting Response

TYPICAL APPLICATIONS

Radio Control Servo Pulse Generator

Direct Voltage Controlled PWM Dimming (0 to $15000 \mathrm{Cd} / \mathrm{m}^{2}$ Intensity)

TYPICAL APPLICATIONS

Isolated PWM (5\% to 95\%) Controller

PACKAGE DESCRIPTION

DCB Package

6-Lead Plastic DFN ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1715 Rev A)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (TBD)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

PACKAGE DESCRIPTION

REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$01 / 11$	Revised θ_{JA} value for TSOT package in the Pin Configuration.	2
		Added Note 7 for $\mathrm{V}_{\text {OH }}$ and $\mathrm{V}_{\text {OL }}$ in the Electrical Characteristics table.	4
		Minor edit to the Block Diagram.	12
		Minor edit to the equation in the "Duty Cycle Sensitivity to $\Delta V_{\text {SET" }}$ " section.	
Revised Typical Applications drawings.	19		

TYPICAL APPLICATION

PWM Controller for LED Driver

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1799	1MHz to 33MHz ThinSOT Silicon Oscillator	Wide Frequency Range
LTC6900	1MHz to 20MHz ThinSOT Silicon Oscillator	Low Power, Wide Frequency Range
LTC6906/LTC6907	10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator	Micropower, ISuPPLY = 35 $\mu \mathrm{A}$ at 400kHz
LTC6930	Fixed Frequency Oscillator, 32.768kHz to 8.192MHz	0.09% Accuracy, 110 Hs Start-Up Time, 105 $\mu \mathrm{A}$ at 32kHz
LTC6990	TimerBlox, Voltage Controlled Oscillator	Frequency from 488Hz to 1MHz, No Caps, 2.2\% Accurate
LTC6991	TimerBlox, Very Low Frequency Clock with Reset	Cycle Time from 2ms to 9.5 Hours, No Caps, 2.2\% Accurate
LTC6993	TimerBlox, Monostable Pulse Generator	Resistor Set Pulse Width from 1 $\mu \mathrm{s}$ to 34sec, No Caps, 3\% Accurate
LTC6994	TimerBlox, Delay Block/Debouncer	Resistor Set Delay from 1 $\mu \mathrm{s}$ to 34sec, No Caps Required, 3\% Accurate

