DESCRIPTION

The LX1992 is a compact high Programming the output current is efficiency step-up boost controller for readily achieved by using one external driving white or color LEDs in current sense resistor in series with the backlight or frontlight systems and LEDs. In this configuration, LED offers designers maximum flexibility with respect to efficiency and cost. The LX1992 features a pseudohysteretic pulse frequency modulation topology and uses an external N Channel MOSFET. Further, the LX1992 features control circuitry that is optimized for portable systems (e.g., quiescent supply current of $80 \mu \mathrm{~A}$ (typ) and a shutdown current of less than $1 \mu \mathrm{~A})$. These design enhancements provide for improved performance in battery operated systems applications.

The device input voltage range is from 1.6 V to 6.0 , allowing for a wide selection of system battery voltages and start-up operation is guaranteed at 1.6 V input. current provides a feedback signal to the FB pin, maintaining constant current regardless of varying LED forward voltage $\left(\mathrm{V}_{\mathrm{F}}\right)$. Moreover, the LX1992 is capable of achieving output currents in excess of 150 mA , depending on the MOSFET selected.
The LX1992 has an additional feature for simple dynamic adjustment of the output current (i.e., up to 100% of the maximum programmed current). Designers can make this adjustment via an analog reference signal or a direct PWM generated signal applied to the ADJ pin and any PWM amplitude is easily accommodated with a single external resistor.

The LX1992 is available in both the 8Pin MSOP, and the miniature 8-Pin MLP requiring minimal PCB area.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

THERMAL DATA

DU Plastic MSOP 8-Pin

THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{J A}$	$206^{\circ} \mathrm{C} / \mathrm{W}$
THERMAL RESISTANCE-JUNCTION TO CASE, $\theta_{\text {Jc }}$	$39^{\circ} \mathrm{C} / \mathrm{W}$

PACKAGE PIN OUT

RoHS / Pb-free 100\% Matte Tin Lead Finish

LM Plastic MLP 8-Pin

THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{\text {JA }}$	$41^{\circ} \mathrm{C} / \mathrm{W}$
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	$5.2^{\circ} \mathrm{C} / \mathrm{W}$

Junction Temperature Calculation: $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{Jc}}\right)$.
The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

FUNCTIONAL PIN DESCRIPTION

FUNCTIONAL PIN DESCRIPTION	
NAME	Description
IN	Unregulated IC Supply Voltage Input - Input range from +1.6 V to 6.0 V . Bypass with a $1 \mu \mathrm{~F}$ or greater capacitor for operation below 2.0 V .
FB	Feedback Input - Connects to a current sense resistor between the output load and GND to set the output current.
$\overline{\text { SHDN }}$	Active-Low Shutdown Input - A logic low shuts down the device and reduces the supply current to $0.2 \mu \mathrm{~A}$ (Typ). Connect $\overline{\text { SHDN }}$ to V_{cc} for normal operation.
DRV	MOSFET Gate Driver - Connects to an external N-Channel MOSFET.
CS	Current-Sense Amplifier Input - Connecting a resistor between CS and GND sets the peak inductor current limit.
GND	Common terminal for ground reference.
ADJ	Adjustment Signal Input - Provides the internal reference, via an internal filter and gain resistor, allowing a dynamic output current adjustment corresponding to a varying duty cycle. The actual ADJ pin voltage range is from $\mathrm{V}_{\mathbb{I N}}$ to GND . In order to minimize the current sense resistor power dissipation a practical range of $\mathrm{V}_{\text {ADJ }}=$ 0.0 V to 0.5 V should be used.
SRC	MOSFET Current Sense Input - Connects to the External N-Channel MOSFET Source.

Note: ADJ pin should not be left floating.

ELECTRICAL CHARACTERISTICS						
Unless otherwise specified, the following specifications apply over the operating ambient temperature $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ except where otherwise noted and the following test conditions: $\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=20 \mathrm{~mA}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\text {IN }}$, and $\mathrm{V}_{\text {ADJ }}=300 \mathrm{mV}$.						
Parameter	Symbol	Test Conditions	LX1992			Units
			Min	Typ	Max	
Operating Voltage	$\mathrm{V}_{\text {IN }}$		1.6		6.0	V
Minimum Start-up Voltage	$V_{\text {SU }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1.6	V
Start-up Voltage Temperature Coefficient	kvst			-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Quiescent Current	I_{Q}	$\mathrm{V}_{\mathrm{FB}}>0.3 \mathrm{~V}$		50	100	$\mu \mathrm{A}$
		$\mathrm{V}_{\overline{\text { SHDN }}}<0.4 \mathrm{~V}$		0.2	0.5	$\mu \mathrm{A}$
FB Threshold Voltage	$V_{F B}$		275	300	325	mV
FB Input Bias Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=0.3 \mathrm{~V}$	-100		100	nA
ADJ Input Voltage Range	$V_{\text {ADJ }}$	$\mathrm{I}_{\text {OUT }}=\left(\mathrm{V}_{\text {ADJ }}\right) /\left(\mathrm{R}_{\text {SET }}\right)$	0.0		V IN	V
ADJ Input Bias Current	IADJ	VADJ < 0.3V	-150		0	nA
Shutdown Input Bias Current	$I_{\text {SHDN }}$	$\overline{\text { SHDN }}=$ GND	-50		50	nA
Shutdown High Input Voltage	$V_{\overline{\text { SHDN }}}$		1.6			V
Shutdown Low Input Voltage	$\mathrm{V}_{\overline{\text { SHDN }}}$				0.4	V
Current Sense Bias Current	Ics	VFB $<0.3 \mathrm{~V}$	3.0	5.0	7.0	$\mu \mathrm{A}$
Minimum Peak Current	$\mathrm{I}_{\text {min }}$	$\mathrm{R}_{\text {CS }}=560 \Omega$	53		83	mA
Efficiency	η	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=20 \mathrm{~mA}$		85		\%
NDRV Sink Current	$\mathrm{I}_{\text {SNK }}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$		50		mA
NDRV Source Current	ISRC	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$		100		mA
Off-Time	toff	$\mathrm{V}_{\mathrm{FB}}=0.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{ADJ}}=0.5 \mathrm{~V}$	100		500	ns

APPLICATION CIRCUITS

Typical LED Driver Applications

Figure 1 - LED Driver with Full-Range Dimming Via PWM Input

Figure 2 - LED Driver with Full-Range Dimming Via Analog Voltage Input
Note: The component values shown are only examples for a working system. Actual values will vary greatly depending on desired parameters, efficiency, and layout constraints.

APPLICATION INFORMATION

Operating Theory
The LX1992 is a PFM boost converter that is optimized for driving a string of series connected LEDs. It operates in a pseudo-hysteretic mode with a fixed switch "off time" of 300 ns . Converter switching is enabled as LED current decreases causing the voltage across $\mathrm{R}_{\text {SET }}$ to decrease to a value less than the voltage at the VADJ pin. When the voltage across $\mathrm{R}_{\mathrm{SET}}$ (i.e., V_{FB}) is less than VADJ, comparator A activates the control logic. The control logic activates the DRV output circuit that connects to the gate of the external FET. The DRV output is switched "on" (and remains "on") until the inductor current ramps up to the peak current level. This current level is set via the external R_{CS} resistor and monitored through the CS and SRC inputs by comparator B.

The LED load is powered from energy stored in the output capacitor during the inductor charging cycle. Once the peak inductor current value is achieved, the NDRV output is turned off (off-time is typically 300 ns) allowing a portion of the energy stored in the inductor to be delivered to the load (e.g., see Figure 5, channel 2). This causes the output voltage to continue to rise across $\mathrm{R}_{\mathrm{SET}}$ at the input to the feedback circuit. The LX1992 continues to switch until the voltage at the FB pin exceeds the control voltage at the ADJ pin.

The value of $\mathrm{R}_{\text {SET }}$ is established by dividing the maximum adjust voltage by the maximum series LED current. A minimum value of 15Ω is recommended for $\mathrm{R}_{\text {SET. }}$. The voltage at the FB pin is the product of $\mathrm{I}_{\text {OUT }}$ (i.e., the current through the LED chain) and $\mathrm{R}_{\mathrm{SET}}$.

$$
\mathrm{R}_{\mathrm{SET}}=\left[\mathrm{V}_{\mathrm{ADJmax}} / \mathrm{I}_{\text {LEDmax }}\right]
$$

The application of an external voltage source at the ADJ pin provides for output current adjustment over the entire dimming range and the designer can select one of two possible methods. The first option is to connect a PWM logic signal to the ADJ pin (e.g., see Figure 1). The LX1992 includes an internal 50pF capacitor to ground that works with an external resistor to create a low-pass filter (i.e., filter out the AC component of a pulse width modulated input of $f_{\text {PWM }} \geq 100 \mathrm{KHz}$). The second option is to adjust the reference voltage directly at the ADJ pin by applying a DC voltage from 0.0 to 0.3 V (e.g., see Figure 2). The adjustment voltage level is selectable (with limited accuracy) by implementing the voltage divider created between the external series resistor and the internal $2.5 \mathrm{M} \Omega$ resistor. Disabling the LX1992 is achieved by driving the SHDN pin with a low-level logic signal thus reducing the device power consumption to less than $0.5 \mu \mathrm{~A}$ (typ).

Inductor Selection and Output Current Limit Programming

Setting the level of peak inductor current to approximately 2 X the expected maximum DC input current will minimize the inductor size, the input ripple current, and the output ripple voltage. The designer is encouraged to use inductors that will not saturate at the peak inductor current level. An inductor value of $47 \mu \mathrm{H}$ is recommended. Choosing a lower value emphasizes peak current overshoot while choosing a higher value emphasizes output ripple voltage. The peak switch current is defined using a resistor placed between the CS terminal and ground and the $\mathrm{I}_{\text {PEAK }}$ equation is:

$$
\mathrm{I}_{\text {PEAK }}=\mathrm{I}_{\mathrm{MIN}}+(\mathrm{V} \mathrm{IN} / \mathrm{L}) \mathrm{t}_{\mathrm{D}}+\left(\mathrm{I}_{\mathrm{CS}} / \mathrm{R}_{\mathrm{ICS}}\right) \mathrm{R}_{\mathrm{CS}}
$$

The maximum $\mathrm{I}_{\text {PEAK }}$ value is limited by the $\mathrm{I}_{\text {SRC }}$ value (max. $=0.8 \mathrm{~A}_{\text {RMS }}$). The minimum $\mathrm{I}_{\text {PEAK }}$ value is defined when R_{CS} is zero. The value range for parameters $\mathrm{I}_{\mathrm{MIN}}$ and I_{CS} are provided in the Electrical Characteristics section of this data sheet. The parameter t_{D} is related to internal operation of the device. A typical value at $25^{\circ} \mathrm{C}$ is 800 ns . $\mathrm{R}_{\text {ICS }}$ is the internal current sense resistor connected to the SRC pin. A typical value at $25^{\circ} \mathrm{C}$ is $200 \mathrm{~m} \Omega$. All of these parameters have an effect on the final $\mathrm{I}_{\text {PEAK }}$ value.

Design Example:

Determine $\mathrm{I}_{\text {PEAK }}$ where $\mathrm{V}_{\text {IN }}$ equals 3.0 V and R_{CS} equals $4.02 \mathrm{~K} \Omega$ using nominal values for all other parameters.

$$
\mathrm{I}_{\text {PEAK }}=73 \mathrm{~mA}+(3.0 \mathrm{~V} / 47 \mu \mathrm{H}) \times 800 \mathrm{~ns}+(5.0 \mu \mathrm{~A} / 200 \mathrm{~m} \mathrm{\Omega}) \times 4.02 \mathrm{~K} \Omega
$$

The result of this example yields a nominal $\mathrm{I}_{\text {PEAK }}$ of approximately 225 mA .

Output Ripple and Capacitor Selection

Output voltage ripple is a function of the inductor value ($\mathrm{L)} ,\mathrm{the} \mathrm{output} \mathrm{capacitor} \mathrm{value} \mathrm{(} \mathrm{C}_{\text {OUT }}$), the peak switch current setting ($\mathrm{I}_{\text {PEAK }}$), the load current ($\mathrm{I}_{\text {OUT }}$), the input voltage (V_{IN}) and the output voltage ($\mathrm{V}_{\mathrm{OUT}}$) for a this boost converter regulation scheme. When the switch is first turned on, the peak-to-peak voltage ripple is a function of the output droop (as the inductor current charges to $\mathrm{I}_{\text {PEAK }}$), the feedback transition error (i.e., typically 10 mV), and the output overshoot (when the stored energy in the inductor is delivered to the load at the end of the charging cycle). Therefore the total ripple voltage is

$$
\mathrm{V}_{\text {RIPPLE }}=\Delta \mathrm{V}_{\text {DROOP }}+\Delta \mathrm{V}_{\text {OVERSHOOT }}+10 \mathrm{mV}
$$

The initial droop can be estimated as follows where the 0.5 value in the denominator is an estimate of the voltage drop across the inductor and the FET's $\mathrm{R}_{\text {DS_ON }}$: The

APPLICATION INFORMATION

formula for $\Delta \mathrm{V}_{\mathrm{DROOP}}$ is:

$$
\Delta \mathrm{V}_{\text {DROOP }}=\frac{\left(\frac{\mathrm{L}}{\mathrm{C}_{\mathrm{OUT}}}\right) \times\left(\mathrm{I}_{\mathrm{PK}} \times \mathrm{I}_{\mathrm{OUT}}\right)}{\left(\mathrm{V}_{\mathrm{IN}}-0.5\right)}
$$

The output overshoot can be estimated as follows where the 0.5 value in the denominator is an estimate of the voltage drop across the diode:

$$
\Delta \mathrm{V}_{\text {OVERSHOOT }}=\frac{1 / 2 \times\left(\frac{\mathrm{L}}{\mathrm{C}_{\mathrm{OUT}}}\right) \times\left(\mathrm{I}_{\mathrm{PK}}-\mathrm{I}_{\mathrm{OUT}}\right)^{2}}{\left(\mathrm{~V}_{\mathrm{OUT}}+0.5-\mathrm{V}_{\mathrm{IN}}\right)}
$$

Design Example:

Determine the $\mathrm{V}_{\text {RIPPLE }}$ where I_{PK} equals 200 mA , $\mathrm{I}_{\text {OUT }}$ equals 12.8 mA , L equals $47 \mu \mathrm{H}$, C Cout equals $4.7 \mu \mathrm{~F}$, $\mathrm{V}_{\text {IN }}$ equals 3.0 V , and $\mathrm{V}_{\text {out }}$ equals 13.0 V :

$$
\begin{aligned}
& \Delta \mathrm{V}_{\text {DROOP }}=\frac{\left(\frac{47 \mu \mathrm{H}}{4.7 \mu \mathrm{~F}}\right) \times(200 \mathrm{~mA} \times 12.8 \mathrm{~mA})}{(3.0-0.5)} \cong 10.2 \mathrm{mV} \\
& \Delta \mathrm{~V}_{\text {OVERSHOOT }}=\frac{1 / 2 \times\left(\frac{47 \mu \mathrm{H}}{4.7 \mu \mathrm{~F}}\right) \times(200 \mathrm{~mA}-12.8 \mathrm{~mA})^{2}}{(13.0+0.5-3.0)} \cong 18.4 \mathrm{mV}
\end{aligned}
$$

Therefore, $V_{\text {RIPPLE }}=10.2 \mathrm{mV}+18.4 \mathrm{mV}+10 \mathrm{mV}=38.6 \mathrm{mV}$

Diode Selection

A Schottky diode is recommended for most applications (e.g. Microsemi UPS5817). The low forward voltage drop and fast recovery time associated with this device supports the switching demands associated with this circuit topology. The designer is encouraged to consider the diode's average and peak current ratings with respect to the application's output and peak inductor current requirements. Further, the diode's reverse breakdown voltage characteristic must be capable of withstanding a negative voltage transition that is greater than $V_{\text {OUT }}$.

Transistor Selection

The LX1992 can source up to 100 mA of gate current. An N-channel MOSFET with a relatively low threshold voltage, low gate charge and low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ is required to optimize overall circuit performance. The LXE1992 Evaluation Board uses a Fairchild FDV303. This NMOS device was chosen because it demonstrates an $R_{D S}$ on of 0.33Ω and a total gate charge Q_{g} of 1.64 nC (typ.)

PCB LAYOUT

The LX1992 produces high slew-rate voltage and current waveforms hence; the designer should take this into consideration when laying out the circuit. Minimizing trace lengths from the IC to the inductor, transistor, diode, input and output capacitors, and feedback connection (i.e., pin 6) are typical considerations. Moreover, the designer should maximize the DC input and output trace widths to accommodate peak current levels associated with this topology.

Evaluation Board

The LXE1992 evaluation board is available from Microsemi for assessing overall circuit performance. The evaluation board, shown in Figure 3, is 3 by 3 inches (i.e., 7.6 by 7.6 cm) square and programmed to drive 4 LEDs (provided). Designers can easily modify circuit parameters to suit their particular application by replacing R_{CS} (as described in this section) $\mathrm{R}_{\text {SET }}$ (i.e., R4) and diode load. Moreover, the inductor, FET, and switching diode are easily swapped out to promote design verification of a circuit that maximizes efficiency and minimizes cost for a specific application. The evaluation board input and output connections are described in Table 1.

The DC input voltage is applied to VBAT (not VCC) however the LX1992 IC may be driven from a separate DC source via the VCC input. The output current (i.e., LED brightness) is controlled by adjusting the on-board potentiometer. The designer may elect to drive the brightness adjustment circuit from VBAT or via a separate voltage source by selecting the appropriate jumper position (see Table 2). Optional external adjustment of the output LED current is achieved by disengaging the potentiometer and applying either a DC voltage or a PWM-type signal to the VADJ input. The PWM signal frequency should be higher than 150 KHz and contain a DC component les than 350 mV .

The LX1992 exhibits a low quiescent current ($\mathrm{I}_{\mathrm{Q}}<0.5 \mu \mathrm{~A}$: typ) during shutdown mode. The SHDN pin is used to exercise the shutdown function on the evaluation board. This pin is pulled-up to VCC via a $10 \mathrm{~K} \Omega$ resistor. Grounding the SHDN pin shuts down the IC (not the circuit output). The output voltage (i.e., voltage across the LED string) is readily measured at the VOUT terminal and LED current is derived from measuring the voltage at the VFDBK pin and dividing this value by 15Ω (i.e., R4).

The factory installed component list for this must-have design tool is provided in Table 3 and the schematic is shown in Figure 4

APPLICATION INFORMATION (CONTINUED)

Figure 5: LXE1992 Engineering Evaluation Board
Table 1: Input and Ouput Pin Assignments

Pin Name	Allowable Range	Description
VBAT	0 to 6 V	Main power supply for output. (Set external current limit to 0.5A)
VCC	1.6 V to 6 V	LX1992 power. May be strapped to VBAT or use a separate supply if VCC jumper is in the SEP position. Do not power output from VCC pin on board..
VPOT	1.6 V to 6 V	Potentiometer power. May be strapped to VBAT or use a separate supply if VPOT jumper is in the SEP position. Do not power output from VPOT pin on board.
VADJ IN	0 to 350 mV	Apply a DC voltage or a PWM voltage to this pin to adjust the LED current. PWM inputs should be greater than 120 Hz and DC portion less than 350mV.
ISHDN	0 to VCC	Pulled up to VCC on board (10K 2), Ground to inhibit the LX1992.

Table 2: Jumper Pin Position Assignments

Jumper Position	Functional Description
VCC/ BAT	Use this position when powering VBAT and VCC from the same supply. Do not connect power to the VCC input when using this jumper position.
VCC/ SEP	Use this position when using a separate VCC supply (different from VBAT).
VPOT/ VBAT	Use this position when powering the potentiometer reference circuit from the VBAT supply. Do not connect power to the VCC input when using this jumper position.
VPOT/ SEP	Use this position when using a separate power supply (different from VBAT) to power the potentiometer reference circuit. This will lower the VBAT current and provide a more accurate efficiency reading for the LX1992 circuit.
ADJ/ POT	Use this position when using the potentiometer to adjust LED current.
ADJ/ EXT	Use this position when adjusting the LED current with an external PWM that has a repetition rate >120Hz. Or when using a DC adjustment voltage.

Note: Always put jumpers in one of the two possible positions

APPLICATION INFORMATION (CONTINUED)

Table 3: Factory Installed Component List for the LX1992 Evaluation Board

Quantity	Part Reference	Description	Manufacturer	Part Number
1	Q1	Mosfet, N-Channel, 25V, SOT23 Type SMT	Fairchild	FDV303N
1	CR1	Rectifier, Schottky, 1A, 20V, Powermite Type SMT	Microsemi	UPS5817
1	L1	Inductor, 47uH, 540mA, SMT	Toko	A920CY-470
2	C1, C2	Capacitor, Ceramic X5R, 4.7uF, 25V, 1210 Type SMT	Taiyo Yuden	CETMK325BJ475MN
2	C3, C4	Capacitor, Ceramic X7R, 0.1uF, 50V, 0805 Type SMT	Murata	GRM40X7R104M050
1	R4	Resistor, 15 Ohm, 1/10W, 0805 Type SMT	Panasonic	ERJ6ENF15R0
1	R5	Resistor, 1K, 1/16W, 0603 Type SMT	Panasonic	ERJ3EKF1001
1	R2	Resistor, 4.02K, 1/16W, 0603 Type SMT	Panasonic	ERJ3EKF4021
2	R3, R6	Resistor, 100K, 1/16W, 0603 Type SMT	Panasonic	ERJ3EKF1003
1	R1	Resistor, 10K, 1/16W, 0603 Type SMT	Panasonic	ERJ3EKF1002
1	R7	Trimpot, 50K, 1/2W, Through Hole Type	Bourns	3352E-1-503
1	VR1	IC, Voltage Reference, 1.25 Volts, SOT23 Type SMT	Microsemi	LX432CSC
1	VR2	Diode, Zener, 24V, 3W Powermite Type SMT	Microsemi	1PMT5934B
4	LED1 -4	White LED	Chicago Miniature	CMD333UWC
3	JB1 - JB3	Header, 3 Pos Vertical Type	$3 M$	$929647-09-36$
3		Jumper	$3 M$	$929955-06$

Note: The minimum set of parts needed to build a working power supply are: Q1, CR1, L1, C2, C3, R2, R4, U1.

Figure 4 - LXE1992 Boost Evaluation Board Schematic

CHARACTERISTIC CURVES

Figure 5: $V_{\text {OUT }}$ and Inductor Current Waveforms.
Channel 1: Vout (AC coupled; 200mV/div)
Channel 2: Inductor Current ($100 \mathrm{~mA} /$ div.)
Configuration: $\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=13.0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=65 \mathrm{~mA}$

Figure 7: Gate Drive Voltage vs. Drive Current at $\mathrm{T}=25^{\circ} \mathrm{C}$.

Figure 9: Efficiency vs. LED Output Current.
Configuration: $\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~L}=47 \mu \mathrm{H}, \mathrm{R}_{\mathrm{CS}}=4 \mathrm{~K} \Omega$
Note: Data taken from LXE1992 Evaluation Board

Figure 6: $V_{\text {OUT }}$ and Inductor Current Waveforms.
Channel 1: Vout (AC coupled; $100 \mathrm{mV} /$ div)
Channel 2: Inductor Current ($100 \mathrm{~mA} /$ div.)
Configuration: $\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=13.7 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=120 \mathrm{~mA}$

Figure 8: Efficiency vs. LED Output Current.
Configuration: $\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}, \mathrm{~L}=47 \mu \mathrm{H}, \mathrm{R}_{\mathrm{CS}}=4 \mathrm{~K} \Omega$
Note: Data taken from LXE 1992 Evaluation Board
Efficiency Measurement Hint: When doing an efficiency evaluation using the LX1992 Evaluation Board, VPOT should be driven by a separate voltage supply to account for losses associated with the onboard reference (i.e., the 1.25 V shunt regulator and $1 \mathrm{~K} \Omega$ resistor). This circuit will have VBAT 1.25 V across it and at the higher input voltages the $1 \mathrm{~K} \Omega$ resistor could have as much as 4 mA through it. This shunt regulator circuitry will adversely effect the overall efficiency measurement and is not normally used in an application. Therefore it should not be considered when measuring efficiency.

PACKAGE DIMENSIONS

DU 8-Pin Miniature Shrink Outline Package (MSOP)

Dim	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	2.85	3.05	. 112	. 120
B	2.90	3.10	. 114	. 122
C	-	1.10	-	0.043
D	0.25	0.40	0.009	0.160
G	0.65 BSC		0.025 BSC	
H	0.38	0.64	0.015	0.025
J	0.13	0.18	0.005	0.007
K	0.95 BSC		0.037 BSC	
L	0.40	0.70	0.016	0.027
M	3°		3°	
N	0.05	0.15	0.002	0.006
P	4.75	5.05	0.187	0.198

LM 8-Pin Plastic MLP-Micro Exposed Pad

Dim	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	0.80	1.00	0.031	0.039
A1	0.00	0.05	0.000	0.002
A2	0.65	0.75	0.025	0.029
A3	0.15	0.25	0.005	0.009
b	0.28	0.38	0.011	0.015
D	2.90	3.10	0.114	0.122
E	2.90	3.10	0.114	0.122
e	0.65	BSC	0.025	
BSC				
D2	1.52	2.08	0.060	0.082
E2	1.02	1.31	0.040	0.052
K	0.20	$*$	0.008	$*$
L	0.20	0.60	0.008	0.023
L2	0	0.13	0	0.005
©	0°	12°	0°	12°

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed $0.155 \mathrm{~mm}(.006$ ") on any side. Lead dimension shall not include solder coverage.

,

NOTES

> PRODUCTION DATA - Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

