Si5374

4-PLL Any-Frequency Precision Clock MultiplierlJitter Attenuator

Features

■ Highly-integrated, 4 PLL clock multiplier/jitter attenuator

- Four independent DSPLLs support any-frequency synthesis and jitter attenuation
- 8 inputs/8 outputs
- Each DSPLL can generate any frequency from 2 kHz to 808 MHz from a 2 kHz to 710 MHz input
■ Ultra-low jitter clock outputs: 410 fs rms ($12 \mathrm{kHz}-20 \mathrm{MHz}$), 440 fs rms ($50 \mathrm{kHz}-80 \mathrm{MHz}$)
- Meets ITU-T G. 8251 and Telcordia GR-253-CORE OC-192 jitter specifications
- Supports all ITU G. 709 and any custom FEC ratios (239/237, 255/238, 255/237, 255/236, 253/226)
- Integrated loop filter with programmable bandwidth
- Simultaneous free-run and synchronous operation
- Automatic/manual hitless input clock switching
- Selectable output clock signal format (LVPECL, LVDS, CML, CMOS)
- LOL and interrupt alarm outputs
- $\mathrm{I}^{2} \mathrm{C}$ programmable
- Single $1.8 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 10 \%$ operation with high PSRR on-chip voltage regulator
- $10 \times 10 \mathrm{~mm}$ PBGA

1/2/4/8/10G Fibre Channel

- GbE/10 GbE Synchronous Ethernet
- Carrier Ethernet, multi-service switches and routers
- MSPP, ROADM, P-OTS, muxponders

Description

The Si5374 is a highly-integrated, 4-PLL, jitter-attenuating precision clock multiplier for applications requiring sub 1 ps jitter performance. Each of the DSPLL ${ }^{\circledR}$ clock multiplier engines accepts two input clocks ranging from 2 kHz to 710 MHz and generates two independent, synchronous output clocks ranging from 2 kHz to 808 MHz . The device provides virtually any frequency translation combination across this operating range. For asynchronous, free-running clock generation applications, the Si5374's reference oscillator can be used as a clock source for any of the four DSPLLs. The Si5374 input clock frequency and clock multiplication ratio are programmable through an $I^{2} \mathrm{C}$ interface. The Si 5374 is based on Silicon Laboratories' third-generation DSPLL ${ }^{\circledR}$ technology, which provides any-frequency synthesis and jitter attenuation in a highly-integrated PLL solution that eliminates the need for external VCXO and loop filter components. Each DSPLL loop bandwidth is digitally-programmable, providing jitter performance optimization at the application level. The device operates from a single 1.8 or 2.5 V supply with on-chip voltage regulators with excellent PSRR. The Si5374 is ideal for providing clock multiplication and jitter attenuation in high-port-count optical line cards requiring independent timing domains.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice.

Table of Contents

Section Page

1. Electrical Specifications 4
2. Typical Application Schematic 14
3. Functional Description 15
4. Register Map 16
5. Register Descriptions 18
5.1. ICAL 52
6. Pin Descriptions: Si5374 53
7. Ordering Guide 58
8. Package Outline 59
9. Recommended PCB Layout 60
10. Top Marking 61
10.1. Si5374 Top Marking 61
10.2. Top Marking Explanation 61
Document Change List 62
Contact Information 64

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Ambient Temperature	T_{A}		-40	25	85	C
Supply Voltage during Normal Operation	V_{DD}	2.5 V Nominal	2.25	2.5	2.75	V
		1.8 V Nominal	1.71	1.8	1.89	V

Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of $25^{\circ} \mathrm{C}$ unless otherwise stated.

Figure 1. Differential Voltage Characteristics

CKIN, CKOUT

Figure 2. Rise/Fall Time Characteristics

Table 2. DC Characteristics
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%, T_{A}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supply Current ${ }^{1}$	$I_{\text {DD }}$	LVPECL Format 622.08 MHz Out All CKOUTs Enabled	-	1000	1100	mA
		LVPECL Format 622.08 MHz Out 4 CKOUTs Enabled	-	870	970	mA
		CMOS Format 19.44 MHz Out All CKOUTs Enabled	-	820	940	mA
		CMOS Format 19.44 MHz Out 4 CKOUTs Enabled	-	780	880	mA
		Disable Mode	-	660	-	mA
CKINn Input Pins ${ }^{2}$						
Input Common Mode Voltage (Input Threshold Voltage)	VICM	$1.8 \mathrm{~V} \pm 5 \%$	0.9	-	1.4	V
		$2.5 \mathrm{~V} \pm 10 \%$	1	-	1.7	V
Input Resistance	$\mathrm{CKN}_{\mathrm{RIN}}$	Single-ended	20	40	60	$\mathrm{k} \Omega$
Single-Ended Input Voltage Swing (See Absolute Specs)	$V_{\text {ISE }}$	$\mathrm{f}_{\mathrm{CKIN}}<212.5 \mathrm{MHz}$ See Figure 1.	0.2	-	-	$V_{P P}$
		$\mathrm{f}_{\mathrm{CKIN}}>212.5 \mathrm{MHz}$ See Figure 1.	0.25	-	-	$V_{\text {PP }}$
Differential Input Voltage Swing (See Absolute Specs)	$\mathrm{V}_{\text {ID }}$	$\mathrm{f}_{\mathrm{CKIN}}<212.5 \mathrm{MHz}$ See Figure 1.	0.2	-	-	$V_{P P}$
		$\mathrm{f}_{\mathrm{CKIN}}>212.5 \mathrm{MHz}$ See Figure 1.	0.25	-	-	$V_{\text {PP }}$
Output Clocks (CKOUTn) ${ }^{3,4}$						
Common Mode	$\mathrm{CKO}_{\mathrm{Vcm}}$	LVPECL 100Ω load line-to-line	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 1.42 \end{gathered}$	-	$V_{D D}-1.25$	V
Differential Output Swing	$\mathrm{CKO}_{V \mathrm{~V}}$	LVPECL 100Ω load line-to-line	1.1	-	1.9	$V_{P P}$

Notes:

1. Current draw is independent of supply voltage.
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$.
4. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$.

Si5374

Table 2. DC Characteristics (Continued)
$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \pm 5 \%, 2.5 \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Single Ended Output Swing	CKOVSE	LVPECL 100Ω load line-to-line	0.5	-	0.93	$V_{P P}$
Differential Output Voltage	$\mathrm{CKO}_{\mathrm{VD}}$	CML 100Ω load line-toline	350	425	500	$m V_{P P}$
Common Mode Output Voltage	CKOVCm	CML 100Ω load line-toline	-	$V_{D D}=0.36$	-	V
Differential Output Voltage	CKOVD	LVDS 100Ω load line-to-line	500	700	900	$m V_{P P}$
		Low Swing LVDS 100Ω load line-to-line	350	425	500	$m V_{\text {PP }}$
Common Mode Output Voltage	CKOVcm	LVDS 100Ω load line-toline	1.125	1.2	1.275	V
Differential Output Resistance	$\mathrm{CKO}_{\mathrm{RD}}$	CML, LVPECL, LVDS	-	200	-	Ω
Output Voltage Low	CKO Vollh	CMOS	-	-	0.4	V
Output Voltage High	CKOVOHLH	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.71 \mathrm{~V} \\ \mathrm{CMOS} \end{gathered}$	$\begin{aligned} & \hline 0.8 \mathrm{x} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	-	-	V
Output Drive Current (CMOS driving into $\mathrm{CKO}_{\text {vol }}$ for output low or $\mathrm{CKO}_{\text {voh }}$ for output high. CKOUT+ and CKOUT-shorted externally)	CKO_{10}	$\begin{gathered} \operatorname{ICMOS}[1: 0]=11 \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	7.5	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=10 \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	5.5	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=01 \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	3.5	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=00 \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	1.75	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=11 \\ V_{D D}=2.5 \mathrm{~V} \end{gathered}$	-	20	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=10 \\ \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \end{gathered}$	-	15	-	mA
		$\begin{gathered} \operatorname{ICMOS}[1: 0]=01 \\ V_{D D}=2.5 \mathrm{~V} \end{gathered}$	-	10	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=00 \\ \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \end{gathered}$	-	5	-	mA

Notes:

1. Current draw is independent of supply voltage.
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$.
4. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$.

Table 2. DC Characteristics (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%, T_{A}=-40\right.$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
2-Level LVCMOS Input Pins						
Input Voltage Low	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{DD}}=1.71 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$	-	-	0.7	V
Input Voltage High	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=1.89 \mathrm{~V}$	1.4	-	-	V
		$\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$	1.8	-	-	V
LVCMOS Output Pins						
Output Voltage Low	V_{OL}	$\begin{aligned} I O & =2 \mathrm{~mA} \\ V_{D D} & =1.71 \mathrm{~V} \end{aligned}$	-	-	0.4	V
Output Voltage Low		$\begin{aligned} \mathrm{IO} & =2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}} & =2.97 \mathrm{~V} \end{aligned}$	-	-	0.4	V
Output Voltage High	V_{OH}	$\begin{gathered} \mathrm{IO}=-2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=1.71 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.4 \end{gathered}$	-	-	V
Output Voltage High		$\begin{gathered} \mathrm{IO}=-2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=2.97 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.4 \end{gathered}$	-	-	V
Notes: 1. Current draw is independent of supply voltage. 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$. 4. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$.						

Table 3. AC Characteristics
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%, T_{A}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Single-Ended Reference Clock Input Pin OSC_P (OSC_N with cap to GND)						
OSC_P to OSC_N Resistance	$\mathrm{OSC}_{\text {RIN }}$	RATE_REG = 0101 or 0110, ac coupled	-	100	-	Ω
Input Voltage Swing	OSCVPP	RATE_REG = 0101 or 0110, ac coupled	0.5	-	1.2	$V_{P P}$
Differential Reference Clock Input Pins (OSC_P/OSC_N)						
Input Voltage Swing	OSC $_{\text {VPP }}$	RATE_REG = 0101 or 0110, ac coupled	0.5	-	2.4	$V_{P P}$
CKINn Input Pins						
Input Frequency	CKN_{F}		0.002	-	710	MHz
Input Duty Cycle (Minimum Pulse Width)	CKN ${ }_{\text {DC }}$	Whichever is smaller (i.e., the 40\% / 60\% limitation applies only to high frequency clocks)	40	-	60	\%
			2	-	-	ns
Input Rise/Fall Time	CKN ${ }_{\text {TRF }}$	20-80\% See Figure 2	-	-	11	ns
CKOUTn Output Pins						
Output Frequency (Output not configured for CMOS or Disabled)	CKO_{F}		0.002	-	808	MHz
Maximum Output Frequency in CMOS Format	CKO_{F}		-	-	212.5	MHz
$\begin{aligned} & \text { Output Rise/Fall } \\ & \text { (20-80 \%) @ } \\ & 622.08 \mathrm{MHz} \text { output } \end{aligned}$	$\mathrm{CKO}_{\text {TRF }}$	Output not configured for CMOS or Disabled See Figure 2	-	230	350	ps
Output Rise/Fall (20-80\%) @ 212.5 MHz output	$\mathrm{CKO}_{\text {TRF }}$	$\begin{gathered} \text { CMOS Output } \\ V_{\text {DD }}=1.71 \\ \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF} \end{gathered}$	-	-	8	ns

*Note: Input to output skew after an ICAL is not controlled and can be any value.

Table 3. AC Characteristics (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%, T_{A}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output Rise/Fall (20-80\%) @ 212.5 MHz output	$\mathrm{CKO}_{\text {TRF }}$	CMOS Output $\begin{gathered} V_{\mathrm{DD}}=2.97 \\ \mathrm{C}_{\mathrm{LOAD}}=5 \mathrm{pF} \end{gathered}$	-	-	2	ns
Output Duty Cycle Uncertainty @ 622.08 MHz	$\mathrm{CKO}_{\text {DC }}$	100Ω Load Line-to-Line Measured at 50\% Point (differential)	-	-	± 40	ps
LVCMOS Input Pins						
Minimum Reset Pulse Width	$\mathrm{t}_{\text {RSTMN }}$		1	-	-	$\mu \mathrm{s}$
Reset to Microprocessor Access Ready	$t_{\text {READY }}$		-	-	10	ms
Input Capacitance	$\mathrm{C}_{\text {in }}$		-	-	3	pF

LVCMOS Output Pins

Rise/Fall Times	$\mathrm{t}_{\text {RF }}$	C COAD 20pf See Figure 2	-	25	-	ns
LOSn Trigger Window	LOS $_{\text {TRIG }}$	From last CKINn \uparrow to \downarrow Internal detection of LOSn N3 $\neq 1$	-	-	$4.5 \times$ N3	$\mathrm{T}_{\text {CKIN }}$
Time to Clear LOL after LOS Cleared	$\mathrm{t}_{\text {CLRLOL }}$	\downarrow LOS to \downarrow LOL Fold = Fnew Stable OSC_P, OSC_N reference	-	10	-	ms

Device Skew*

Output Clock Skew	$t_{\text {SKEW }}$	\uparrow of CKOUTn to \uparrow of CKOUT_m, CKOUTn and CKOUT_m at same frequency and signal format PHASEOFFSET $=0$ CKOUT_ALWAYS_ON = 1 SQ_ICAL = 1	-	-	100	ps
Phase Change due to Temperature Variation	$\mathrm{t}_{\text {TEMP }}$	Max phase changes from $-40 \text { to }+85^{\circ} \mathrm{C}$	-	300	500	ps

*Note: Input to output skew after an ICAL is not controlled and can be any value.

Table 4. Microprocessor Control
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%, T_{A}=-40\right.$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit	
$1^{2} \mathrm{C}$ Bus Lines (SDA, SCL)							
Input Voltage Low	$\mathrm{VIL}_{12 \mathrm{C}}$		-	-	$0.25 \times \mathrm{V}_{\mathrm{DD}}$	V	
Input Voltage High	$\mathrm{VIH}_{12 \mathrm{C}}$		$0.7 \times \mathrm{V}_{\mathrm{DD}}$	-	$V_{D D}$	V	
Input Current	$\\|_{12 \mathrm{C}}$	$\begin{gathered} \mathrm{VIN}=0.1 \times \mathrm{V}_{\mathrm{DD}} \\ \text { to } 0.9 \times \mathrm{V}_{\mathrm{DD}} \end{gathered}$	-40	-	40	$\mu \mathrm{A}$	
Hysteresis of Schmitt trigger inputs	VHYS ${ }_{\text {I2 }}$	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	$0.1 \times V_{\text {DD }}$	-	-	V	
		$V_{D D}=2.5$	$0.05 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V	
Output Voltage Low	$\mathrm{VOL}_{12 \mathrm{C}}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \\ 1 \mathrm{O}=3 \mathrm{~mA} \end{gathered}$	-	-	$0.2 \times \mathrm{V}_{\mathrm{DD}}$	V	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \\ & 10=3 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	

Table 5. Performance Specifications
$V_{D D}=1.8 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
PLL Performance ${ }^{1}$						
Lock Time	$\mathrm{t}_{\text {LOCKMP }}$	Start of ICAL to \downarrow of LOL	-	35	1200	ms
Output Clock Phase Change	$t_{\text {P_STEP }}$	After clock switch $\mathrm{f} 3 \geq 128 \mathrm{kHz}$	-	200	-	ps
Closed Loop Jitter Peaking	$J_{\text {PK }}$		-	0.05	0.1	dB
Jitter Tolerance	$\mathrm{J}_{\text {TOL }}$	Jitter Frequency \geq Loop Bandwidth	5000/BW	-	-	$\begin{gathered} \text { ns } \\ \text { pk-pk } \end{gathered}$
Phase Noise fout $=622.08 \mathrm{MHz}$	$\mathrm{CKO}_{\text {PN }}$	1 kHz Offset	-	-106	-	dBc/Hz
		10 kHz Offset	-	-114	-	dBc/Hz
		100 kHz Offset	-	-116	-	$\mathrm{dBc} / \mathrm{Hz}$
		1 MHz Offset	-	-132	-	$\mathrm{dBc} / \mathrm{Hz}$
Spurious Noise	$\mathrm{SP}_{\text {SPUR }}$	$\begin{gathered} \text { Max spur @ } n \times \text { F3 } \\ (n \geq 1, n \times F 3<100 \text { MHz }) \end{gathered}$	-	-70	-	dBc
Jitter Generation	$J_{\text {GEN }}$	$\begin{aligned} \mathrm{f}_{\mathrm{IN}}=\mathrm{f}_{\mathrm{OUT}} & =622.08 \mathrm{MHz}, \\ \mathrm{BW} & =120 \mathrm{~Hz} \end{aligned}$ LVPECL output $12 \mathrm{kHz}-20 \mathrm{MHz}$	-	350	400	fs rms
		$20 \mathrm{kHz}-80 \mathrm{MHz}$	-	410	-	fs rms
Notes: 1. fin $=$ fout $=622.08 \mathrm{MHz} ; \mathrm{BW}=120 \mathrm{~Hz}$; LVPECL. 2. In most circumstances the Si 5374 does not require special thermal management. A system level thermal analysis is strongly recommend. Contact Silicon Labs applications for further details if required. 3. Thermal characteristic for the 80 -pin Si5374 on an 8 -layer PCB. 4. Ambient temperature $=65^{\circ} \mathrm{C}$.						

Table 5. Performance Specifications (Continued)
$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Thermal Characteristics ${ }^{\text {2,3 }}$						
Maximum Junction Temperature ${ }^{4}$			-	125	-	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Ambient	$\varphi{ }^{\text {J }}$	Still Air Air Flow 1 m/s Air Flow $2 \mathrm{~m} / \mathrm{s}$ Air Flow $3 \mathrm{~m} / \mathrm{s}$	-	$\begin{aligned} & 16 \\ & 14 \\ & 13 \\ & 12 \end{aligned}$	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	$\varphi_{\text {Jc }}$	Still Air	-	3.4	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Notes: 1. fin $=$ fout $=622.08 \mathrm{MHz}$; BW $=120 \mathrm{~Hz}$; LVPECL. 2. In most circumstances the Si 5374 does not require special thermal management. A system level thermal analysis is strongly recommend. Contact Silicon Labs applications for further details if required. 3. Thermal characteristic for the 80-pin Si5374 on an 8-layer PCB. 4. Ambient temperature $=65^{\circ} \mathrm{C}$.						

Table 6. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to 2.8	V
LVCMOS Input Voltage	$\mathrm{V}_{\text {DIG }}$	-0.3 to ($\left.\mathrm{V}_{\mathrm{DD}}+0.3\right)$	V
CLKINnP/N_q	CKN $_{\text {VIN }}$	0 to V_{DD}	V
OSC_P, OSC_N Voltage Limits	OSC $_{\mathrm{VIN}}$	0 to 1.2	V
Operating Junction Temperature	$\mathrm{T}_{\text {JCT }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
ESD HBM Tolerance (100 pF, 1.5 k); All pins except CKINnP/N-q		2	kV
ESD MM Tolerance; All pins except CKINnP/N_q		200	V
ESD HBM Tolerance (100 pF, 1.5 k); CKINnP/N_q		700	V
ESD MM Tolerance; CKINnP/N_q		125	V
Latch-Up Tolerance		JESD78 Compliant	

Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

2. Typical Application Schematic

> 4-Port 10G Line Card with SyncE and IEEE1588 Independent Port Timing

3. Functional Description

Figure 3. Functional Block Diagram
The Si5374 is a highly integrated jitter-attenuating clock multiplier that integrates four fully independent DSPLLs and provides ultra-low jitter generation with less than 400 fs RMS. Configuration and control of the Si 5374 is mainly handled through the $I^{2} \mathrm{C}$ interface. The device accepts clock inputs ranging from 2 kHz to 710 MHz and generates independent, synchronous clock outputs ranging from 2 kHz to 808 MHz for each DSPLL. Virtually any frequency translation (M/N) combination across its operating range is supported. The Si5374 supports a digitally programmable loop bandwidth that can range from 4 to 525 Hz requiring no external DSPLL components. An external single-ended or differential reference clock or XO is required for the device to enable ultra-low jitter generation and jitter attenuation.
The device monitors each input clock for loss-of-signal (LOS) and provides a LOS alarm when missing pulses on any of the input clocks are detected. The device monitors the lock status of each DSPLL and provides a Loss-ofLock (LOL) alarm when the DSPLL is unlocked. The lock detect algorithm continuously monitors the phase of the selected input clock in relation to the phase of the feedback clock. The Si5374 provides a holdover capability that allows the device to continue generation of a stable output clock when the input reference is lost. The reference oscillator can be internally routed into CKIN2_q, so free-running clock generation is supported for each DSPLL offering simultaneous synchronous and asynchronous operation.
The output drivers are configurable to support common signal formats, such as LVPECL, LVDS, CML, and CMOS loads. If the CMOS signal format is selected, each differential output buffer generates two in-phase CMOS clocks at the same frequency. For system-level debugging, a DSPLL bypass mode drives the clock output directly from the selected input clock, bypassing the internal DSPLL.
Silicon Laboratories offers a PC-based software utility, DSPLLsim that can be used to determine valid frequency plans and loop bandwidth settings to simplify device setup. DSPLLsim provides the optimum input, output, and feedback divider values for a given input frequency and clock multiplication ratio that minimizes phase noise. This utility can be downloaded from http://www.silabs.com/timing. For further assistance, refer to the Si53xx Any-

Frequency Precision Clocks Family Reference Manual.

Si5374

4. Register Map

The S i5374 has four identical register maps for each DSPLL. Each DSPLL has a unique $\mathrm{I}^{2} \mathrm{C}$ address enabling independent control and device configuration. The $I^{2} \mathrm{C}$ address is 11010 [A1] [A0] for the entire device. Each corresponding DSPLL [A1] [A0] address is fixed as below.

> [A1] [A0]

DSPLLA:	0	0
DSPLLB:	0	1
DSPLLC:	1	0
DSPLLD:	1	1

Note: The Si5374 register map is similar, but not identical, to the Si5324 device.
All register bits that are not defined in this map should always be written with the specific reset values. Writing to these bits with values other than the specified reset values may result in undefined device behavior. Registers not listed, such as Register 64, should never be written to.

Table 7. Si5374 Registers

Reg.	D7	D6	D5	D4	D3	D2	D1	D0
0		$\underset{\mathrm{N}}{\mathrm{FREE}} \mathrm{C}$	CKOUT ALWAYS_ON				BYPASS_REG	
1					CK_PRI	R2[1:0]	CK_PRI	R1[1:0]
2	BWSEL_REG[3:0]				RATE_REG [3:0]			
3	CKSEL_REG[1:0]		DHOLD	SQ_ICAL				
4	AUTOSEL_REG[1:0]			HIST_DEL[4:0]				
5	ICMOS[1:0]							
6			SFOUT2_REG[2:0\}			SFOUT1_REG[2:0]		
7						FOSREFSEL[2:0]		
8	HLOG_2[1:0]		HLOG_1[1:0]					
9	HIST_AVG[4:0]							
10					DSBL2_REG	DSBL1_REG		
11							PD_CK2	PD_CK1
19	FOS_EN	FOS_THR[1:0]		VALTIME[1:0]		LOCKT[2:0]		
20					Write 0	Write 0	LOL_PIN	IRQ_PIN
21	Write 0	Write 0					$\underset{N}{C K 1 _A C T V _P I}$	CKSEL_PIN
22					$\underset{\text { CK_ACTV_ }}{\text { POL }}$		LOL_POL	INT_POL
23						LOS2_MSK	LOS1_MSK	LOSX_MSK
24						FOS2_MSK	FOS1_MSK	LOL_MSK
25	N1_HS[2:0]							
31					NC1_LS[19:16]			
32	NC1_LS[15:8]							

Table 7. Si5374 Registers (Continued)

Reg.	D7	D6	D5	D4	D3	D2	D1	D0
33	NC1_LS[7:0]							
34					NC2_LS[19:16]			
35	NC2_LS[15:8]							
36	NC2_LS[7:0]							
40	N2_HS[2:0]				N2_LS[19:16]			
41	N2_LS[15:8]							
42	N2_LS[7:0]							
43						N31[18:16]		
44	N31[15:8]							
45	N31[7:0]							
46						N32[18:16]		
47	N32[15:8]							
48	N32[7:0]							
55			CLKIN2RATE[2:0]			CLKIN1RATE[2:0]		
128							$\underset{\mathrm{G}}{\mathrm{CK} 2 _A C T V _R E}$	$\underset{\text { EG }}{\text { CK1_ACTV_R }}$
129						LOS2_INT	LOS1_INT	LOSX_INT
130		DIGHOLD VALID				FOS2_INT	FOS1_INT	LOL_INT
131						LOS2_FLG	LOS1_FLG	LOSX_FLG
132					FOS2_FLG	FOS1_FLG	LOL_FLG	
134	PARTNUM_RO[11:4]							
135	PARTNUM_RO[3:0]				REVID_RO[3:0]			
136	RST_REG	ICAL						
137								FASTLOCK
138							LOS2_EN [1:1]	LOS1_EN [1:1]
139			$\underset{0]}{L O S 2 _E N[0:}$	$\underset{\text { 0] }}{\text { LOS }}$			FOS2_EN	FOS1_EN
142	INDEPENDENTSKEW1[7:0]							
143	INDEPENDENTSKEW2[7:0]							
185	NVM_REVID[7:0]							

5. Register Descriptions

Register 0.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		FREE_RUN	CKOUT_ALWAYS_ON				BYPASS_REG	
Type	R	R/W	R/W	R	R	R	R/W	R

Reset value $=00010100$

Bit	Name	Function
7	Reserved	
6	FREE_RUN	Free Run. Internal to the device, route XA/XB to CKIN2. This allows the DSPLL to lock to its XA-XB reference to support free-running clock generation. 0: Disable 1: Enable
5	CKOUT__ ALWAYS_ON	CKOUT Always On. This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL is on and ICAL is not complete or successful. See Table 8 on page 52. 0: Squelch output until device is calibrated (ICAL). 1: Provide an output. Notes: 1. The frequency may be significantly off until the device is calibrated. 2. Must be set to 1 to control output to output skew.
$4: 2$	Reserved	BYPASS_ REG
1	Bypass Register. This bit enables or disables PLL bypass mode. Use only when the device is in digital hold or before the first ICAL. Bypass mode does not support CMOS clock outputs. 0: Normal operation 1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypassing PLL.	
0	Reserved	

Register 1.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				CK_PRIOR2 [1:0]	CK_PRIOR1 [1:0]			
Type	R							

Reset value $=11100100$

Bit	Name	
$7: 4$	Reserved	
$3: 2$	CK_PRIOR2 $[1: 0]$	2nd Priority Input Clock. Selects which of the input clocks will be 2nd priority in the autoselection state machine. 00: CKIN1 is 2nd priority. 01: CKIN2 is 2nd priority. 10: Reserved $11:$ Reserved
$1: 0$	CK_PRIOR1 $[1: 0]$	1st Priority Input Clock. Selects which of the input clocks will be 1st priority in the autoselection state machine. 00: CKIN1 is 1st priority. 01: CKIN2 is 1st priority. 10: Reserved 11: Reserved

Register 2.

Bit	D7	D6	D5	D4	D3	D2	D1				
Name	BWSEL_REG [3:0]					RATE_REG[3:0]					
Type	R/W										

Reset value $=01000010$

Register 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CKSEL_REG[1:0]	DHOLD	SQ_ICAL					
Type	R/W							

Reset value $=00000101$

Bit	Name	Function
$7: 6$	CKSEL_REG $[1: 0]$	CKSEL_REG. If the device is operating in register-based manual clock selection mode (AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input clock will be the active input clock. If CKSEL_PIN = 1 and AUTOSEL_REG = 00, the CS_CA input pin continues to control clock selection and CKSEL_REG is of no consequence. 00: CKIN_1 selected. 01: CKIN_2 selected. 10: Reserved 11: Reserved
5	DHOLD	DHOLD. Forces the device into digital hold. This bit overrides all other manual and automatic clock selection controls. 0: Normal operation. 1: Force digital hold mode. Overrides all other settings and ignores the quality of the input clocks.
4	SQ_ICAL	SQ_ICAL. This bit determines if the output clocks will remain enabled or be squelched (disabled) during an internal calibration. See Table 8 on page 52. 0: Output clocks enabled during ICAL. 1: Output clocks disabled during ICAL.
$3: 0$	Reserved	

Register 4.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	AUTOSEL_REG [1:0]		HIST_DEL [4:0]					
Type	R/W							R/W

Reset value $=00010010$

Bit	Name	Function
$7: 6$	AUTOSEL_ REG [1:0]	AUTOSEL_REG [1:0]. Selects input clock selection control method. 00: Manual (either register or pin controlled, see CKSEL_PIN) 01: Automatic non-revertive 10: Automatic revertive 11: Reserved
5	Reserved	
$4: 0$	HIST_DEL [4:0]	HIST_DEL [4:0]. Selects amount of delay to be used in generating the history information used for Digital Hold.

Register 5.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	ICMOS [1:0]							
Type	R/W	R	R	R	R	R	R	

Reset value = 11101101

Bit	Name	Function
7:6	ICMOS [1:0]	ICMOS [1:0]. When the output buffer is set to CMOS mode, these bits determine the output buffer drive strength. The first number below refers to 2.5 V operation; the second to 1.8 V operation. These values assume CKOUT+ is tied to CKOUT-. $\begin{aligned} & \text { 00: } 5 \mathrm{~mA} / 1.75 \mathrm{~mA} \\ & \text { 01: } 10 \mathrm{~mA} / 3.5 \mathrm{~mA} \\ & \text { 10: } 15 \mathrm{~mA} / 5.5 \mathrm{~mA} \\ & \text { 11: } 20 \mathrm{~mA} / 7.5 \mathrm{~mA} \end{aligned}$
5:0	Reserved	

Register 6.

Reset value = 00101101

Bit	Name	Function
7:6	Reserved	
5:3	$\begin{aligned} & \hline \text { SFOUT2_ } \\ & \text { REG [2:0] } \end{aligned}$	SFOUT2_REG [2:0]. Controls output signal format and disable for CKOUT2 output buffer. 000: Reserved 001: Disable CKOUT2 010: CMOS (Bypass mode not supported) 011: Low swing LVDS 100: Reserved 101: LVPECL (not available when $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$) 110: CML 111: LVDS
2:0	$\begin{aligned} & \text { SFOUT1 } \\ & \text { REG [2:0] } \end{aligned}$	SFOUT1_REG [2:0]. Controls output signal format and disable for CKOUT1 output buffer. 000: Reserved 001: Disable CKOUT1 010: CMOS (Bypass mode not supported) 011: Low swing LVDS 100: Reserved 101: LVPECL (not available when $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$) 110: CML 111: LVDS

Register 7.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						FOSREFSEL [2:0]		
Type	R	R	R	R	R	R / W		

Reset value = 00101010

Bit	Name	
$7: 3$	Reserved	
$2: 0$	FOSREFSEL $[2: 0]$	FOSREFSEL [2:0]. Selects which input clock is used as the reference frequency for Frequency offset (FOS) monitoring. 000: OSC (External reference) 001: CKIN1 010: CKIN2 011: Reserved 100: Reserved 101: Reserved 110: Reserved 111: Reserved

Register 8

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	HLOG_2[1:0]	HLOG_1[1:0]						
Type	R/W	R/W	R	R	R	R		

Reset value $=00000000$

Bit	Name	Function
$7: 6$	HLOG_2 [1:0]	HLOG_2 [1:0]. 00: Normal operation 01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10:Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved
$5: 4$	HLOG_1 [1:0]	HLOG_1 [1:0]. 00: Normal operation 01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved
$3: 0$	Reserved	

Register 9

Bit	D7	D6	D5	D4	D3	D2	D1
Name	HIST_AVG [4:0]	D0					
Type	R/W						

Reset value $=11000000$

Bit	Name	Function
$7: 3$	HIST_AVG [4:0]	HIST_AVG [4:0]. Selects amount of averaging time to be used in generating frequency history informa- tion for Digital Hold.
2:0	Reserved	

Register 10.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					DSBL2_REG	DSBL1_REG		
Type	R	R	R	R	R / W	R / W	R	R

Reset value $=00000000$

Bit	Name	
$7: 4$	Reserved	Function
3	DSBL2_REG	DSBL2_REG. This bit controls the powerdown of the CKOUT2 output buffer. If disable mode is selected, the NC2 output divider is also powered down. 0: CKOUT2 enabled 1: CKOUT2 disabled
2	DSBL1_REG	DSBL1_REG. This bit controls the powerdown of the CKOUT1 output buffer. If disable mode is selected, the NC1 output divider is also powered down. 0: CKOUT1 enabled $1:$ CKOUT1 disabled
$1: 0$	Reserved	

Register 11.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							PD _CK2	PD_CK1
Type	R	R	R	R	R	R	R / W	R / W

Reset value $=01000000$

Bit	Name	Function
$7: 2$	Reserved	
1	PD_CK2	PD_CK2. This bit controls the powerdown of the CKIN2 input buffer. 0: CKIN2 enabled $1:$ CKIN2 disabled
0	PD_CK1	PD_CK1. This bit controls the powerdown of the CKIN1 input buffer. $0:$ CKIN1 enabled $1:$ CKIN1 disabled

Register 19.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	FOS_EN	FOS_THR [1:0]	VALTIME [1:0]	LOCKT [2:0]			
Type	R/W	R/W		R/W	R/W		

Reset value = 00101100

Bit	Name	Function
7:5	FOS_EN	FOS_EN. Frequency Offset Enable globally disables FOS. See the individual FOS enables (FOSX_EN, register 139). 0: FOS disable 1: FOS enabled by FOSx_EN
6:5	FOS_THR [1:0]	FOS_THR [1:0]. Frequency Offset at which FOS is declared: 00: ± 11 to 12 ppm (Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK. 01: ± 48 to 49 ppm SONET Minimum Clock (SMC) with SMC used for REFCLK. 10: $\pm 30 \mathrm{ppm}$ (SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK. 11: $\pm 200 \mathrm{ppm}$
4:3	VALTIME [1:0]	VALTIME [1:0]. Sets amount of time for input clock to be valid before the associated alarm is removed. 00: 2 ms 01: 100 ms 10: 200 ms 11: 13 seconds
2:0	LOCKT [2:0]	LOCKT [2:0]. Sets retrigger interval for one shot monitoring phase detector output. One shot is triggered by phase slip in DSPLL. To minimize lock time during an ICAL, a LOCKT value of 001 is recommended. Refer to the Family Reference Manual for more details. 000: 106 ms 001: 53 ms 010: 26.5 ms 011: 13.3 ms 100: 6.6 ms 101: 3.3 ms 110: 1.66 ms 111: 0.833 ms

Register 20.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					Write 0	Write 0	LOL_PIN	IRQ_PIN
Type	R	R	R	R	W	W	R/W	R/W

Reset value $=00111110$

Bit	Name	Function
$7: 4$	Reserved	
$3: 2$	Write 0	Write to zero.
1	LOL_PIN	LOL_PIN. The LOL_INT status bit can be reflected on the LOL output pin. 0: LOL output pin tristated 1: LOL_INT status reflected to output pin
0	IRQ_PIN	IRQ_PIN. Reflects interrupt status on the IRQ output pin. 0: Output is disabled. 1: Output is enabled.

Register 21.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Write 0	Write 0					CK1_ACTV_PIN	CKSEL_PIN
Type	W	W	R	R	R	R	R/W	R/W

Reset value = 11111111

Bit	Name	Function
$7: 6$	Write 0	Write zero.
$5: 2$	Reserved	
1	CK1_ACTV_PIN	CK1_ACTV_PIN. The CK1_ACTV_REG status bit can be reflected to the CS_CA output pin using the CK1_ACTV_PIN enable function. CK1_ACTV_PIN is of consequence only when pin controlled clock selection is being used. 0: CS_CA output pin tristated. 1: Clock Active status reflected to output pin.
0	CKSEL_PIN	CKSEL_PIN. If manual clock selection is used, clock selection can be controlled via the CKSEL_REG[1:0] register bits or the CS_CA input pin. This bit is only active when AUTOSEL_REG = Manual. 0: CS_CA pin ignored. CKSEL_REG[1:0] register bits control clock selection. 1: CS_CA input pin controls clock selection.

Register 22.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					CK_ACTV_POL		LOL_POL	INT_POL
Type	R	R	R	R	R / W	R / W	R / W	

Reset value = 11011111

Bit	Name	Function
$7: 4$	Reserved	
3	CK_ACTV_POL	CK_ACTV_POL. Sets the active polarity for the CS_CA signals when reflected on an output pin. 0: Active low $1:$ Active high
2	Reserved	LOL_POL 1
0	LOL_POL. Sets the active polarity for the LOL status when reflected on an output pin. : Active low $1:$ Active high	
		INT_POL. Sets the active polarity for the interrupt status when reflected on the INT_C1B out- put pin. 0: Active low $1:$ Active high

Register 23.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						LOS2_MSK	LOS1_MSK	LOSX_MSK
Type	R	R	R	R	R	R/W	R/W	R/W

Reset value = 00011111

Bit	Name	Function
$7: 3$	Reserved	
2	LOS2_MSK	LOS2_MSK. Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS2_FLG register. 0: LOS2 alarm triggers active interrupt on IRQ output (if IRQ=1). 1: LOS2_FLG ignored in generating interrupt output.
1	LOS1_MSK	LOS1_MSK. Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS1_FLG register. 0: LOS1 alarm triggers active interrupt on IRQ output (if IRQ=1). 1: LOS1_FLG ignored in generating interrupt output.
0	LOSX_MSK	LOSX_MSK. Determines if a LOS on OSC (LOSX_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOSX_FLG register. 0: LOSX alarm triggers active interrupt on IRQ output (if IRQ=1). 1: LOSX_FLG ignored in generating interrupt output.

Register 24.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						FOS2_MSK	FOS1_MSK	LOL_MSK
Type	R	R	R	R	R	R / W	R/W	R/W

Reset value = 00111111

Bit	Name	Function
$7: 3$	Reserved	
2	FOS2_MSK	FOS2_MSK. Determines if the FOS2_FLG is used in the generation of an interrupt. Writes to this reg- ister do not change the value held in the FOS2_FLG register. 0: FOS2 alarm triggers active interrupt on IRQ output (if IRQ_PIN=1). 1: FOS2_FLG ignored in generating interrupt output.
1	FOS1_MSK	FOS1_MSK. Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this reg- ister do not change the value held in the FOS1_FLG register. 0: FOS1 alarm triggers active interrupt on IRQ output (if IRQ_PIN=1). 1: FOS1_FLG ignored in generating interrupt output.
0	LOL_MSK	LOL_MSK. Determines if the LOL_FLG is used in the generation of an interrupt. Writes to this regis- ter do not change the value held in the LOL_FLG register. 0: LOL alarm triggers active interrupt on IRQ output (if IRQ_PIN=1). 1: LOL_FLG ignored in generating interrupt output.

Register 25.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N1_HS [2:0]							
Type	R/W	R	R	R	R	R		

Reset value $=00100000$

Bit	Name	Function
7:5	N1_HS [2:0]	N1_HS [2:0]. Sets value for N1 high speed divider which drives NCn_LS ($n=1$ to 2) low-speed divider. $\begin{aligned} & 000: N 1=4 \\ & 001: N 1=5 \\ & 010: N 1=6 \\ & 011: N 1=7 \\ & 100: N 1=8 \\ & 101: N 1=9 \\ & 110: N 1=10 \\ & 111: N 1=11 \end{aligned}$
4:0	Reserved	

Register 31.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					NC1_LS [19:16]			
Type	R	R	R	R	R/W			

Reset value $=00000000$

Bit	Name	Function
$7: 4$	Reserved	
$3: 0$	NC1_LS $[19: 16]$	NC1_LS [19:16]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. $00000000000000000000=1$ $00000000000000000001=2$
		$00000000000000000011=4$ $00000000000000000101=6$ \ldots $1111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 32.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC1_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
7:0	$\begin{gathered} \text { NC1_LS } \\ {[15: 8]} \end{gathered}$	NC1_LS [15:8]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. $\begin{aligned} & 00000000000000000000=1 \\ & 00000000000000000001=2 \\ & 00000000000000000011=4 \\ & 00000000000000000101=6 \end{aligned}$ $11111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 33.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC1_LS [7:0]							
Type	R/W							

Reset value = 00110001

Bit	Name	Function
$7: 0$	NC1_LS	NC1_LS [7:0].
	$[19: 0]$	Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.
		$00000000000000000000=1$
		$00000000000000000001=2$
		\ldots
		$111111111111111111=2^{20}$
	Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$	

Register 34.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					NC2_LS [19:16]			
Type	R	R	R	R				

Reset value $=00000000$

Bit	Name	Function
$7: 4$	Reserved	
$3: 0$	NC2_LS [19:16]	NC2_LS [19:16]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. 00000000000000000000 $=1$ $00000000000000000001=2$ $00000000000000000011=4$ $00000000000000000101=6$ \ldots $11111111111111111111=220$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 35.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC2_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
7:0	NC2_LS [15:8]	NC2_LS [15:8]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. $\begin{aligned} & 00000000000000000000=1 \\ & 00000000000000000001=2 \\ & 00000000000000000011=4 \\ & 00000000000000000101=6 \end{aligned}$ 11111111111111111111 $=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 36.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	NC2_LS [7:0]						
Type	R/W						

Reset value $=00110001$

Bit	Name	Function
7:0	NC2_LS [7:0]	NC2_LS [7:0]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. $\begin{aligned} & 00000000000000000000=1 \\ & 00000000000000000001=2 \\ & 00000000000000000011=4 \\ & 00000000000000000101=6 \end{aligned}$ $111111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 40.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N2_HS [2:0]				N2_LS [19:16]			
Type	R/W			R	R/W			

Reset value $=11000000$

Bit	Name	Function
7:5	N2_HS [2:0]	N2_HS [2:0]. Sets value for N 2 high speed divider which drives N2LS low-speed divider. $\begin{aligned} & 000: 4 \\ & 001: 5 \\ & 010: 6 \\ & 011: 7 \\ & 100: 8 \\ & 101: 9 \\ & 110: 10 \\ & 111: 11 \end{aligned}$
4	Reserved	
3:0	N2_LS [19:16]	N2_LS [19:16]. Sets value for N2 low-speed divider, which drives phase detector. $\begin{aligned} & 00000000000000000001=2 \\ & 00000000000000000011=4 \\ & 00000000000000000101=6 \end{aligned}$ $11111111111111111111=2^{20}$ Valid divider values $=\left[2,4,6, \ldots, 2^{20}\right]$

Register 41.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N2_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
7:0	N2_LS [15:8]	N2_LS [15:8]. Sets value for N2 low-speed divider, which drives phase detector. $\begin{aligned} & 00000000000000000001=2 \\ & 00000000000000000011=4 \\ & 00000000000000000101=6 \end{aligned}$ $11111111111111111111=2^{20}$ Valid divider values $=\left[2,4,6, \ldots, 2^{20}\right]$

Register 42.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	N2_LS $[7: 0]$	D0					
Type	R/W						

Reset value = 11111001

Bit	Name	Function
7:0	N2_LS [7:0]	N2_LS [7:0]. Sets value for N2 low-speed divider, which drives phase detector. $\begin{aligned} & 00000000000000000001=2 \\ & 00000000000000000011=4 \\ & 00000000000000000101=6 \end{aligned}$ $11111111111111111111=2^{20}$ Valid divider values $=\left[2,4,6, \ldots, 2^{20}\right]$

Register 43.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						N31 [18:16]		
Type	R	R	R	R	R	R / W		

Reset value $=00000000$

Bit	Name	Function
$7: 3$	Reserved	
$2: 0$	N31 [18:16]	N31 [18:16]. Sets value for input divider for CKIN1. $0000000000000000000=1$ $0000000000000000001=2$ $0000000000000000010=3$
		\ldots $111111111111111111=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$

Register 44.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N31_[15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
7:0	N31_[15:8]	N31_[15:8]. Sets value for input divider for CKIN1. $\begin{aligned} & 0000000000000000000=1 \\ & 0000000000000000001=2 \\ & 0000000000000000010=3 \end{aligned}$ $11111111111111111111=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$

Register 45.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	N31_[7:0]						
Type	R/W						

Reset value $=00001001$

Bit	Name	Function
$7: 0$	N31_[7:0	N31_[7:0].
		Sets value for input divider for CKIN1.
		$0000000000000000000=1$
		$0000000000000000001=2$
$0000000000000000010=3$		
	\ldots	
		$11111111111111111=2^{19}$
		Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$

Register 46.

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | D0 | N32_[18:16] |
| :---: |
| Name |

Reset value $=00000000$

Bit	Name	Function
$7: 3$	Reserved	
$2: 0$	N32_[18:16]	N32_[18:16]. Sets value for input divider for CKIN1. $0000000000000000000=1$ $0000000000000000001=2$ $0000000000000000010=3$
		$111111111111111111=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$

Register 47.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N32_[15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
$7: 0$	N32_[15:8]	N32_[15:8].
		Sets value for input divider for CKIN2.
		$0000000000000000000=1$
		$0000000000000000001=2$
$0000000000000000010=3$		
	\ldots	
		$11111111111111111=2^{19}$
		Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$

Register 48.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	N32_[7:0]						
Type	R/W						

Reset value $=00001001$

Bit	Name	Function
$7: 0$	N32_[7:0]	N32_[7:0]. Sets value for input divider for CKIN2. $0000000000000000000=1$ $0000000000000000001=2$ $0000000000000000010=3$ \ldots $1111111111111111111=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$

Register 55.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			CLKIN2RATE[2:0]			CLKIN1RATE[2:0]		
Type	R	R	R/W			R/W		

Reset value $=00000000$

Bit	Name	Function
7:6	Reserved	
5:3	CLKIN2RATE[2:0]	CLKIN2RATE_[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10-27 MHz 001: $25-54 \mathrm{MHz}$ 002: $50-105 \mathrm{MHz}$ 003: $95-215 \mathrm{MHz}$ 004: $190-435 \mathrm{MHz}$ 005: 375-710 MHz 006: Reserved 007: Reserved
2:0	CLKIN1RATE [2:0]	CLKIN1RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10-27 MHz 001: $25-54 \mathrm{MHz}$ 002: $50-105 \mathrm{MHz}$ 003: $95-215 \mathrm{MHz}$ 004: $190-435 \mathrm{MHz}$ 005: 375-710 MHz 006: Reserved 007: Reserved

Register 128.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							CK2_ACTV_REG	CK1_ACTV_REG
Type	R							

Reset value $=00100000$

Bit	Name	
$7: 2$	Reserved	Function
1	CK2_ACTV_REG	CK2_ACTV_REG. Indicates if CKIN2 is currently the active clock for the DSPLL input. $0:$ CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1. $1:$ CKIN2 is the active input clock.
0	CK1_ACTV_REG	CK1_ACTV_REG. Indicates if CKIN1 is currently the active clock for the DSPLL input. $0:$ CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1. $1:$ CKIN1 is the active input clock.

Register 129.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						LOS2_INT	LOS1_INT	LOSX_INT
Type	R							

Reset value $=00000110$

Bit	Name	Function
$7: 3$	Reserved	
2	LOS2_INT	LOS2_INT. Indicates the LOS status on CKIN2. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN2 input.
1	LOS1_INT	LOS1_INT. Indicates the LOS status on CKIN1. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN1 input.
0	LOSX_INT	LOSX_INT. Indicates the LOS status of the external reference on the OSC pins. 0: Normal operation. 1: Internal loss-of-signal alarm on OSC reference clock input.

Register 130.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		DIGHOLDVALID				FOS2_INT	FOS1_INT	LOL_INT
Type	R							

Reset value $=00000001$

Bit	Name	Function
7	Reserved	
6	DIGHOLDVALID	Digital Hold Valid. Indicates if the digital hold circuit has enough samples of a valid clock to meet dig- ital hold specifications. 0: Indicates digital hold history registers have not been filled. The digital hold out- put frequency may not meet specifications. 1: Indicates digital hold history registers have been filled. The digital hold output frequency is valid.
$5: 3$	Reserved	
2	FOS2_INT	CKIN2 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN2 input.
1	FOS1_INT	CKIN1 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN1 input.
0	LOL_INT	PLL Loss of Lock Status. 0: PLL locked. 1: PLL unlocked.

Register 131.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						LOS2_FLG	LOS1_FLG	LOSX_FLG
Type	R	R	R	R	R	R / W	R / W	R/W

Reset value $=00011111$

Bit	Name	Function
$7: 3$	Reserved	
2	LOS2_FLG	CKIN2 Loss-of-Signal Flag. 0: Normal operation. 1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is enabled (IRQ_PIN = 1) and if not masked by LOS2_MSK bit. Flag cleared by writing 0 to this bit.
1	LOS1_FLG	CKIN1 Loss-of-Signal Flag. 0: Normal operation 1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is enabled (IRQ_PIN = 1) and if not masked by LOS1_MSK bit. Flag cleared by writing 0 to this bit.
0	LOSX_FLG	External Reference (signal on pins XA/XB) Loss-of-Signal Flag. 0: Normal operation 1: Held version of LOSX_INT. Generates active output interrupt if output interrupt pin is enabled (IRQ_PIN = 1) and if not masked by LOSX_MSK bit. Flag cleared by writing 0 to this bit.

Register 132.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					FOS2_FLG	FOS1_FLG	LOL_FLG	
Type	R	R	R	R	R / W	R/W	R/W	R

Reset value $=00000010$

Bit	Name	Function
$7: 4$	Reserved	3 FOS2_FLG 2 FOSKIN_2 Frequency Offset Flag. 0: Normal operation. 1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is enabled (IRQ_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing 0 to this bit.
CLKIN_1 Frequency Offset Flag. 0: Normal operation 1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is enabled (IRQ_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing 0 to this bit.		
1	LOL_FLG	PLL Loss of Lock Flag. 0: PLL locked 1: Held version of LOL_INT. Generates active output interrupt if output interrupt pin is enabled (IRQ_PIN = 1) and if not masked by LOL_MSK bit. Flag cleared by writing 0 to this bit.
0	Reserved	

Register 134.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	PARTNUM_RO [11:4]							
Type	R							

Reset value $=00000001$

Bit	Name	Function	
$7: 0$	PARTNUM_RO [11:0]	Device ID (1 of 2). 0000 0100 1010: Si5374 Others: Reserved	

Register 135.

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | D0 | Pame |
| :---: |
| PARTNUM_RO [3:0] |
| Type |

Reset value = 10100010

Bit	Name	Function
$7: 4$	PARTNUM_RO [11:0]	Device ID (2 of 2). 0000 0100 1010: Si5374 Others: Reserved
$3: 0$	REVID_RO [3:0]	Indicates Device Revision Level. 0010: Revision C Others: Reserved.

Register 136.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	RST_REG	ICAL						
Type	R/W	R/W	R	R	R	R	R	R

Reset value $=00000000$

Bit	Name	Function
7	RST_REG	Internal Reset (Same as Pin Reset). Note: The I2C port may not be accessed until 10 ms after RST_REG is asserted. 0: Normal operation. 1: Reset all internal logic. Outputs disabled or tristated during reset.
6	ICAL	Start Internal Calibration Sequence. For proper operation, the device must go through an internal calibration sequence. ICAL is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibra- tion is complete once the LOL alarm goes low. A valid stable clock (within 100 ppm) must be present to begin ICAL. Note: Any divider, CLKIN_RATE or BWSEL_REG changes require an ICAL to take effect. 0: Normal operation. 1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-cali- bration, LOL will go low.
$5: 0$	Reserved	

Register 137.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								FASTLOCK
Type	R	R / W						

Reset value $=00000000$

Bit	Name	Function
$7: 1$	Reserved	Do not modify.
0	FASTLOCK	This bit must be set to 1 to enable FASTLOCK. This improves initial lock time by dynamically changing the loop bandwidth during PLL lock acquisition.

Register 138.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							LOS2_EN [1:1]	LOS1_EN [1:1]
Type	R	R	R	R	R	R	R / W	R/W

Reset value $=00001111$

Bit	Name	Function
$7: 2$	Reserved	
1	LOS2_EN [1:0]	Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2). Note: LOS2_EN is split between two registers. 00: Disable_LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual for details.
0	LOS1_EN [1:0]	Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual for details.

Register 139.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			LOS2_EN [0:0]	LOS1_EN [0:0]			FOS2_EN	FOS1_EN
Type	R	R	R/W	R/W	R	R	R/W	R/W

Reset value = 11111111

Bit	Name	Function
$7: 6$	Reserved	
5	LOS2_EN [1:0]	Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2). Note: LOS2_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details.
4	LOS_EN [1:0]	Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details.
$3: 2$	Reserved	FOS2_EN
1	Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring.	
0	FOS1_EN	Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring.

Register 142.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	INDEPENDENTSKEW1 [7:0]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
$7: 0$	INDEPENDENTSKEW1 [7:0]	INDEPENDENTSKEW1. Eight-bit field that represents a 2s complement of the phase offset in terms of clocks from the high speed output divider. Default $=0$.

Register 143.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	INDEPENDENTSKEW2 [7:0]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
$7: 0$	INDEPENDENTSKEW2 [7:0]	INDEPENDENTSKEW2. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. Default $=0$.

Register 185.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NVM_REVID [7:0]							
Type	R							

Reset value $=00010100$

Bit	Name		Function
$7: 0$	NVM_REVID [7:0]	NVM_REVID.	

5.1. ICAL

The device registers must be configured for the device operation. After device configuration, a calibration procedure must be performed once a stable clock is applied to the selected CKINn input. The calibration process is triggered by writing a "1" to bit D6 in register 136. See the Family Reference Manual for details. In addition, after a successful calibration operation, changing any of the registers indicated in Table 8 requires that a calibration be performed again by the same procedure (writing a "1" to bit D6 in register 136).

Table 8. ICAL-Sensitive Registers

Address	Register
0	BYPASS_REG
0	CKOUT_ALWAYS_ON
1	CK_PRIOR1
1	CK_PRIOR2
2	BSWEL_REG
2	RATE_REG
4	HIST_DEL
5	ICMOS
7	FOSREFSEL
9	HIST_AVG
10	DSBL1_REG
10	DSBL2_REG
11	PD_CK1
11	PD_CK2
19	FOS_EN
19	FOS_THR
19	LOCKT
19	VALTIME
25	N1_HS
31	NC1_LS
34	NC2_LS
40	N2_HS
40	N2_LS
43	N31
46	N32
55	CLKIN1RATE
55	CLKIN2RATE

6. Pin Descriptions: Si5374

Figure 4. Si5374 Pin Configuration (Bottom View)

Table 9. Si5374 Pin Descriptions

Pin \#	Pin Name	I/O	Signal Level	Description
$\begin{aligned} & \text { D4 } \\ & \text { D6 } \\ & \text { F6 } \\ & \text { F4 } \end{aligned}$	$\begin{aligned} & \text { RSTL_A } \\ & \text { RSTL_B } \\ & \text { RSTL_C } \\ & \text { RSTL_D } \end{aligned}$	1	LVCMOS	External Reset. Active low input that performs external hardware reset of all four DSPLLs. Resets all internal logic to a known state and forces the device registers to their default value. Clock outputs are tri-stated during reset. The part must be programmed after a reset or power-on to get a clock output. This pin has a weak pull-up.
$\begin{aligned} & \text { B4 } \\ & \text { D8 } \\ & \text { H6 } \\ & \text { F2 } \end{aligned}$	IRQ_A IRQ_B IRQ_C IRQ_D	0	LVCMOS	DSPLLq Interrupt Indicator. This pin functions as a device interrupt output. The interrupt output, IRQ_PINn must be set to 1 . The pin functions as a maskable interrupt output with active polarity controlled by the IRQ_POLn register bit. $0=$ CKINn present 1 = LOS (FOS) on CKINn The active polarity is controlled by $C K _B A D _P O L$. If no function is selected, the pin tri-states.
$\begin{aligned} & \text { C1, C4, B5 } \\ & \text { A7, D5, D7 } \\ & \text { E7, F5, G9 } \\ & \text { E3, F3, J3 } \end{aligned}$	VDD_A VDD_B VDD_C VDD_D	$V_{\text {DD }}$	Supply	Supply. The device operates from a 1.8 or 2.5 V supply. A $0.1 \mu \mathrm{~F}$ bypass capacitive is required for every VDD_9 pin. Bypass capacitors should be associated with the following VDD_q pins: $0.1 \mu \mathrm{~F}$ per VDD pin. Four $1.0 \mu \mathrm{~F}$ should also be placed as close to each VDD domain as is practical. See recommended layout.
$\begin{aligned} & \text { E5 } \\ & \text { E6 } \end{aligned}$	$\begin{aligned} & \text { OSC_P } \\ & \text { OSC_N } \end{aligned}$	I	Analog	External OSC. An external low jitter reference clock should be connected to these pins. See the any-frequency precision clocks family reference manual for oscillator selection details.

Table 9. Si5374 Pin Descriptions (Continued)

Pin \#	Pin Name	I/O	Signal Level	Description
$\begin{aligned} & \text { B2 } \\ & \text { A3 } \\ & \text { B3 } \\ & \text { E4 } \\ & \text { C8 } \\ & \text { A8 } \\ & \text { B8 } \\ & \text { C9 } \\ & \text { H7 } \\ & \text { J7 } \\ & \text { H8 } \\ & \text { H9 } \\ & \text { G1 } \\ & \text { H2 } \\ & \text { J2 } \end{aligned}$	GND GND	GND	Supply	Ground for each DSPLLq. Must be connected to system ground. Minimize the ground path impedance for optimal performance of this device. See recommended layout.
C2 D2 C3 D3 B7 B6 C7 C6 G8 F8 G7 F7 H3 H4 G3 G4	CKIN1P_A CKIN1N_A CKIN2P_A CKIN2N_A CKIN1P_B CKIN1N_B CKIN2P_B CKIN2N_B CKIN1P_C CKIN1N_C CKIN2P_C CKIN2N_C CKIN1P_D CKIN1N_D CKIN2P_D CKIN2N_D	1	Multi	Clock Inputs for DSPLLq. Differential input clocks. This input can also be driven with a sin-gle-ended signal.
$\begin{aligned} & \text { E2 } \\ & \text { C5 } \\ & \text { E8 } \\ & \text { H5 } \end{aligned}$	LOL_A LOL_B LOL_C LOL_D	0	LVCMOS	DSPLLq Loss of Lock Indicator. These pins function as the active high PLL loss of lock indicator if the LOL_PIN register bit is set to 1 . $0=$ PLL locked. 1 = PLL unlocked. If $L O L _P I N n=0$, this pin will tri-state. Active polarity is controlled by the LOL_POLn bit. The PLL lock status will always be reflected in the LOL_INTn read only register bit.

Note: Internal register names are indicated by italics, e.g., IRQ_PIN. See Si5374 Register Map.

Table 9. Si5374 Pin Descriptions (Continued)

Pin \#	Pin Name	I/O	Signal Level	Description
D1 A6 F9 J4	$\begin{aligned} & \text { CS_CA_A } \\ & \text { CS_CA_B } \\ & \text { CS_CA_C } \\ & \text { CS_CA_D } \end{aligned}$	I/O	LVCMOS	DSPLLq Input Clock Select/Active Clock Indicator. Input: In manual clock selection mode, this pin functions as the manual input clock selector if the CKSEL_PIN is set to 1 . 0 = Select CKIN1 1 = Select CKIN2 If CKSEL_PIN $=0$, the CKSEL_REG register bit controls this function and this input tristates. If configured for input, must be tied high or low. Output: In automatic clock selection mode, this pin indicates which of the two input clocks is currently the active clock. If alarms exist on both clocks, CK_ACTV will indicate the last active clock that was used before entering the digital hold state. The CK_ACTV_PIN register bit must be set to 1 to reflect the active clock status to the CK_ACTV output pin. $0=$ CKIN1 active input clock 1 = CKIN2 active input clock If $C K _A C T V _P I N=0$, this pin will tristate. The CK_ACTV status will always be reflected in the CK_ACTV_REG read only register bit.
G5	SCL	1	LVCMOS	$I^{2} \mathrm{C}$ Serial Clock. This pin functions as the serial clock input. This pin has a weak pull-down.
G6	SDA	I/O	LVCMOS	$I^{2} \mathrm{C}$ Serial Data. $I^{2} \mathrm{C}$ pin functions as the bi-directional serial data port.
Note: Internal register names are indicated by italics, e.g., IRQ_PIN. See Si5374 Register Map.				

Table 9. Si5374 Pin Descriptions (Continued)

7. Ordering Guide

Ordering Part Number	Input/Output Clocks	PLL Bandwidth Range	Package	ROHS6 Pb-Free	Temperature Range
Si5374B-A-GL	$8 / 8$	4 to 525 Hz	$10 \times 10 \mathrm{~mm}$ $80-P B G A$	Yes	-40 to $85{ }^{\circ} \mathrm{C}$
Si5374-EVB			Evaluation Board		

8. Package Outline

Figure 5 illustrates the package details for the Si 5374 . Table 10 lists the values for the dimensions shown in the illustration.

Figure 5. 80-Pin Plastic Ball Grid Array (PBGA)
Table 10. Package Dimensions

Symbol	Min	Nom	Max		Min	Nom	Max
A	1.22	1.39	1.56	E1		8.00 BSC	
A1	0.40	0.50	0.60	e		1.00 BSC	
A2	0.32	0.36	0.40	aaa		0.10	
A3	0.46	0.53	0.60	bbb		0.10	
b	0.50	0.60	0.70	ccc		0.12	
D	10.00 BSC			ddd		0.15	
E	10.00 BSC			eee		0.08	
D1	8.00 BSC						
Notes:							
1. All d 2. Dim 3. This 4. Rec Com	nsions ioning rawing mende nents.	n are in leranc ms to reflow	neters ANS outlin is pe	othe 4. IPC J	ted. 20 sp	cation for	Body

9. Recommended PCB Layout

Figure 6. PBGA Card Layout
Table 11.

Symbol	MIN	NOM	MAX	
X	0.40	0.45	0.50	
C1		8.00		
C2		8.00		
E1				
E2				
Notes:				

General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design

1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1.

Card Assembly

1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

10. Top Marking

10.1. Si5374 Top Marking

Figure 7. Si5374 Top Marking

10.2. Top Marking Explanation

Mark Method:	Laser	
Logo Size:	$6.1 \times 2.2 \mathrm{~mm}$ Center-Justified	
Font Size:	0.80 mm Right-Justified	Si5374B-A-GL
Line 1 Marking:	Device Part Number	Assigned by the Assembly House. Corresponds to the year and work week of the mold date.
Line 2 Marking:	YY = Year WW = Work Week	Manufacturing Code from the Assembly Purchase Order form.
	TTTTTT = Mfg Code	Circle $=0.75$ mm Diameter Lower-Left Justified
Line 3 Marking:	Pin 1 Identifier	Circle $=1.4$ mm Diameter Center-Justified
	"e1" Lead Free Finish Symbol	
(Pb-Free BGA Balls)		

Document Change List

Revision 0.1 to Revision 0.2

■ Added 1.8 V operation.

- Added 40 MHz reference oscillator
- Corrected Figure 5 title.
- Added comment to SFOUT register.

Revision 0.2 to Revision 0.3

- Updated and reordered spec tables.

Revision 0.3 to Revision 0.4

- Added Silicon Labs logo to device top mark.

Notes:

Contact Information

Silicon Laboratories Inc.

400 West Cesar Chavez

Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Abstract

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

