
®

DB15-000126-10

ZSP™ Software
Development Kit

USER’S
GUIDE

M a y 2 0 0 3

Revision 4.3.1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ii
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

This document contains proprietary information of LSI Logic Corporation. The
information contained herein is not to be used by or disclosed to third parties
without the express written permission of an officer of LSI Logic Corporation.

DB15-000126-10, Sixth Edition (May 2003)
This document describes Rev. 4.3.1 of LSI Logic Corporation’s ZSP™ Software
Development Kit and will remain the official reference source for all
revisions/releases of this product until rescinded by an update.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of
LSI Logic or third parties.

Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
LSI Logic, the LSI Logic logo design and ZSP are trademarks or registered
trademarks of LSI Logic Corporation. Microsoft, Microsoft Access, MS-DOS,
Windows, and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of X/Open Company, Ltd. Solaris is a trademark
of Sun Microsystems, Inc. All other brand and product names may be trademarks
of their respective companies.

For a current list of our distributors, sales offices, and design resource
centers, view our web page located at

http://www.lsilogic.com/contacts/index.html

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Preface iii
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Preface

This book is the primary reference and user’s guide for the ZSP™
Software Development Kit (SDK). The SDK supports digital signal
processors based on the ZSP400 core (for example, the LSI402ZX and
LSI403LP) and the next generation ZSP G2 architecture.

Audience

This document assumes that you have some familiarity with the C
language, and with the ZSP architecture and assembly language. Those
who will benefit from this book are

• Engineers and managers who are evaluating the ZSP processor for
possible use in a system

• Engineers who are designing products based on the ZSP
architecture and wish to perform cost and performance analysis

• Engineers who are developing software for systems based on the
ZSP architecture

Organization

This document has the following chapters and appendices:

• Chapter 1, Introduction, introduces the ZSP Software Development
kit.

• Chapter 2, Installation, describes how to install the SDK.

• Chapter 3, C Cross Compiler, describes the SDK C compiler.

• Chapter 4, Assembler, describes the assembler in the SDK tool set.

• Chapter 5, Linker, describes the linker in the SDK tool set.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

iv Preface
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• Chapter 6, Utilities, describes miscellaneous utilities in the SDK tool
set.

• Chapter 7, ZSP SDK Functional-Accurate Simulator, describes the
SDK functional-accurate simulator.

• Chapter 8, ZSP SDK Cycle-Accurate Simulator, describes the SDK
cycle-accurate simulator.

• Chapter 9, Debugger, describes the SDK debugger.

• Chapter 10, ZSP MDI Configuration Files, describes the
configuration files for the ZSP SDK MDI libraries.

• Chapter 11, ZSP Integrated Development Environment, describes
the SDK Project Manager provided by LSI Logic with Windows
98/NT/2000/XP and Solaris versions of the SDK.

• Chapter 12, ZSP IDE Debugger, describes the GUI Debugger
provided by LSI Logic with Windows 98/NT/2000/XP and Solaris
versions of the SDK.

• Appendix A, Example Programs, provides a sample program for
use with the SDK.

• Appendix B, ZSP400 Control Registers, lists the ZSP400 control
registers.

• Appendix C, ZSPG2 Control Registers, lists the ZSPG2 control
registers.

• Appendix D, L-Intrinsic Functions, describes the L-Intrinsic
functions supported by the SDK compiler.

• Appendix E, Signal Processing Library, describes the
libalg_zsp500.a and libalg_zsp600.a libraries.

Related Publications

LSI402ZX Digital Signal Processor User’s Guide, LSI Logic Corporation,
order number R14021. Provides detailed information on the LSI402ZX
Digital Signal Processor.

LSI403LP Digital Signal Processor User’s Guide, LSI Logic Corporation,
order number R14025. Provides detailed information of the LSI403LP
digital Signal Processor.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Preface v
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

ZSP400 Digital Signal Processor Architecture Technical Manual, LSI
Logic Corporation, order number I14036. Provides detailed information
on the registers and instruction set defined by the ZSP architecture and
implemented in the LSI4xx family of processors.

Using and Porting GNU CC, by Richard M. Stallman, Free Software
Foundation, November, 1995 / June, 2001. Provides detailed information
on how to use GCC, which is the foundation of SDCC.

Using AS: The GNU Assembler, by Dean Elsner, et. al., Free Software
Foundation, January 1994. Provides detailed information on how to use
AS, which is the foundation of SDAS.

Using LD: The GNU Linker, by Steve Chamberlain, Free Software
Foundation, January 1994. Provides detailed information on how to use
LD, which is the foundation of SDLD.

Debugging with GDB: The GNU Source Level Debugger, by Richard
Stallman, et. al., Free Software Foundation, January 1994. Provides
detailed information on how to use GDB, which is the foundation of
SDBUG.

ZSIM Peripheral API Reference Guide, LSI Logic Corporation, document
number DB06-000299-00. Provides information on writing peripheral
libraries.

LSI402ZX Development Kit Getting Started Guide, LSI Logic
Corporation, document number DB06-000453-01, March, 2003. Provides
information on using the LSI402ZX Development Kit.

EB402 Evaluation Board User’s Guide, LSI Logic Corporation, document
number DB15-000143-01, July, 2001. Provides detailed information on
how to use the EB402 Evaluation Board.

PCMCIA-1149.1 Windows 95/NT Software Development Kit User’s
Guide, Corelis, Inc. Provides detailed information on using the JTAG
interface.

Man pages for ar, nm, objdump, string, size, objcopy, strip and
ranlib from the Free Software Foundation, available from the FTP site
prep.ai.mit.edu.

We would like to acknowledge Herschel Technologies for providing the
standard floating point library included in this release.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

vi Preface
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Conventions Used in This Manual

The first time a word or phrase is defined in this manual, it may be
italicized.

Hexadecimal numbers are indicated by the prefix “0x”, for example,
0x32CF. Binary numbers are indicated by the prefix “0b”, for example,
0b0011.0010.1100.1111.

The term ‘DOS’, unless otherwise noted, includes the MS-DOS operating
system and its Windows 3.1, Windows 95, Windows 98, Windows NT,
Windows XP, and Windows 2000 supersets.

The term ‘PC’, unless otherwise noted, includes the 386-, the 486-, and
the Pentium-based IBM-PC or compatible host computers.

Additional notational conventions used throughout this manual are listed
below.

Notation Example Meaning and Use

courier typeface .nwk file Names of commands, files, directories, and code are
shown in courier typeface

bold typeface fd1sp In a command line, command keywords are shown in
bold, nonitalic courier typeface. Enter them exactly as
shown, including case.

italics module In command lines and syntax descriptions, italics
indicate user-defined variables of a type defined by the
italicized noun. Italicized text must be replaced with
appropriate user-specified items.

italic underscore full_pathname When an underscore appears in an italicized string,
enter a user-supplied item of the type called for, without
spaces.

brackets [version]
[filename | register]

In command formats, you may, but need not, enter an
item enclosed within brackets. When vertical bars are
used within brackets, you may select one (but not more
than one) of the items separated by bars. Do not enter
the brackets or bar.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Preface vii
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

braces { directory }
{ filename | register }

In command formats, you must select one (but not
more than one) item enclosed within braces. Do not
enter the braces. When vertical bars are used within
braces, you may select one (but not more than one) of
the items separated by braces. Do not enter the braces
or bar.

ellipses option... In command formats, elements preceding ellipses may
be repeated any number of times. Do not enter the
ellipses. In menu items, if an ellipsis appears after an
item, clicking that item brings up a dialog box.

vertical dots .
.
.

Vertical dots indicate that a portion of a program or list-
ing has been omitted from the text.

semicolon, and other
punctuation

; Use as shown in the text.

Notation Example Meaning and Use

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

viii Preface
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Contents ix
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Contents

Chapter 1
Introduction

1.1 Overview of the SDK Tools 1-2
1.2 Overview of Software Development Using the SDK Tools 1-5

Chapter 2
Installation

2.1 Contents of the CD-ROM 2-1
2.2 Installation on Windows Systems 2-2

2.2.1 Installing SDK Tools 2-2
2.2.2 Restarting Windows 2-12

2.3 Uninstalling the SDK Tools on Windows Systems 2-13
2.4 Installation on Solaris Systems 2-13
2.5 License Management 2-21

2.5.1 Obtaining a License File 2-21
2.5.2 Starting the License Manager 2-21
2.5.3 Setting Environment Variables 2-22

Chapter 3
C Cross Compiler

3.1 Compiler Options 3-2
3.2 Compiler Conventions 3-4

3.2.1 Preprocessing Conventions 3-5
3.2.2 Data Type Conventions 3-5
3.2.3 Register Usage 3-7
3.2.4 Conventions Used for Passing Parameters 3-10
3.2.5 Run Time Stack 3-11
3.2.6 Example Code for Function Prologue and Epilogue 3-12
3.2.7 Parameter Passing Examples 3-14

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

x Contents
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.3 Run Time Environment 3-16
3.4 C Run Time Library Functions 3-16
3.5 Timer Support 3-18
3.6 N-Intrinsics 3-19

3.6.1 Vector N-Intrinsics 3-21
3.6.2 ETSI Functions 3-21

3.7 Circular Buffers 3-23
3.8 Accessing Control Registers 3-24
3.9 Q15 Support 3-25
3.10 Inline Assembly 3-26

3.10.1 Syntax 3-26
3.10.2 Parameterized Assembly 3-26
3.10.3 Variables and Expressions 3-27
3.10.4 Explicitly Clobbered Registers 3-29
3.10.5 Examples of asm Directive 3-29
3.10.6 Optimization of Inline Assembly 3-30

3.11 Assembly Optimizer and Handwritten Assembly 3-31
3.12 Debugging Options 3-32
3.13 Code Statistics 3-33
3.14 Example Compilations 3-33

3.14.1 Example 1 3-33
3.14.2 Example 2 3-33
3.14.3 Example 3 3-34
3.14.4 Example 4 3-34

Chapter 4
Assembler

4.1 Introduction 4-1
4.2 Assembly Language Syntax 4-1

4.2.1 Assembler Options 4-3
4.2.2 Assembler Directives 4-4
4.2.3 Assembler Special Cases 4-5
4.2.4 ELF Number and Flags 4-5

Chapter 5
Linker

5.1 Introduction 5-1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Contents xi
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

5.2 Sections 5-2
5.3 Symbols 5-2
5.4 Linker Command File 5-3
5.5 Linker Options 5-4
5.6 ELF Number and Flags 5-5

Chapter 6
Utilities

6.1 Introduction 6-1
6.2 sdar 6-3
6.3 sdstrip 6-5
6.4 sdranlib 6-6
6.5 sdnm 6-7
6.6 sdsize 6-8
6.7 sdstrings 6-9
6.8 sdobjdump 6-10
6.9 sdobjcopy 6-12
6.10 readelf 6-14

Chapter 7
ZSP SDK Functional-Accurate Simulator

7.1 Using ZISIM 7-1
7.1.1 Batch Mode 7-2
7.1.2 Interactive Mode 7-2

7.2 ZISIM Commands 7-4
7.2.1 alias 7-7
7.2.2 clear break 7-8
7.2.3 clear dmem 7-8
7.2.4 clear imem 7-8
7.2.5 clear stats 7-9
7.2.6 disable break 7-9
7.2.7 disable trace 7-9
7.2.8 dump dmem 7-9
7.2.9 dump imem 7-10
7.2.10 enable break 7-11
7.2.11 enable trace 7-11
7.2.12 exit 7-12

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xii Contents
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.2.13 fill dmem 7-12
7.2.14 fill imem 7-12
7.2.15 help 7-13
7.2.16 load dmem 7-13
7.2.17 load exe 7-14
7.2.18 load imem 7-14
7.2.19 reset 7-15
7.2.20 run 7-16
7.2.21 script 7-16
7.2.22 set attr 7-17
7.2.23 set break 7-17
7.2.24 set reg 7-18
7.2.25 set size 7-18
7.2.26 show attr 7-19
7.2.27 show bits 7-19
7.2.28 show break 7-20
7.2.29 show dmem 7-20
7.2.30 show imem 7-21
7.2.31 show reg 7-22
7.2.32 show size 7-22
7.2.33 show stats 7-23
7.2.34 show trace 7-23
7.2.35 step 7-24
7.2.36 unalias 7-24

7.3 I/O Port Usage 7-25
7.4 Example Session Using ZISIM 7-25

Chapter 8
ZSP SDK Cycle-Accurate Simulator

8.1 Using ZSIM 8-1
8.1.1 Batch Mode 8-2
8.1.2 Interactive Mode 8-3

8.2 ZSIM Commands 8-6
8.2.1 alias 8-11
8.2.2 clear break 8-11
8.2.3 clear dcache 8-12
8.2.4 clear dmem 8-12

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Contents xiii
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2.5 clear icache 8-12
8.2.6 clear imem 8-13
8.2.7 clear stats 8-13
8.2.8 disable break 8-13
8.2.9 disable profile 8-14
8.2.10 disable trace 8-14
8.2.11 dump dmem 8-14
8.2.12 dump imem 8-15
8.2.13 enable break 8-15
8.2.14 enable profile 8-16
8.2.15 enable trace 8-19
8.2.16 exit 8-21
8.2.17 fill dmem 8-21
8.2.18 fill imem 8-21
8.2.19 help 8-22
8.2.20 istep 8-22
8.2.21 load dmem 8-23
8.2.22 load exe 8-24
8.2.23 load imem 8-24
8.2.24 reset 8-25
8.2.25 run 8-25
8.2.26 script 8-26
8.2.27 set attr 8-26
8.2.28 set break 8-27
8.2.29 set delay (for zsim400 only) 8-28
8.2.30 set latency (for zsimg2 only) 8-28
8.2.31 set reg 8-29
8.2.32 set size 8-29
8.2.33 show attr 8-30
8.2.34 show bits 8-30
8.2.35 show break 8-31
8.2.36 show dcache 8-31
8.2.37 show dmem 8-32
8.2.38 show icache 8-33
8.2.39 show imem 8-33
8.2.40 show pipe 8-34
8.2.41 show profile 8-36
8.2.42 show reg 8-36

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xiv Contents
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2.43 show rule 8-37
8.2.44 show size 8-37
8.2.45 show stats 8-38
8.2.46 show trace 8-38
8.2.47 step 8-39
8.2.48 unalias 8-39

8.3 I/O Port Usage 8-39
8.4 Example Session Using ZSIM 8-40

Chapter 9
Debugger

9.1 Using the Debugger 9-1
9.2 Debugger Execution Environments 9-3

9.2.1 Functional-Accurate Simulator Connection 9-3
9.2.2 Cycle-Accurate Simulator Connection 9-4
9.2.3 UART Connection 9-7
9.2.4 JTAG Probe Connection 9-8

9.3 Debugger Commands – Special Cases 9-13
9.3.1 Generic Target-Specific Commands 9-13
9.3.2 Backtrace Command 9-13
9.3.3 Info Registers Command 9-14
9.3.4 Breakpoint Command 9-14
9.3.5 Print Command 9-14
9.3.6 Set Command 9-14
9.3.7 Cycle-Step Command 9-15
9.3.8 Accessing Memory with the Debugger 9-15

9.4 Dynamic Breakpoints 9-17
9.5 Configuration Files 9-18
9.6 Example Debugging Sessions 9-18

9.6.1 Example 1 9-18
9.6.2 Example 2 9-21

Chapter 10
ZSP MDI Configuration Files

10.1 Configuration File Basics 10-1
10.1.1 Comments 10-1
10.1.2 Section Headers 10-2

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Contents xv
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.1.3 Fields 10-2
10.2 Device Configuration Files 10-3

10.2.1 Device Information Section 10-4
10.2.2 Device Libs Section 10-4

10.3 Driver Configuration (Resource) Files 10-5
10.3.1 ZSP400 ZISIM 10-5
10.3.2 ZSP400 ZSIM 10-6
10.3.3 ZSP400 JTAG 10-8
10.3.4 ZSP500/ZSP600 ZISIM 10-9
10.3.5 ZSP500/ZSP600 ZSIM 10-10
10.3.6 ZSP500/ZSP600 JTAG 10-11

Chapter 11
ZSP Integrated Development Environment

11.1 ZSP IDE Overview 11-2
11.1.1 Features 11-2
11.1.2 Introduction to Workspaces and Projects 11-2

11.2 ZSP IDE Filename Extensions 11-5
11.3 Working With Workspaces and Projects 11-5

11.3.1 Working With Workspaces 11-5
11.3.2 Working With Projects 11-7

11.4 Project Settings 11-9
11.4.1 Build Methodology and Project Tree Structure 11-10
11.4.2 Compiler/Assembler Settings 11-10
11.4.3 Linker Settings 11-14

11.5 ZSP IDE Detailed Description 11-16
11.5.1 Paned Window Controls 11-16
11.5.2 Project Tree 11-16
11.5.3 Main Menu 11-19
11.5.4 Toolbar 11-33

11.6 Parallel Debug Manager 11-36
11.7 Help Menu 11-37
11.8 Editor 11-37

Chapter 12
ZSP IDE Debugger

12.1 Features of ZSP IDE Debugger 12-1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xvi Contents
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

12.2 GUI Debugger Overview 12-3
12.2.1 Main Window 12-3
12.2.2 Title Bar - Project File Name Display 12-3
12.2.3 Window Area 12-3
12.2.4 Status Area 12-3
12.2.5 Main Menu 12-3
12.2.6 Main Toolbars 12-4
12.2.7 Debugging Windows (General) 12-6

12.3 Detailed Descriptions 12-12
12.3.1 Main Menu 12-12
12.3.2 Debugging Window Detailed Descriptions 12-24

Appendix A
Example Programs

A.1 Example Program: demo.c A-1

A.2 Example Program hw_dbg.s A-5

A.3 Example Program pie.exe A-10

Appendix B
ZSP400 Control Registers

Appendix C
ZSPG2 Control Registers

Appendix D
L-Intrinsic Functions

Appendix E
Signal Processing Library

E.1 API Specification Auto-correlation Library Function on G2 E-2
E.1.1 Auto-correlation E-2

E.2 API Specification for Convolutional Encoder Library Function on
G2 E-3
E.2.1 Convolutional Encoder E-3

E.3 API Specification for 16bit CRC Library Function on G2 E-5
E.3.1 CRC 16bit E-5

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Contents xvii
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.4 API Specification for 8bit CRC Library Function on G2 E-6
E.4.1 CRC 8bit E-6

E.5 API Specification for 32-bit Division Library Function on G2 E-7
E.5.1 32-bit Division E-7

E.6 API Specification for IIR Library Function on G2 E-8
E.6.1 IIR E-8

E.7 API Specification for IIR Biquad Library Function on G2 E-9
E.7.1 IIR Biquad E-9

E.8 API Specification for Inverse Square Root Library Function
on G2 E-10
E.8.1 Inverse Square Root E-10

E.9 API Specification for Synthesis Lattice Filter Library Function on
G2 E-11
E.9.1 Synthesis Lattice Filter E-11

E.10 API Specification for Real Block FIR Library Function on G2 E-12
E.10.1 Real Block FIR E-12

E.11 API Specification for 256 point FFT Library Function on G2 E-14
E.11.1 256 point FFT E-14

Index

Customer Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xviii Contents
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xix
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figures
1.1 Overview of Software Development 1-6
2.1 Select Components Dialog Box 2-2
2.2 System Reboot Prompt 2-12
2.3 Uninstalling the SDK Tools 2-13
9.1 Debugger Memory Addressing (sdbug400, zdxbug) 9-16
9.2 Debugger Memory Addressing (zdbug) 9-17
11.1 ZSP IDE Tools Suite Implementation 11-2
11.2 ZSP IDE Workspace 11-3
11.3 ZSP IDE Main Window 11-4
11.4 Recent Workspaces List 11-6
11.5 Project Menu 11-8
11.6 Compiler Settings 11-11
11.7 Assembler Settings 11-12
11.8 Linker Settings 11-14
11.9 Paned Window Handles 11-16
11.10 ZSP IDE Project Tree 11-17
11.11 Workspace Popup Menu 11-18
11.12 Project Popup Menu 11-18
11.13 File Popup Menu 11-18
11.14 File Menu 11-20
11.15 Edit Menu 11-21
11.16 View Menu 11-21
11.17 View Preferences Dialog Box 11-22
11.18 Customize Toolbar Dialog Box 11-23
11.19 Project Menu 11-24
11.20 Workspace Menu 11-24
11.21 Build Menu 11-25
11.22 Build/Compile Output Window 11-25
11.23 Build Output Window Popup Menu 11-26
11.24 Debug Menu 11-27
11.25 Debug Target Dialog Box 11-27
11.26 Debug Setup Dialog Box 11-28
11.27 Utilities Menu 11-29
11.28 Object File Utility Dialog Box 11-29
11.29 Utility Output Window Showing Disassembled Code 11-30
11.30 Run User Command Dialog Box 11-30

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xx
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.31 Make Utility 11-31
11.32 Makefile Variable Popup Menu 11-32
11.33 Add Variable to Dialog Box 11-32
11.34 ZSP IDE Toolbar 11-33
11.35 Debug Manager Dialog Box 11-36
11.36 Debug Manager Control Window 11-37
11.37 Help Menu 11-37
12.1 Menu Checkmarks For Debugging Windows 12-4
12.2 Tools Menu - Invoke Toolbars 12-5
12.3 Preferences - Use Images For Toolbar Buttons 12-5
12.4 Toolbar Buttons with Text Annotation 12-6
12.5 Toolbar Buttons with Image Annotation 12-6
12.6 Debugger Paned Window 12-7
12.7 Paned Window Handles 12-8
12.8 Preferences - Set Main Window Columns 12-8
12.9 Top Level Debugging Window 12-9
12.10 Top Level Window Focus Control 12-9
12.11 Preferences - Separate New Window 12-9
12.12 Display Controls for Paned Window 12-10
12.13 Display Controls for Top Level Window 12-10
12.14 Preferences - Autoload Windows 12-11
12.15 Breakpoint Menu 12-13
12.16 Source Code Window Current Selection Line 12-13
12.17 Source Code Window Breakpoints 12-14
12.18 ZSP400 Hardware Breakpoints Window 12-16
12.19 ZSP G2 Hardware Breakpoint Window 12-17
12.20 Execute Menu 12-20
12.21 Toolbar Submenu 12-20
12.22 Program View Menu 12-23
12.23 Target View Menu 12-23
12.24 Tools Menu 12-24
12.25 Source Code Window 12-25
12.26 Progress Bar Window 12-26
12.27 Source Code Window (Shown with Disassembly Window) 12-26
12.28 Source Code Window Popup Menu 12-27
12.29 Example Source Code Popup Query Result 12-27
12.30 Breakpoint List Window 12-28
12.31 Debugging Symbols Window 12-29

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xxi
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

12.32 Call Stack Window 12-29
12.33 Local Variables Window 12-30
12.34 Global Variables Window 12-31
12.35 Expression Window 12-31
12.36 Watch Expressions Window 12-32
12.37 ZSIM Profile Window 12-32
12.38 ZSIM Statistics Window 12-33
12.39 Disassembly Window 12-34
12.40 Register Element Popup Format Menu 12-35
12.41 Register Window Format Menu 12-35
12.42 Register Window Columns Menu 12-35
12.43 Register Window Configure Menu 12-36
12.44 Control Register Window - Standard Mode 12-36
12.45 Control Register Bitfield Entry Annotation 12-37
12.46 Control Register Window - Bitfield Mode 12-37
12.47 Operand Register Window 12-37
12.48 Address Registers Window 12-38
12.49 Memory Window 12-38
12.50 Graph Display of Memory 12-39
12.51 ZSIM Grouping Rule Window 12-39
12.52 ZSIM Pipeline Window 12-40
12.53 Command Line Window 12-40
12.54 2D Boundary Setting Dialog Box 12-41
12.55 3D Boundary Setting Dialog Box 12-42
12.56 Plot Type Dialog Box 12-43
12.57 Plot Type Dialog Box - Variable Option 12-43
12.58 Plot Type Dialog Box - Memory Range Option 12-44
12.59 Appearance... Dialog Box 12-48
12.60 Remove Plot Dialog Box 12-48
12.61 Preferences Window - Logging 12-49
12.62 Tools Menu - Session Log File 12-50
12.63 Session Log Window 12-50

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xxii
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xxiii
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Tables
1.1 SDK Tools and GNU Counterparts 1-3
1.2 SDK Utilities and GNU Counterparts 1-4
2.1 SDK CD-ROM High-Level Directories 2-1
2.2 Files Installed in C:\Installation_Directory\doc 2-3

2.3 File Installed in C:\Installation_Directory\ doc\Arch 2-3

2.4 Files Installed in C:\Installation_Directory\ mdi\GNU 2-4

2.5 Files Installed in C:\Installation_Directory\mdi 2-4

2.6 Files Installed in C:\Installation_Directory\ mdi\Devices 2-4

2.7 Files Installed in C:\Installation_Directory\ license 2-5

2.8 Files Installed in C:\Installation_Directory\ mdi\Drivers 2-5

2.9 Files Installed in C:\Installation_Directory\ sdspI\bin 2-6

2.10 Files Installed in C:Installation_Directory\ sdspI\lib 2-7

2.11 Files Installed in C:\Installation_Directory\ sdspI\include 2-7

2.12 Files Installed in C:\Installation_Directory\ zspg2\bin 2-8

2.13 Libraries Installed in C:Installation_Directory\ zspg2\lib 2-10

2.14 Libraries Installed in C:Installation_Directory\
zspg2\liibg1g2 2-10

2.15 Header Files Installed in C:\Installation_Directory\zspg2\in-
clude 2-10

2.16 Files Installed in C:Installation_Directory\ ide\bin 2-11

2.17 Command-Line Tools Installed in $SDSP_HOME/ sdspI/bin 2-15

2.18 Libraries Installed in $SDSP_HOME/sdspI/lib 2-16

2.19 Header Files Installed in $SDSP_HOME/
sdspI/include 2-16

2.20 Command-Line Tools Installed in $SDSP_HOME/ zspg2/bin 2-17

2.21 Libraries Installed in $SDSP_HOME/zspg2/lib 2-18

2.22 Libraries Installed in $SDSP_HOME/zspg2/libg1g2 2-19

2.23 Header Files Installed in $SDSP_HOME/
zspg2/include 2-19

2.24 Files Installed in $SDSP_HOME/ide/bin/ 2-20

3.1 Compiler Options 3-2
3.2 Output Options 3-4
3.3 Optimization Options 3-4
3.4 Compiler’s Representation of C Data Types 3-5
3.5 Effect of Mode Bits on Compiler-Generated Code 3-8
3.6 Stack Frame Layout 3-11

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xxiv
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.7 Stack Frame Example 3-12
3.8 Run-time Library Location 3-17
3.9 N-Intrinsic Functions 3-20
3.10 Vector N-Intrinsics 3-21
3.11 ETSI to N-Intrinsic Mapping 3-22
3.12 Parameter Output Syntax 3-27
3.13 Argument Constraints 3-28
6.1 SDK Utilities and GNU Counterparts 6-2
6.2 sdar p Keyletter Options 6-3
6.3 sdar p Keyletter Modifiers 6-4
6.4 sdstrip Options 6-5
6.5 sdnm Options 6-7
6.6 sdsize Options 6-8
6.7 sdstrings Options 6-9
6.8 sdobjdump Options 6-11
6.9 sdobjcopy Options 6-13
6.10 elfread Options 6-14
7.1 Functional-Accurate Simulators 7-1
7.2 ZISIM Command-Line Options 7-3
7.3 ZISIM Command Summary 7-4
7.5 ZISIMG2 Specific Commands 7-7
7.4 ZISIM400 Specific Commands 7-7
7.6 Configurable ZISIM Attributes 7-17
7.7 Default Arguments for show dmem 7-21
7.8 Default Arguments for show imem 7-21
7.9 I/O Device Memory Map and Associated Files 7-25
8.1 Cycle-Accurate Simulators 8-2
8.2 ZSIM Command-Line Options 8-4
8.3 Command-Line Options Specific to zsim400 8-5
8.4 Command-Line Options Specific to zsimg2 8-5
8.5 ZSIM Command Summary 8-6
8.6 PFU State Machine 8-17
8.7 LSU Output Description 8-19
8.8 Configurable ZSIM Attributes 8-27
8.9 Default Arguments for show dmem 8-32

8.10 Default Arguments for show imem 8-33

8.11 Pipe Stall Description 8-35
8.12 I/O Device Memory Map and Associated Files 8-40

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xxv
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

9.1 Debugger Names 9-2
9.2 Special Options 9-2
9.3 ZISIM Simulator Target Commands 9-4
9.4 ZSIM Target Commands 9-5
9.5 UART Target Commands 9-8
9.6 JTAG Target Commands 9-9
9.7 Hardware-Assisted Debugging Commands for G1 9-11
9.8 Hardware-Assisted Debugging Commands for G2 9-11
9.9 Target Configuration Files 9-18
10.1 Field Listing -- Device Information Section 10-4
10.2 Field Listing -- Device Libs Section 10-4
10.3 Field Listing -- ZSP400 ZSIM General Settings 10-5
10.4 Field Listing -- ZSP400 ZISIM Memory Settings 10-6
10.5 Field Listing -- ZSP400 General Settings 10-6
10.6 Field Listing -- ZSP400 ZSIM Memory Settings 10-7
10.7 Field Listing -- ZSP400 JTAG General Settings 10-8
10.8 Field Listing -- ZSP400 JTAG Memory Settings 10-8
10.9 Field Listing -- ZSP500/ZSP600 ZISIM General Settings 10-9
10.10 Field Listing -- ZSP500/ZSP600 ZISIM Memory Settings 10-9
10.11 Field Listings -- ZSP500/ZSP600 ZSIM General Settings 10-10
10.12 Field Listings -- ZSP500/ZSP600 ZSIM Memory Settings 10-11
10.13 Field Listing -- ZSP500/ZSP600 JTAG General Settings 10-11
10.14 Field Listing -- ZSP500/ZSP600 JTAG Memory Settings 10-12
11.1 ZSP IDE Filename Extension Assignments 11-5
11.2 Compiler/Assembler Settings 11-12
11.3 Linker Options 11-15
12.1 Command Line Debugger Executables 12-2
12.2 Debugger Targets 12-2
12.3 Keyboard Shortcuts 12-21
12.4 DG Window - File Menu 12-46
12.5 DG Window - Orient Menu 12-47
12.6 DG Window - Zoom Menu 12-47
12.7 DG Window - Options Menu 12-47
B.1 ZSP400 Control Registers B-1
C.1 G2 Control Registers C-1
D.1 Long Intrinsic Functions D-1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

xxvi
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 1-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 1
Introduction

The ZSP Software Development Kit (SDK) from LSI Logic supports all
aspects of software development for systems incorporating devices
based on the ZSP400 and ZSPG2 architectures. The ZSP SDK includes
an optimizing C cross compiler, assembler, and linker, both a functional-
accurate simulator and a cycle-accurate simulator, and a source- and
assembly-level debugger.

The ZSP SDK is available for Windows 98, Windows NT, Windows 2000,
Windows XP, and Solaris 2.x platforms. The software development tools
can be used in the context of the SDK Integrated Development
Environment (IDE), which includes a project manager and a GUI
debugger. The GUI debugger provides a graphical environment for
developing and debugging your code, with interactive viewing and control
of project source files and run-time data.

The major sections in this chapter are:

• Section 1.1, “Overview of the SDK Tools”

• Section 1.2, “Overview of Software Development Using the SDK
Tools”

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

1-2 Introduction
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

1.1 Overview of the SDK Tools

The ZSP SDK tools are all placed under one directory, which is referred
to with the environment variable SDSP_HOME. The sdspI subdirectory
contains all tools related to the ZSP400 architecture. The zspg2
subdirectory contains all tools related to the ZSPG2 architecture. There
are no dependencies between the two directories. Users who only need
tools for the ZSP400 can delete the zspg2 subdirectory. Likewise, users
who only need tools for the ZSPG2 can delete the sdspI subdirectory.

The two subdirectories closely mirror one another. Both have the
following subdirectories: bin, lib, include, misc, tmp.

• The bin directories contain the command-line tools.

• The lib directories contain the C libraries.

• The include directories contain the C header files.

• The misc directories contain auxiliary files.

• The tmp directories are used by the tools for temporary space.

The GNU based tools for the ZSP400 all have an “sd” prefix. The
analogous tools for ZSPG2 all have a “zd” prefix. In addition the
assembly optimizer, sdopt/zdopt, also follows this prefix convention. The
simulators do not follow this convention. The ZSP400 simulators are:
zsim400 and zisim400. The ZSPG2 simulators are: zsimg2 and
zisimg2.

The ZSP SDK also supports users who want to take assembly and C
code written for the ZSP400 architecture and run it without modification
on the ZSPG2 architecture. The compiler zdxcc compiles for a ZSPG2
target but uses the calling convention and pointer sizes designed for the
ZSP400. The zspg2 directory also contains a subdirectory, libg1g2,
which contains C libraries for zdxcc. There is also a debugger, zdxbug,
for debugging code developed with zdxcc.

The ZSP SDK tools are based on the GNU tools from the Free Software
Foundation, Inc. The GNU project has well-proven software development
tools that have been successfully ported to many different target
machines and platforms. Documentation for the GNU project tools can
be obtained from the web site www.gnu.org and the FTP site
prep.ai.mit.edu. To gain access to the FTP site, log in as ‘anonymous’

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Overview of the SDK Tools 1-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

and type your e-mail address as the password. The descriptions of the
tools in this document, for the most part, include only the differences
from their GNU counterparts (refer to Table 1.1).

The GNU tools have been enhanced to take advantage of the many
high-performance features of the ZSP LSI402ZX and LSI403Z devices
and ZSP400-based parts, such as single-cycle multiply-accumulate
instructions, fast context switching, circular buffer support, single-cycle
compare/select, and zero-overhead loops.

The SDK provides utilities for manipulating the files that are generated
by the tools during project creation. These SDK-specific utilities,
described in Table 1.2, replace their GNU counterparts.

Table 1.1 SDK Tools and GNU Counterparts

Tool
GNU
Equivalent Function

sdcc
zdcc
zdxcc

gcc Compiles

sdas
zdas

as Assembles

sdld
zdld

ld Links

sdbug400
zdbug
zdxbug

gdb Debugs

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

1-4 Introduction
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The SDK also includes the following non-GNU-based tools:

• The compiler’s optimizer, sdopt/zdopt/zdxopt, performs additional
optimizations to those performed by sdcc/zdcc/zdxcc.

• Both the functional-accurate and cycle-accurate simulators are
provided in a standalone form that supports a simple command-line
interface and that can be provided in a dynamic linkable format that
can be used in conjunction with the debugger.

• The GUI tools include an IDE and a GUI Debugger for both Windows
and Solaris platforms.

Table 1.2 SDK Utilities and GNU Counterparts

Utility
GNU
Equivalent Function

sdar
zdar

ar Creates, modifies, and extracts files from an archive.

sdnm
zdnm

nm Lists symbols from object files.

sdobjdump
zdobjdump

objdump Displays information from object files.

sdranlib
zdranlib

ranlib Generates an index for an archive.

sdstrings
zdstrings

strings Prints the printable characters in the files.

sdsize
zdsize

size Lists section sizes and total size of object file.

sdstrip
zdstrip

strip Discards symbols from object files.

sdobjcopy
zdobjcopy

objcopy Copies and translates object files.

readelf readelf Display the contents of ELF format files.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Overview of Software Development Using the SDK Tools 1-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

1.2 Overview of Software Development Using the SDK Tools

An overview of the software development process utilizing the SDK tools
is shown in Figure 1.1. As shown in the figure, the compiler accepts C
source files (.c) and produces a relocatable assembly language source
module (.s). The assembler translate the assembly source file into a
relocatable object file in the Executable and Linkable Format (ELF) file
format (.obj for Windows or .o for UNIX). ELF files are then linked with
other ELF files (for example, library files) to produce a single executable
ELF load file (a.out). The load file can be loaded into host memory for
symbolic simulation/debugging, or it can be downloaded to a ZSP
architecture-based target system for real-time debugging.

On Windows 98/NT/2000/XP and Solaris platforms, the tools can be
accessed using the standard GNU command-line interface, as described
in Chapter 3, "C Cross Compiler" through Chapter 9, “Debugger.” The
tools can also be accessed using the ZSP Integrated Development
Environment (ZSP IDE), (Chapter 11), and the ZSP IDE Debugger
(Chapter 12).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

1-6 Introduction
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 1.1 Overview of Software Development

C Source
Files

Assembler
Source Files

Listing
File

Assembler
Source Files

Libraries

ELF
Load File

ELF
Object File

Assembler

Linker

Macro-
preprocessor

C Compiler

Debugger Simulator

Optimizer

Archiver

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 2-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 2
Installation

The SDK is available for Windows 98, Windows NT, Windows 2000,
Windows XP, and Solaris 2.x. The media used to provide the tools is a
CD-ROM. This chapter describes how to install the ZSP Software
Development Kit. It contains the following major sections:

• Section 2.1, “Contents of the CD-ROM”

• Section 2.2, “Installation on Windows Systems”

• Section 2.3, “Uninstalling the SDK Tools on Windows Systems”

• Section 2.4, “Installation on Solaris Systems”

• Section 2.4, “Installation on Solaris Systems”

2.1 Contents of the CD-ROM

The CD-ROM has the following five top-level directories:

Table 2.1 SDK CD-ROM High-Level Directories

Directory Description

doc Contains the complete documentation for the SDK tools and the
GNU tools. Also includes documentation for the license manager
(FLEXlm) and the ZSP Development Kit.

docs Contains ZSP partners profile information.

bin Contains various executable files used during installation.

solaris Contains initialization code and tools for installing the SDK on the
Solaris platform.

windows Contains the initialization code and tools for installing the SDK on
Windows 98/NT/2000/XP platforms, and examples that can be
added to a ZSPIDE project.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-2 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

2.2 Installation on Windows Systems

The minimum system requirements for the SDK tools are:

• A Pentium Pro-based PC

• 64 Mbytes of RAM

• 84 Mbytes of disk space

On Windows NT/2000/XP systems, you need administrator privileges to
install the ZSP SDK Tools for more than one user account.

2.2.1 Installing SDK Tools

Important: Before you install the SDK tools, make sure you have
uninstalled any older version. Refer to Section 2.3, “Unin-
stalling the SDK Tools on Windows Systems.”

Step 1. Insert the CD-ROM in the CD drive.

The installation process should start automatically and the
Select Components dialog box should display, as shown in
Figure 2.1.

Figure 2.1 Select Components Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Installation on Windows Systems 2-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

If the dialog box does not appear, try running Launch.exe on
the CD-ROM. If the CD drive is D:, the program may be found
at D:\Launch.exe.

Step 2. Follow the Setup instructions.

The default directory is C:\LSI_Logic\SDK<Version Number>.
You can change the default directory, if necessary.

The setup program installs the SDK files in the selected directory. When
the setup is complete, a dialog box is displayed confirming successful
setup.

The files are installed in subdirectories under
C:\Installation_Directory, where Installation_Directory is the
directory specified in Step 2. The subdirectory organization and file
descriptions are given in Table 2.2 through Table 2.16.

Table 2.2 Files Installed in C:\Installation_Directory\doc

Filename Function

elfread.pdf Documentation on sdelfread and zdelfread

SDK_<vers>_errata.txt Errata for ZSP SDK version <vers>

SDK_<vers>_Readme.txt “Read Me First” file for SDK version <vers>

SDK_<vers>_ReleaseNotes.
txt

Release notes for SDK version <vers>

zspsdk_<vers>.pdf This User’s Guide

Table 2.3 File Installed in C:\Installation_Directory\
doc\Arch

Filename Function

peripherial_api.pdf ZSIM peripheral library API reference guide

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-4 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 2.4 Files Installed in C:\Installation_Directory\
mdi\GNU

Filename Function

as.pdf GNU assembler

binutils.pdf GNU binutils

gcc GNU Compiler Collection, version 2.95

gcc-3.0 GNU Compiler Collection, version 3.0

gdb GNU debugger

ld GNU linker

Table 2.5 Files Installed in C:\Installation_Directory\mdi

Filename Function

mdi.dll Microprocessor Device Interface library for ZSP

CorelisPCI.dll Probe Support library for Corelis PCI Boundary
Scan interface

CorelisPCMCIA.dll Probe Support library for Corelis PCMCIA
Boundary Scan interface

Table 2.6 Files Installed in C:\Installation_Directory\
mdi\Devices

Filename Function

jtag400.cfg JTAG configuration file for the ZSP40X family

jtag500.cfg JTAG configuration file for the ZSP500

zisim400.cfg ZISIM configuration file for the ZSP40X family

zisim500.cfg ZISIM configuration file for the ZSP500

zsim400.cfg ZSIM configuration file for the ZSP40X family

zsim500.cfg ZSIM configuration file for the ZSP500

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Installation on Windows Systems 2-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 2.7 Files Installed in C:\Installation_Directory\
license

Filename Function

Flexlm_Enduser.pdf FlexLM User’s Guide for Endusers

lmborrow.exe FlexLM utility. See the FlexLM User’s Guide for
details.

lmdiag.exe

lmdown.exe

lmgrd.exe

lmhostid.exe

lminstall.exe

lmpath.exe

lmremove.exe

lmreread.exe

lmstat.exe

lmswitchr.exe

lmswitchr.exe

lmtools.exe

lmutil.exe

lmver.exe

zspld.exe FlexLM vendor daemon for ZSP SDK tools

Table 2.8 Files Installed in C:\Installation_Directory\
mdi\Drivers

Filename Function

jtagdrv.dll JTAG driver file for the ZSP40X family

jtagdrvG2.dll JTAG driver file for the ZSP500

libdrvzisim400.dll ZISIM driver file for the ZSP40X family

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-6 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

.

libdrvzisim500.dll ZISIM driver file for the ZSP500

libdrvzsim400.dll ZSIM driver file for the ZSP40X family

libdrvzsim500.dll ZSIM driver file for the ZSP500

Table 2.9 Files Installed in C:\Installation_Directory\
sdspI\bin

Filename Function

readelf.exe GNU utility for examining an object file

sdelfread.exe Produces a simple dump of entire contents of an object
file

libzisim400.dll Dynamic link libraries used in sdbug400 for target zisim

libzsim400.dll

libzperiph.dll

sdar.exe Archive utility

sdas.exe Assembler

sdbug400.exe Source-level debugger for ZSP400-based devices

sdcc.exe Driver

sdcc1.exe Compiler

sdcpp.exe Preprocessor

sdld.exe Linker

sdnm.exe Symbol listing utility

sdobjcopy.exe Object file copying utility

sdobjdump.exe Object dump utility

sdopt.exe Optimizer

sdranlib.exe Ranlib utility

Table 2.8 Files Installed in C:\Installation_Directory\
mdi\Drivers (Cont.)

Filename Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Installation on Windows Systems 2-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

sdsize.exe Size utility

sdstrings.exe String print utility

sdstrip.exe Symbol discarding utility

zisim400.exe Functional-accurate simulator for ZSP400-based
devices

zsim400.exe Cycle-accurate simulator for ZSP400-based devices

Table 2.10 Files Installed in C:Installation_Directory\
sdspI\lib

Filename Function

crt0.obj Startup file

libc.a C library

libg.a C library with debug information

liblongc.a C library with long calls

libm.a Math library

Table 2.11 Files Installed in C:\Installation_Directory\
sdspI\include

Filename Function

assert.h Standard header file

cbuf.h Circular buffer

creg.h Control registers

ctype.h Standard header file

dsp.h L-Intrinsics

float.h Floating point support

Table 2.9 Files Installed in C:\Installation_Directory\
sdspI\bin (Cont.)

Filename Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-8 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

.

libsdsp.h SDSP-specific printing

limits.h Standard header file

math.h Math library functions

N_Intrinsic.h N-Intrinsics

q15.h Support file (deprecated)

setjmp.h Standard header files

simios.h

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

timer_util.h Timer functions

Table 2.12 Files Installed in C:\Installation_Directory\
zspg2\bin

Filename Function

readelf.exe GNU utility for examining an object file.

zdelfread.exe Produces a simple dump of entire contents of an
object file

libcpig711.dll Dynamic link library used for g711 coprocessor
support. Used by zdbug, zdxbug for target zsim, or
zsimg2.

libzisimg2.dll Dynamic link library used in zdbug and zdxbug for
target sim or zisimg2

libzidlmssg2.dll Dynamic link library used in zdbug and zdxbug for
target sim or zisimg2

Table 2.11 Files Installed in C:\Installation_Directory\
sdspI\include (Cont.)

Filename Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Installation on Windows Systems 2-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

zdar.exe Archive utility

zdas.exe Assembler

zdbug.exe Source-level debugger for ZSP500-based Devices

zdxbug.exe Source-level debugger for ZSP500-based devices
running code designed for ZSP400

zdcc.exe Compiler

zdxcc.exe Cross (“X”) compiler for ZSP400 to ZSP500

zdcc1.exe Compiler driver for zdcc

zdxcc1.exe Compiler driver for zdxcc

zdcpp.exe Preprocessor

zdxcpp.exe Preprocessor for zdxcc

zdld.exe Linker

zdnm.exe Symbol listing utility

zdobjcopy.exe Object file copying utility

zdobjdump.exe Object dump utility

zdopt.exe Optimizer

zdxopt.exe Optimizer for ZSP400 to ZSP500 code

zdranlib.exe Ranlib utility

zdsize.exe Size utility

zdstrings.exe String print utility

zdstrip.exe Symbol discarding utility

zisimg2.exe Functional-accurate simulator for ZSP400-based
devices

Table 2.12 Files Installed in C:\Installation_Directory\
zspg2\bin (Cont.)

Filename Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-10 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 2.13 Libraries Installed in C:Installation_Directory\
zspg2\lib

Filename Function

crt0.obj Startup file

libc.a C library

libg.a C library with debug information

libm.a Math function library

libalg_zsp500.a Basic signal processing functionality -- optimized
for ZSP500 core.

libalg_zsp600.a Basic signal processing functionality -- optimized
for ZSP600 core.

Table 2.14 Libraries Installed in C:Installation_Directory\
zspg2\liibg1g2

Filename Function

crt0.obj Startup file

libc.a C library

libg.a C library with debug information

libm.a Math function library

Table 2.15 Header Files Installed in
C:\Installation_Directory\zspg2\include

Filename Function

cbuf.h Circular buffer

ctype.h Standard header file

creg.h Control registers

dsp.h L-Intrinsics

float.h Floating point

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Installation on Windows Systems 2-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

libsdsp.h SDSP-specific printing

limits.h Standard header file

math.h Math functions

N_Intrinsic.h N-Intrinsics

q15.h Support file

setjmp.h Standard header files

simios.h

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

Table 2.16 Files Installed in C:Installation_Directory\
ide\bin

Filename Function

zspcat.exe Used by zspide

djpeg.exe Used by data graph utility

float.exe Used by GUI Debugger for floating point data
conversion

guidebug_help.exe Help file for the GUI Debugger.

KILL.EXE Use by GUI Debugger to kill command line
debugger process

plplot510.dll Used by data graph utility

rls_semaphore.exe Used by GUI Debugger

tktable.dll Used by GUI Debugger

Table 2.15 Header Files Installed in
C:\Installation_Directory\zspg2\include (Cont.)

Filename Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-12 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

2.2.2 Restarting Windows

The Setup program installs system files and updates some shared files
that are required for running the SDK tools. The system prompts you to
reboot after you have installed the SDK tools, as shown in Figure 2.2.

Figure 2.2 System Reboot Prompt

Click Finish to exit from the Setup program.The system is restarted
according to the option selected in the preceding Tools Setup dialog box.

TLIST.EXE Used by GUI Debugger to identify command-line
debugger process

zdmake.exe Make utility

zspide.exe IDE for the ZSP family of processors

zspide_help.exe Help file for the IDE

zsplic.exe Licence manager utility

Table 2.16 Files Installed in C:Installation_Directory\
ide\bin (Cont.)

Filename Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Uninstalling the SDK Tools on Windows Systems 2-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

2.3 Uninstalling the SDK Tools on Windows Systems

Perform the following steps to uninstall the SDK tools:

Step 1. Open the Control Panel window.

The Control Panel is accessed by clicking on the Start menu,
then selecting Settings, then selecting Control Panel.

Step 2. In the Control Panel window, double-click on Add/Remove
Programs.

Step 3. Then select the LSI LOGIC SDK tools and click on
Add/Remove.

This causes the dialog box shown in Figure 2.3 to appear.

Figure 2.3 Uninstalling the SDK Tools

Step 4. Click on Remove and continue with Next to uninstall the tools.

2.4 Installation on Solaris Systems

The ZSP SDK may be hosted on the Solaris 2.6 operating system and
later versions.

Step 1. Insert the CD-ROM.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-14 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

If your Solaris system has vold, it automatically mounts the
CD-ROM after it has been inserted. To access the CD-ROM,
change the directory to /cdrom.

Step 2. If vold is not running, insert the CD-ROM and enter the
following command:

mount /dev/sr0 /mnt/cdrom

Step 3. Use one of the following commands to invoke the installation
script under /cdrom/solaris or /mnt/cdrom/solaris:

/cdrom/solaris/setup

or

/mnt/cdrom/solaris/setup

Step 4. Follow the directions given in the script.

Step 5. Specify an installation directory for the SDK tools. Assign the
installation path to the SDSP_HOME environment variable,
followed by a forward slash (/).

For example, if you install the tools in MyInstallDirectory,
assign the directory to the SDSP_HOME variable:

SDSP_HOME = MyInstallDirectory/

Two scripts are provided by the setup routine, sdk.csh and
sdk.sh, that set up the environment for you. From csh, type
“source sdk.csh” to update your environment variables. Type
“sdk.sh” from the Bourne shell.

Step 6. Export the SDSP_HOME variable.

Step 7. If you want to be able to invoke the SDK tools from any
directory, add the installation directory to the path.

Step 8. To use the simulator or debugger, you must include the
environment variable LD_LIBRARY_PATH in the installation path.
Use the following one-line command:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:

$SDSP_HOME/sdspI/bin:$SDSP_HOME/zspg2/bin

:$SDSP_HOME/MDI:$SDSP_HOME/ide/bin

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Installation on Solaris Systems 2-15
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The Setup program installs the SDK files. Table 2.17 through
Table 2.24 list these files and the directories to which they are
installed.

Table 2.17 Command-Line Tools Installed in $SDSP_HOME/
sdspI/bin

Filename Function

readelf GNU utility for examining an object file

sdelfread Produces a simple dump of entire contents of an object file

sdar Archive utility

sdas Assembler

sdbug400 Source-level debugger for ZSP400

sdcc Driver

sdcc1 Compiler

sdcpp Preprocessor

sdld Linker

sdnm Symbol listing utility

sdobjcopy Object file copying utility

sdobjdump Object dump utility

sdopt Optimizer

sdranlib Random library (ranlib) utility

sdsize Size utility

sdstrings String print utility

sdstrip Symbol discarding utility

zisim400 Functional-accurate simulator for ZSP400-based devices

zsim400 Cycle-accurate simulator for ZSP400-based devices

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-16 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The header files listed below are installed in the directory
$SDSP_HOME/sdspI/include.

Table 2.18 Libraries Installed in $SDSP_HOME/sdspI/lib

Filename Function

crt0.o Startup file

libc.a C library

libg.a C library with debug information

liblongc.a C library with long calls

libm.a Math functions

Table 2.19 Header Files Installed in $SDSP_HOME/
sdspI/include

Filename Function

assert.h Standard header file

cbuf.h Circular buffer

creg.h Control registers

ctype.h Standard header file

dsp.h L-Intrinsics

float.h Floating point support

libsdsp.h SDSP-specific printing

limits.h Standard header file

N_Intrinsic.h N-Intrinsics

math.h Math functions

q15.h Support file

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Installation on Solaris Systems 2-17
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

setjmp.h Standard header file

simios.h

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

timer_util.h Timer functions

Table 2.20 Command-Line Tools Installed in $SDSP_HOME/
zspg2/bin

Filename Function

readelf GNU utility for examining an object file

zdelfread Produces a simple dump of entire contents of an object file

zdar Archive utility

zdas Assembler

zdbug Source-level Debugger for the G2 architecture

zdcc Compiler

zdcc1 Compiler

zdcpp Preprocessor

zdld Linker

zdnm Symbol listing utility

zdobjcopy Object file copying utility

zdobjdump Object dump utility

zdopt Optimizer

Table 2.19 Header Files Installed in $SDSP_HOME/
sdspI/include (Cont.)

Filename Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-18 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

zdxbug G1-G2 Cross Debugger

zdxcc G1-G2 Cross Compiler

zdxcpp G1-G2 Cross Preprocessor

zdxopt G1-G2 Cross Optimizer

zdranlib Random library (ranlib) utility

zdsize Size utility

zdstrings String print utility

zdstrip Symbol discarding utility

zisimg2 Functional-accurate simulator for G2-based devices

zsimg2 Cycle-accurate simulator for G2-based devices

Table 2.21 Libraries Installed in $SDSP_HOME/zspg2/lib

Filename Function

crt0.o Startup file

libalg_zsp500.a Basic signal processing functionality -- optimized
for ZSP500 core.

libalg_zsp600.a Basic signal processing functionality -- optimized
for ZSP600 core.

libc.a C library

libg.a C library with debug information

libm.a C library with long calls

Table 2.20 Command-Line Tools Installed in $SDSP_HOME/
zspg2/bin (Cont.)

Filename Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Installation on Solaris Systems 2-19
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 2.22 Libraries Installed in $SDSP_HOME/zspg2/libg1g2

Filename1

1. These files are referenced when the zdx* cross compilers are invoked.

Function

crt0.o Startup file

libc.a C library

libg.a C library with debug information

libm.a C library with long calls

Table 2.23 Header Files Installed in $SDSP_HOME/
zspg2/include

Filename Function

alg.h Signal processing

assert.h Standard header file

cbuf.h Circular buffer

creg.h Control registers

ctype.h Standard header file

dsp.h L-Intrinsics

float.h Floating point support

libsdsp.h SDSP-specific printing

limits.h Standard header file

N_Intrinsic.h N-Intrinsics

math.h Math functions

q15.h Support file

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-20 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

For both the Windows and Solaris setups, additional files and directories
are installed by the Setup program that are required for running the tools.
For this reason, do not delete or modify any of the files or directories in
the installation directory.

The ZSP SDK tools use the tmp directory, which is created during setup,
to store temporary files.

The misc directory contains a file called mapfile. This file contains
information about the scan chain of the target processor that is used for
hardware-assisted debug with the JTAG port (on Windows platforms
only). The correct map file is required for hardware-assisted debugging.
The map file supplied with the ZSP SDK tools corresponds to the
LSI402ZX rev2. If you are using a different ZSP400-based part, you must

setjmp.h Standard header files

simios.h

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

timer_util.h Timer functions

Table 2.24 Files Installed in $SDSP_HOME/ide/bin/

Filename Function

zspide IDE for the ZSP family of processors

zspide_help Help file for the IDE

guidebug_help Help file for the GUI debugger

Table 2.23 Header Files Installed in $SDSP_HOME/
zspg2/include (Cont.)

Filename Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

License Management 2-21
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

replace the map file installed during setup with the proper map file for
your device.

2.5 License Management

This section describes how to set up licensing for the SDK tools. As of
Release 4.3, the SDK toolset is distributed under a license agreement.
Licenses must be obtained from LSI before the SDK will function.

For license administration, please also refer to the FLEXlm End User’s
Guide, located on the distribution CD at /doc/Flexlm_Enduser.pdf.

2.5.1 Obtaining a License File

For SDK Tools to run, you must now obtain and install a license file.

Permanent license files are obtained directly by either FAX or email to
dsp-license@lsil.com. To get the license, you must provide the
identification for the machine that will be hosting the license manager
(zspld). By default, the license manger daemon zspld and FLEXlm
utilities program are installed in
C:\Installation_Directory\license.

To obtain this identification string, log onto the machine that will be
hosting the license manager and enter the following command:

lmutil lmhostid

Email the entire output along with the additional required information on
the license request form to dsp-license@lsil.com. Alternatively, the
information can be FAXed to the number on the form.

2.5.2 Starting the License Manager

The ZSP Tools license manager (zspld) is designed to run as a
background task on one machine in your network as specified in your
license file. Once invoked, it runs silently, monitoring and controlling the
number of users on your network.

To start the license daemon, type:

lmgrd -c <License File> -l zsplic.log

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

2-22 Installation
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

where <License File> is the filename of the license file received from
LSI.

To shut down the license manager, type:

lmdown -c <License File>

2.5.3 Setting Environment Variables

After starting the license server, set or append the hostname to the
environment variable LM_LICENSE_FILE. This can be a license file name
or port@host. For example, if the license manager “zspld” is run on a
machine named “somemachine”, set LM_LICENSE_FILE to
“@somemachine”.

License environment variables are set in two different ways:

1. The normal set or setenv commands (or the System Control Panel
on Windows NT/2000/XP)

2. The registry ZSPLD_LICENSE_FILE (Windows v6.0+) or in
$HOME/.flexlmrc (UNIX v7.0+), which functions like the registry for
FLEXlm on UNIX.

On Windows, the FLEXlm registry location is:

HKEY_LOCAL_MACHINE\Software\FLEXlm License Manager

On UNIX, the equivalent information is stored in $HOME/.flexlmrc.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 3-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 3
C Cross Compiler

This chapter describes the SDK C Cross Compiler and the compilation
process.

The SDK C Cross Compilers—sdcc, zdcc, and zdxcc—are based on the
GNU C compiler (gcc) from the Free Software Foundation. sdcc is the
compiler for the ZSP400 architecture. zdcc is the compiler for the ZSPG2
architecture. zdxcc is targeted for the ZSPG2 architecture, but it uses the
same calling convention and pointer size as sdcc. This allows
C/assembly programs written for the ZSP400 architecture to be easily
ported to the ZSPG2 architecture. CC is used to refer to all three
compilers. gcc is described in Using and Porting GNU CC, by Richard
M. Stallman, Free Software Foundation, June 1996. The description of
CC in this chapter, for the most part, includes only the differences from
gcc.

The compiler is invoked from the shell using the following command:

cc [options] sourcefile

The command-line options and source file name extension determine the
type of compilation. In the simplest case, with no options and a .c source
file, the compiler produces an executable, a.out.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-2 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.1 Compiler Options

The CC compiler supports all gcc compiler options, in addition to the
SDK-specific options described in Table 3.1.

The -mlong_call option is frequently necessary with sdcc because
call-immediates on the ZSP400 architecture have a 13-bit range, and its
use is therefore recommended for applications that are larger than the
range of a call-immediate. The ZSPG2 architecture has a larger call
immediate range (16-bits), so this option is not as critical for it. Better

Table 3.1 Compiler Options

Option Description Availability

-mlong_call The compiler generates code for a call instruction using
a register operand. Use this option to resolve the
limitation of the call immediate range.

sdcc
zdcc
zdxcc1

-mno_sdopt The compiler disables the assembly optimizer,
sdopt/zdopt/zdxopt. By default, the optimizer is
automatically invoked at optimization levels -O2 and -O3.

sdcc
zdcc
zdxcc

-mlong_cond_branch No effect. Retained for backward compatibility. sdcc
zdxcc

-mlong_uncond_branch No effect. Retained for backward compatibility. sdcc
zdxcc

-minfer_mac Enable the compiler to generate mac and macn
instructions without using intrinsics. Use this option only
if the code generated will be run with the sat, q15, sre
and mre bits of %fmode turned off.

sdcc
zdxcc

-msmall_data Assume data and bss are placed in first 64K words.
(default)

zdcc

-mlarge_data Make no assumptions about data and bss. zdcc

-mcheck_stack Check if stack grows into heap space. If this occurs,
print an error message and halt.

sdcc
zdcc
zdxcc

-m500 Generate code optimized for the ZSP500 core. (default) zdcc

-m600 Generate code optimized for the ZSP600 core. zdcc

1. Since the range of a call immediate on ZSPG2 is 16-bits versus 13-bits on ZSP400, the -mlong_call
option is less frequently needed for zdxcc and zdcc.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Compiler Options 3-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

performance and code size can be obtained by selectively using the
-mlong_call option, but this may require repetitive trial and error to
determine which files can safely be converted to use call-immediates.
One important exception is a file which does not call a function external
to the file; in this case, the necessity of -mlong_call does not depend
on other files or on the link order—this kind of file either always requires
-mlong_call or never requires it. Note that with sdcc, the use of -
mlong_call does not guarantee that all calls will be long calls; that is,
the assembly optimizer, sdopt, converts long calls to call immediates if
it can determine that such a conversion is safe. The assembly optimizer
can be disabled by specifying the -mno_sdopt option; otherwise, it is
automatically invoked when optimization levels greater than -O1 are
selected. Note that for debugging optimized code, the -mno_sdopt
option should be used, because the assembly optimizers perform
optimizations that make debugging extremely difficult.

sdopt takes in assembly generated by the compiler proper and optimizes
it to produce improved assembly. The optimizations that sdopt performs
include simplification of constant generation, conversion of loops to use
loop registers, dead code elimination, loop invariant code motion,
conversion of long calls to call-immediate, instruction scheduling, and
improved register utilization.

zdopt takes in assembly generated by zdcc and optimizes it to produce
improved assembly. The optimizations that zdopt performs include dead
code elimination, loop invariant code motion, instruction scheduling, and
improved register utilization.

zdcc supports two models of memory. The default small memory model
requires that data and bss sections be placed in the first 64K words of
data memory. The large data model has no requirements on the size or
placement of the data and bss sections. The large data model is selected
with the “-mlarge_data” option. For both models, the pointer size is
32 bits. Both models allow stack and heap space to use all addressable
memory. Code generated with the small data model is more compact and
has better performance than code generated with the large data model.
The small data model allows a shorter instruction sequence to be used
to access memory in the data or bss sections.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-4 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Some of the key options that control the compiler’s output are shown in
Table 3.2.

The optimization levels supported by gcc are described in Table 3.3.

3.2 Compiler Conventions

This section describes the software conventions defined by the SDK
assembler and compiler.

Table 3.2 Output Options

Option Description

-c Compile or assemble source files but do not link. Output file is named by
replacing the suffix of the source file with ‘.o’.

-o file Place output in file. This option is applicable whether the output is preprocessed
C, assembly, an object file, or an executable.

-E Stop after preprocessing. Output is sent to standard output.

-S Stop after compilation. Do not assemble. Output file is named by replacing the
‘.c’ suffix with ‘.s’.

-save-temps Store the intermediate preprocessed C, assembly, and object files permanently.
The names used for these intermediate files are based on the name of the input
file: compiling foo.c with -save-temps produces foo.i, foo.s, and foo.o.

-g Generate debugging information for use by the debugger.

Table 3.3 Optimization Options

Option Description

-O0 No optimization is performed. All variables are placed on the stack.

-O1 Only those optimizations that allow the debugger to behave as expected are
performed.

-O2 Only those optimizations that do not greatly increase code size are performed.
These optimizations include dead-code elimination, constant propagation, common
subexpression elimination, and loop invariant code motion.

-O3 All optimizations performed at level -O2 are performed, as well as function inlining
and loop unrolling.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Compiler Conventions 3-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.2.1 Preprocessing Conventions

The preprocessing symbol __ZSP__ is defined by sdcc, zdxcc and zdcc.
The preprocessing symbol __ZSP_G2__ is also defined by zdcc.

3.2.2 Data Type Conventions

The compiler’s representation of C data types is summarized in Table
3.4. The q15 data type can be printed by the fprintf and printf
functions. The %q format specifier prints a 16-bit value in fixed-point
notation. For example, the call:

printf("%q\n",0x6000);

prints:

0.75000

Table 3.4 Compiler’s Representation of C Data Types

C Data Type Representation

char 16 bits

unsigned char 16 bits

int 16 bits

short int 16 bits

unsigned short int 16 bits

q15 16 bits

enum 16 bits

pointer 16 bits with sdcc/zdxcc
32 bits with zdcc

long 32 bits

unsigned long 32 bits

accum_a 32 bits

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-6 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Use the accum_a and accum_b data types to select a specific register for
variable storage: variables declared as type accum_a or accum_b are
placed in registers r1r0 and r3r2 respectively with sdcc/zdxcc. They are
placed in r13r12 and r15r14 respectively with zdcc. This change was
necessary with zdcc because registers r0-r3 are clobbered by the
ZSPG2 calling convention. The accum_a and accum_b data types can be
used to declare local variables; global accumulators are not supported.
From the compiler’s point of view, accum_a and accum_b are 32-bit
variables that must be stored in a specified register. On the ZSP400, the
accum_a and accum_b data types are placed in r1r0 and r3r2,
respectively, to allow the use of accumulator-specific operations.
Although the compiler treats accum_a and accum_b as 32-bit variables,
the accumulator instructions (for example, mac.a, mac2.a, macn.a ...)
operate on a 40-bit accumulator. The high-order 8 bits for each
accumulator are in the %guard register. If 40-bit accumulators are
needed, the high-order bits can be accessed through inline assembly
instructions that read or modify the %guard register. In ZSPG2, since
every GPR pair supports accumulator operations, other accumulators
can be used by declaring them with:

register long acc_c asm(“rX”);

In fact, accum_a and accum_b declarations are equivalent to:

register long x asm (“rX”);

where “X” is the appropriate register.

It should be remembered that only accumulators r12-r15 have their guard
bits preserved across calls.

accum_b 32 bits

float 32 bits

double 32 bits

Table 3.4 Compiler’s Representation of C Data Types (Cont.)

C Data Type Representation

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Compiler Conventions 3-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.2.3 Register Usage

3.2.3.1 sdcc/zdxcc Register Usage

Register usage sdcc/zdxcc is summarized below. Registers r0 through
r15 are general-purpose registers, and registers beginning with ‘%’ are
control registers.

• Registers used by the compiler: r0–r15, %fmode, %smode,
%amode, %hwflag, %loop0, %loop1, %loop2, %loop3, %rpc, %pc,
%cb0_beg, %cb0_end, %cb1_beg, %cb1_end, %guard.

• Stack pointer: r12

• Parameter registers: r4-r6

• Callee preserved registers: r0-r3, r7-r12, r14, r15, %guard

• Scratch registers: r13, %cb0_beg, %cb0_end, %cb1_beg,
%cb1_end, %loop0, %loop1, %loop2, %loop3

• Clobbered registers: %hwflag, %vitr

• There are no caller saved registers.

• Return registers: r4 for 16-bit return values, and r5r4 for 32-bit return
values.

The mode registers are never modified by sdcc/zdxcc except through
inline assembly. The circular buffer registers are never accessed or
modified except through predefined macros in the header file cbuf.h.
The file cbuf.h also has predefined macros to set and clear the cb0 and
cb1 bits in %smode.

3.2.3.2 zdcc Register Usage

Register usage by zdcc is summarized below. Registers r0-r15 are
general-purpose registers, a0-a7 are address registers, n0-n7 are index
registers, g0-g7 are guard registers and registers beginning with ‘%’ are
control registers.

• Registers used by the compiler: r0–r15, a0-a7, n0-n7, g0-g7,
%fmode, %smode, %amode, %hwflag, %shwflag, %loop0-%loop3,
%rpc, %pc, %cb0_beg-%cb3_beg, %cb0_end-%cb3_end.

• Stack pointer: a7

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-8 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• Parameter registers: r2-r7, a0, a1, a6

• Callee preserved registers: r8-r15, g6, g7, a2-a5, a7, n4-n7, %loop2,
%loop3

• Scratch registers: r0, r1, g0-g5, n0-n3, %loop0, %loop1, %cb0_beg-
%cb3_beg, %cb0_end-%cb3_end

• Clobbered registers: %hwflag, %shwflag, %vitr

• Return registers: a0 for pointer values, r4 for 16-bit return values,
and r5r4 for 32-bit non-pointer values.

Stack memory below the stack pointer, a7, may be used by interrupts.
This includes the memory location pointed to by the stack pointer. Thus,
the stack pointer must never point to memory that needs to be
preserved. The mode registers are never modified by zdcc except
through inline assembly. The circular buffer registers are never accessed
or modified except through predefined macros in the header file cbuf.h.
The file cbuf.h also has predefined macros to set and clear the cb0-
cb3 bits in %amode. Table 3.5 shows the mode bits that may affect the
behavior of compiler-generated code.

Table 3.5 Effect of Mode Bits on Compiler-Generated Code

Mode
Register

Mode
Register

Bit

Affects ANSI C
Code1

Required Entry
Value

Required Value
On Return From

Call2

May be Modified
Within Function

sdcc
zdxcc

zdcc sdcc
zdxcc

zdcc sdcc
zdxcc

zdcc sdcc
zdxcc

zdcc

%amode ld yes 0 0 no

st yes 0 0 no

cbX n/a yes n/a 0 n/a 0 n/a yes

%fmode rez no x x yes

sat3 yes no 0 x x yes

q154 no x x yes

sre5 yes x x yes

mre6 no x x yes

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Compiler Conventions 3-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

%smode shd7 yes n/a x n/a pre-
serve

n/a no n/a

lis yes 0 x 0 pre-
serve

no

sis yes 0 x 0 pre-
serve

no

cbX8 yes 0 0 yes no

dir9 yes x preserve no

ddr10 yes x preserve no

1. ANSI C code does not use intrinsics, circular buffers, or the q15 data type.
2. This column describes the requirements on an assembly function called from C code.
3. With sdcc/zdxcc, the sat bit of %fmode can affect ANSI C code because of the add and subtract

instructions. ANSI C code expects unsaturated arithmetic. If saturated arithmetic is required for some
intrinsics, it is safest to enable saturation over as small a region of code as possible, because the
sat bit also affects adds and subtracts that must not be saturated (e.g. address arithmetic, stack
pointer manipulation, counters, etc.). If the -minfer_mac option is used, the compiler also generates
mac and macn instructions, which are also affected by the sat bit.

4. With sdcc/zdxcc, the q15 mode bit affects ANSI C code if the -minfer_mac option is used.
5. The sre bit of %fmode affects ANSI C code because of the shra and shra.e instructions. Only per-

form right shifts of signed variables when the sre bit is cleared.
6. With sdcc/zdxcc, the mre mode bit affects ANSI C code if the -minfer_mac option is used.
7. This bit is ZSP400 specific and selects/deselects the use of shadow registers. Compiled code oper-

ates correctly with either shadow registers or nonshadow registers.
8. For ZSPG2, these bits affect the behavior of r14 and r15. They exist for compatibility with ZSP400.

They should never be set in code compiled with zdcc. When using sdcc/zdxcc, to prevent these bits
from affecting ANSI C code, clear these bits when the portion of code requiring circular buffers is
exited.

9. This bit controls whether instructions are fetched from internal or external memory. Compiled code
operates correctly when it resides in internal or external memory, though normally it resides in inter-
nal memory.

10. This bit controls whether data is fetched from internal or external memory. Compiled code operates
correctly when data resides in internal or external memory, though normally data resides in internal
memory. Note that data includes the stack, and that compiled code does not operate correctly if glo-
bal data resides in one memory and the stack resides in another memory.

Table 3.5 Effect of Mode Bits on Compiler-Generated Code (Cont.)

Mode
Register

Mode
Register

Bit

Affects ANSI C
Code1

Required Entry
Value

Required Value
On Return From

Call2

May be Modified
Within Function

sdcc
zdxcc

zdcc sdcc
zdxcc

zdcc sdcc
zdxcc

zdcc sdcc
zdxcc

zdcc

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-10 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.2.4 Conventions Used for Passing Parameters

sdcc/zdxcc’s conventions for passing parameters are described below.

• The first three (16-bit) word parameters (scalar type) are passed in
registers r4–r6.

• All other parameters are passed on the stack.

• A 16-bit value is returned in r4; a 32-bit value is returned in r5r4.

• A structure is returned using a hidden pointer, which is passed by
the caller in r4.

• A structure is passed using two arguments. The first argument is a
pointer to the structure, and the second argument is the structure to
be passed. The pointer to the structure is a 16-bit value and can be
passed in a register if it is one of the first three word-sized
arguments. The second argument, the structure, is passed on the
stack. For structures with a size of one or two words, the pointer
argument is eliminated.

zdcc’s conventions for passing parameters are described below.

Parameters are examined from first to last (left to right).

• A pointer value is passed in the first unused register in the following
list: a0, a1, a6, r5r4, r7r6, r3r2.

• A 32-bit non-pointer value is passed in the first unused register in the
following list: r5r4, r7r6, r3r2, a0, a1, a6.

• A 16-bit value is passed in the first unused register in the following
list: r4, r5, r6, r7, r2, r3.

• All other non-structure parameters are passed on the stack.

• Structures larger than 32-bits are passed on the stack. All other
structures are passed in the same manner as a non-pointer
argument of the same size.

• A pointer value is returned in a0. A non-pointer 32-bit value is
returned in r5r4. A 16-bit value is returned in r4.

• A structure is returned using a hidden pointer, which is passed by
the caller in a0.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Compiler Conventions 3-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Note that registers that were skipped so that a 32-bit parameter could be
passed can be used later when passing a 16-bit parameter. For example,
a function with prototype:

void f(int, long, int)

expects its arguments to be in: r4, r7r6, and r5, respectively.

3.2.5 Run Time Stack

The C run time stack grows towards lower addresses in memory. The
stack pointer (r12 with sdcc/zdxcc, a7 with zdcc) decrements when
items are pushed on the stack. The initial memory location of the stack
is specified in the initialization file crt0.o.

Table 3.6 shows the layout of a function’s stack frame.

Table 3.6 Stack Frame Layout

high address

low address

Callee saved registers

%rpc

Local variables and temporaries

Outgoing arguments
(The stack allocates enough space to
accommodate any call by the function.)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-12 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 3.7 shows the two example stack frames for the functions foo and
bar, after foo calls bar.

Note that within the body of a function, the stack pointer points to the
beginning of the next stack frame. When a function is called, the compiler
places arguments into registers, if possible, and puts the remaining
arguments in the outgoing arguments of the caller’s stack frame. The
compiler places any required arguments on the stack from lower to
higher addresses. Thus the first argument placed on the stack is the one
closest to the callee’s stack frame. The function call is made after all the
arguments have been properly placed.

3.2.6 Example Code for Function Prologue and Epilogue

3.2.6.1 sdcc/zdxcc

The following is a sample prologue that saves r0-r3, r7-r9, and %rpc
and reserves 30 words of space on the stack. Note that with optimization,
this code is reordered with non-prologue code for better scheduling by
sdopt.

Table 3.7 Stack Frame Example

high address

low address

Callee saved registers of foo foo’s stack frame

locals/temps of foo

max args of all functions called by foo

callee saved registers of bar bar’s stack frame

locals/temps of bar

max args of all functions called by bar

memory location pointed to by r12/a7
(stack pointer)

not part of any
stack frame

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Compiler Conventions 3-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

stdu r0, r12, -2
stdu r2, r12, -2
stu r7, r12, -1
stdu r8, r12, -2
mov r13, %rpc
stu r13, r12, -1
mov r13, 30
sub r12, r13

The appropriate epilogue code for the above prologue is shown below.
ZSP interrupt routines expect the stack pointer to point to a writable
location. This requirement prevents the use of the stack pointer to
directly restore the saved registers in this epilogue. Instead, the stack
pointer is copied to r6, and r6 is used to restore the saved registers. After
all the registers are restored, r6 is copied back to the stack pointer.

mov r6, r12
mov r13, 31
add r6, r13
ldu r13, r6, 1
mov %rpc, r13
lddu r8, r6, 2
ldu r7, r6, 1
lddu r2, r6, 2
lddu r0, r6, 2
add r6, -1
mov r12, r6
ret

Some functions can restore registers without using r6. This is done by
utilizing indexed loads. For example, a leaf function with r8 and r9 stored
at stack offsets 1 and 2 can use the following epilogue:

ld r8, r12, 1
ld r9, r12, 2
ret

3.2.6.2 zdcc

The following is a sample epilogue that saves r8, r9, a2, and %rpc and
reserves 20 words of space on the stack. Note that with optimization, this
code is reordered with non-prologue code for better scheduling:

pushd r8, a7
mov.e r8, %rpc
pushd r8, a7
pushd a2, a7
add a7, -20

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-14 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The appropriate epilogue code for the above prologue is shown below.

add a7, 20
popd a2, a7
popd r8, a7
mov.e %rpc, r8
popd r8, a7
ret

3.2.7 Parameter Passing Examples

3.2.7.1 sdcc/zdxcc

In the example below, function foo calls function bar, passing two long
(32-bit) arguments from r1r0 and r3r2. The first argument is placed in the
stack at r12 + 1, and the second argument is placed at r12 + 3.

Function bar has a frame size of 16 and accesses the passed
arguments in function foo’s outgoing argument stack space.

mov r13, 1 !! The first argument location on the stack
add r13, r12
stdu r0, r13, 2 !! Store r0 at r12+1 and r1 at r12+2.
mov r13, 3
add r13, r12 !! Compute r12+3 and store in r13.
stdu r2, r13, 2 !! Store r2 in r12+3 and r3 in r12+4.

The function bar retrieves arguments from foo’s stack space by loading
the values from foo’s outgoing argument space. The first word of foo’s
outgoing arguments is located at r12+(bar’s stack space)+1, or
r12+(16)+1.

mov r13, 17
ldx r0, r12
mov r13, 18
ldx r1, r12
mov r13, 19
ldx r2, r12
mov r13, 20
ldx r3, r12

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Compiler Conventions 3-15
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.2.7.2 zdcc

The following C code:

void callee(int i1, long l1, int i2, long l2, long l3, long *p1, long l4, long l5,
long l6) {

global = l5+l6;
}

void caller() {
 long a=7;

 callee(1,2,3,4,5,&a,7,8,9);
}

The arguments are passed in the following locations:

i1 - r4
l1 - r7r6
i2 - r5
l2 - r3r2
l3 - a0
p1 - a1
l4 - a6
l5 - stack+1
l6 - stack+3

The above code produces the following calling code sequence:

 mov a1, 8
 std a1, a7, 1 !l5, fifth 32-bit non-pointer parameter passed on stack
 mov a0, 7
 mov a1, 9
 std a0, a7, 5
 std a1, a7, 3 !l6, sixth 32-bit non-pointer parameter passed on stack
 mov a6, a0 !l4, fourth 32-bit non-pointer parameter passed in a6
 mov r4, 0x1 !i1, first 16-bit parameter passed in r4
 mov r6, 2 !l1, first 32-bit non-pointer parameter passed in r7r6
 mov r7, 0
 mov r5, 0x3 !i2, second 16-bit parameter passed in r5
 mov r2, 4 !l2, second 32-bit non-pointer parameter passed in r3r2
 mov r3, 0
 mov a0, 5 !l3, third 32-bit non-pointer parameter passed in a0
 mov a1, a7 !p1, first pointer parameter passed in a1
 add a1, 5
 call _callee

The function callee retrieves l5 and l6 from caller’s stack space by
loading the values from caller’s outgoing argument space. The first

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-16 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

word of caller’s outgoing arguments is located at a7+(callee’s stack
space)+1, or a7+(0)+1.

 mov a0, a7
 add a0, 1
 ldd r4, a0
 ldd r6, a7, 3

3.3 Run Time Environment

The compiler run time environment is initialized in the startup file crt0.o
on Solaris platforms or crt0.obj on Windows platforms. By default, the
startup file is automatically linked by the compiler. The initialization file
fills the bss section with zeroes.

The run-time memory map contains three main sections: text, data, and
bss, in that order. The heap grows from lower addresses to higher
addresses and starts at location __heap_start, which is placed after the
bss section by default. The heap is not allowed to grow beyond
__heap_limit. By default this symbol is set to the largest allowed address
(0xFFFF for sdcc and zdxcc, and 0xFFFFFF for zdcc), so effectively the
heap is not limited unless the user explicitly sets this symbol to a lower
value. Note that the memory between __heap_start and __heap_limit is
not reserved for the heap, the heap is just guaranteed not to take
memory outside of that region. The stack grows from higher to lower
addresses, and starts at the address specified by the predefined variable
__stack_start − 1, which has a default value of 0xF7FF for sdcc/zdxcc
and 0xFFEFFF for zdcc. The symbols controlling the stack and heap can
be modified as shown below.

sdcc -Wl,-defsym,__stack_start=0xd000,-
defsym,__heap_start=0xd001,-defsym,__heap_limit=0xd500
test.c

3.4 C Run Time Library Functions

The libc.a libraries supplied with the C compiler contain the run time
library functions. These functions are equivalent to those found in other
C programming environments, having the same names and parameter
lists. Thus existing programs that use these functions may be recompiled

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

C Run Time Library Functions 3-17
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

without any changes. The compiler provides a debugging form of the
library, libg.a, which allows you to debug standard library functions.
Run-time libraries are specific to a particular target and their locations
are shown in Table 3.8.

The SDK compilers automatically link with the version of the library that
is appropriate for the intended target. Users who explicitly link in the run-
time libraries must be sure to select the library from the correct location.

The library functions are grouped into the following categories:

• String functions (string.h)

bcmp, bcopy, bzero, index, memchr, memcmp, memcpy, memmove,
memset, rindex, strcat, strchr, strcmp, strcpy, strcspn, strlen,
strncat, strncmp, strncpy, strpbrk, strrchr, strspn, strstr.

• I/O functions (stdio.h)

fopen, fclose, fseek, rewind, fread, fwrite, fgetc, getc,
getchar, fgets, fputc, putc, putchar, fprintf, printf,
sprintf, vfprintf, vprintf, vsprintf

The *printf functions have been extended to allow printing of the q15
data type. A “%q” format specifier prints a 16-bit value in fixed-point
notation.

• The filehandles stdin, stdout, and stderr are supported.

• Pseudo-random number generation functions (stdlib.h)

rand, rand_r, srand, _lrand, _lrand_float

• Memory allocation functions (stdlib.h)

calloc, free, malloc

• Interprocedural control flow functions (setjmp.h)

Table 3.8 Run-time Library Location

Target Compiler Library Location

G1 sdcc $SDSP_HOME/sdspI/lib

G1G2 zdxcc $SDSP_HOME/zspg2/libg1g2

G2 zdcc $SDSP_HOME/zspg2/lib

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-18 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

setjmp, longjmp

Integral division is supported by routines in the run-time libraries. These
routines generates a non-maskable interrupt and then halt if division by
zero occurs.

In addition to the run-time library support, the header files, ctype.h and
assert.h provide support for classifying characters and for debugging
code.

In the case of I/O functions, the SDK performs file I/O by sending a
message to the program running on the host (sdbug400, zsim400,
zisim400, zdbug, zdxbug, zsimg2 or zisimg2). These messages cause
the host program to perform the requested file I/O operation. All host
programs and all zdbug targets support file I/O.

The following functions are supported by the floating-point math library,
libm.a: acos, asin, atan, atan2, ceil, cos, cosh, exp,
fabs, floor, fmod, frexp, ldexp, log10, log, modf,
sin, sinh, sqrt, tan, and tanh.

3.5 Timer Support

The header file timer_util.h provides support for using the system
timers. The ZSP400 and ZSPG2 architectures have two 16-bit timers,
%timer0 and %timer1. These timers are countdown timers and operate
in two modes, single-shot and auto-reload. In single-shot mode, the
timers count down and stop at 0. In auto-reload mode, the timers are
reset to the last initialized value after 0 is reached. The rate at which the
timers decrement is controlled by a prescale divisor. When the prescale
divisor is set to X, the timer is decremented once every X clock cycles.
The prescale divisor can be set to any value from 1-64. The complete
interface for using the timers is:

ZSP_timer_set(<timer>, unsigned int value)

ZSP_timer_mode(<timer>, <mode>)

ZSP_timer_prescale(<timer>, unsigned int prescale)

ZSP_timer_start(<timer>)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

N-Intrinsics 3-19
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

ZSP_timer_stop(<timer>)

unsigned int ZSP_timer_read(<timer>)

The <timer> parameter must be TIMER0 or TIMER1. The <mode>
parameter must be SINGLE_SHOT or AUTO_RELOAD.

The following example illustrates how to use this interface to time a
section of code:

#include <stdio.h>
#include <timer_util.h>

main ()
{
 unsigned int timer;
 int a[4000],sum,i;

 ZSP_timer_mode(TIMER1,SINGLE_SHOT);
 ZSP_timer_set(TIMER1,60000);
 ZSP_timer_prescale(TIMER1,5);
 ZSP_timer_start(TIMER1);

 sum=0;
 for (i=0; i<4000; i++)
 sum+=a[i];
 ZSP_timer_stop(TIMER1);

 timer = ZSP_timer_read(TIMER1);
 printf("Elapsed %lu\n",((long)(60000 - timer))*5);
}

3.6 N-Intrinsics

N-Intrinsics provide support for DSP instructions. N-Intrinsics are
implemented as macros in the header file N_Intrinsic.h. The name
of an N-Intrinsic begins with an N_ , followed by a suffix that indicates the
operation’s data type: _s for int, _l for long, and _h for high-order int
of a long.

To use N-intrinsics, add the following line in each of your C files:

#include <N_Intrinsic.h>

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-20 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

N-intrinsics are implemented by the compiler using the assembly
instructions shown in Table 3.9. The older L-intrinsics are still supported
and are described in Appendix D, “L-Intrinsic Functions.”

Table 3.9 N-Intrinsic Functions

Intrinsic Function Generated Code Analogous L-Intrinsic

N_mac(accum acc, int x, int y) mac.acc x, y L_maca, L_macb

N_macn(accum acc, int x, int y) macn.acc x, y L_macna, L_macnb

N_mac2(accum acc, long x, long y) mac2.acc x,y L_mac2a, L_mac2b

N_mul(accum acc, int x, int y) mul.acc x, y L_mula, L_mulb

N_muln(accum acc, int x, int y) muln.acc x, y None

N_norm_l(int ret, long a) norm.e ret, a norm_l

N_norm_s(int ret, int a) norm ret, a norm_s

N_extract_h(int ret, long a) ret = a[31:16] extract_h

N_deposit_h(long ret, int a) ret[31:16] = a
ret[15:0] = 0

L_deposit_h

N_abs_l(long ret, long a) abs.e ret, a L_abs

N_abs_s(int ret, int a) abs ret, a abs_s

N_round_l(long ret, long a) round.e ret, a round

N_shla_l(long ret, int a) shla.e ret, a L_shla

N_shla_s(int ret, int a) shla ret, a shla

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

N-Intrinsics 3-21
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.6.1 Vector N-Intrinsics

N-Intrinsics are also provided for common vector operations. They are
shown in Table 3.10. The vector N-Intrinsics produce more efficient code
than the equivalent non-vector code.

Important: If you use vector N-Intrinsics at optimization level 3 (-O3),
you must also use the -fno-inline option. Functions with
vector N-Intrinsics must not be inlined, since these intrin-
sics create labels. If these labels are inlined, they are dupli-
cated and cause an error.

3.6.2 ETSI Functions

N-Intrinsics also allow access to processor-supported ETSI functionality,
although the interface is different. For example, the ETSI code:

y = norm_l(x);

can be rewritten with N-Intrinsics as:

N_norm_l(y,x);

Table 3.10 Vector N-Intrinsics

N-Intrinsic 1 Functionality 2

N_vc_mac(accum acc, int *vec1, int inc1,
int cnst, int len)

for (i=0; i<len; i++) {
N_mac(acc,cnst,vec1[i*inc1]);
}

N_vc_macn(accum acc, int *vec1, int inc1,
int cnst, int len)

for (i=0; i<len; i++) {
N_macn(acc,cnst,vec1[i*inc1]);
}

N_vv_mac(accum acc, int *vec1, int inc1,
int *vec2, int inc2, int len)

for (i=0; i<len; i++) {
N_mac(acc,vec1[i*inc1],vec2[i*inc2])
}

N_vv_macn(accum acc, int *vec1, int inc1,
int *vec2, int inc2, int len)

for (i=0; i<len; i++) {
N_macn(acc,vec1[i*inc1],vec2[i*inc2]);
}

1. All increment values (inc1, inc2) must be −2, −1, 1, or 2.
2. The actual code generated is more efficient than the functionally-equivalent code in this column.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-22 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Another approach that preserves the ETSI defined interface is to use
N_norm_l to implement the ETSI function. For example, norm_l could
be implemented as:

static inline int norm_l(long src) {
int ret;
N_norm_l(ret,src);
return(ret);

}

You may implement some ETSI functions can be implemented using N-
Intrinsics, but you must set mode bits in %fmode accordingly. For
example, you can implement the ETSI function L_mac using N_mac, but
you must also set the SAT and Q15 mode bits in %fmode. This
correspondence between N-Intrinsics and ETSI functions is shown in
Table 3.11.

Table 3.11 ETSI to N-Intrinsic Mapping

ETSI Function N-Intrinsic

fmode1 Register Bits

sat q15 sre mre

abs_s N_abs_s x x x x

extract_h N_extract_h x x x x

L_abs N_abs_l x x x x

L_deposit_h N_deposit_h x x x x

L_mac N_mac 1 1 x 0

L_macN N_mac 0 1 x 0

L_msu N_macn 1 1 x 0

L_msuN N_macn 0 1 x 0

L_mult N_mul x 1 x 0

L_shl N_shla_l 1 x x x

mac_r N_mac 1 1 x 1

msu_r N_macn 1 1 x 1

mult N_mul x 1 x 0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Circular Buffers 3-23
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.7 Circular Buffers

The cbuf.h header file provides the interface to the circular buffers. The
header file’s macros generate the necessary assembly instructions.

To use a circular buffer, a pointer must be declared, the circular buffer
boundaries must be set, and the circular buffer must be enabled. With
sdcc/zdxcc the pointer must be in r14 or r15.

register int *pt asm("r14");
set_r14_cbuf(low,high);
enable_r14_cbuf;

With zdcc, the pointer must be in a0 - a3.

register int *pt asm("a2");
set_cbuf(CBUF_ID,low,high);
enable_cbuf(CBUF_ID);

CBUF_ID must be A0_CBUF, A1_CBUF, A2_CBUF or A3_CBUF.

A circular buffer must have at least 4 ints or 2 longs.

Circular buffers can be disabled using the following macros with
sdcc/zdxcc:

disable_rn_cbuf;

For zdcc the macro is:

disable_cbuf(CBUF_ID);

mult_r N_mul 1 1 x 1

norm_l N_norm_l x x x x

norm_s N_norm_s x x x x

round N_round_l x x x x

1. 1 = Set, 0 = Cleared, x = Don’t Care

Table 3.11 ETSI to N-Intrinsic Mapping (Cont.)

ETSI Function N-Intrinsic

fmode1 Register Bits

sat q15 sre mre

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-24 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

There are special macros defined within cbuf.h to access the elements
in a circular buffer. These macros are the same for all compilers.

load_int_cbuf(dst,pt,inc)
store_int_cbuf(src,pt,inc)

load_long_cbuf(dst,pt,inc)
store_long_cbuf(src,pt,inc)

The inc parameter determines the number of elements to increment the
pointer pt. The inc parameter must be a constant rather than a variable.
For load_int_cbuf and store_int_cbuf, inc must be in the range
1–50. For load_long_cbuf and store_long_cbuf, inc must be in the
range 1–25.

It is legal to access a value pointed to by pt using *pt, so an increment
value of 0 is not needed.

The dst and src parameters are variables used for the destination and
source values, respectively. Note that these parameters are not pointers
to a location where the destination/source is stored/accessed, but to the
variables that are actually stored/accessed.

Note: You must disable circular-buffer arithmetic immediately
after the final use of pt, because the compiler may reuse
the register containing pt for other purposes. The code
generated in this case does not expect the register to have
circular arithmetic.

Because the registers supporting circular-buffer functionality are not
saved and restored by function calls/returns, circular buffers should not
be used with code containing function calls.

3.8 Accessing Control Registers

Macros have been defined in the header file <creg.h> to simplify
accessing control registers.

read_creg(creg,var) - Puts the value of a control register into
var.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Q15 Support 3-25
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

write_creg(creg,val) - Puts a value, which can be a variable or
an immediate, into a control register. The val argument can be made by
or-ing together the following masks for the following registers:

• %fmode: MRE_MASK, SRE_MASK, Q15_MASK, SAT_MASK,
REZ_MASK

• %amode: RCA_LD_MASK, RCA_ST_MASK, RCA_REV_MASK,
CB0_MASK, CB1_MASK CB2_MASK, CB3_MASK

• %smode: DDR_MASK, DIR_MASK, SIS_MASK, LIS_MASK,
US_MASK, UVT_MASK, DSB_MASK, ICT_MASK, FIE_MASK,
DCT_MASK, LVL_MASK

• %imask: PGIE_MASK, GIE_MASK

Macros have also been defined to manipulate specific bits of control
registers.

bitset_creg(creg,bitnum)

bitclear_creg(creg,bitnum)

bitinvert_creg(creg,bitnum)

The bitnumber and value arguments can be filled with macros which
have been defined to the appropriate value. The bitnumber and mask to
access a specific bit has been defined to “bit name”_[MASK|BIT]. For
example, to set the Q15 bit of %fmode, use the following macro:

bitset_creg(%fmode,Q15_BIT);

3.9 Q15 Support

CC supports the Q15 data type. To use Q15 arithmetic, the q15 mode bit
in the %fmode register must be set, as follows:

bitset_creg(%fmode,Q15_BIT);

The q15 mode bit affects Q15 multiplies and the N-Instrinsics N_mul,
N_mac, N_macn, N_mac2, and the vector intrinsics.

Q15 arithmetic can be disabled as follows:

bitclear_creg(%fmode,Q15_BIT);

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-26 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

This release of the SDK does not support Q15 division.

The code produced for the Q15 data type is equivalent to that produced
for the int data type, except for the following three cases:

• The product of two Q15s is calculated with a mul instruction rather
than an imul instruction.

• The 16-bit result of a Q15 product is the high-order 16 bits of the
result produced by a mul instruction. The 16-bit result of an int
product is the low-order 16 bits of the result produced by an imul
instruction.

• The product of two Q15 constants is not simplified by the compiler.

The fprintf and printf functions have been extended to allow
printing of the q15 data type. A “%q” format specifier prints a 16-bit value
in fixed point notation.

3.10 Inline Assembly

Inline assembly that references C variables can be generated by using
the asm directive.

3.10.1 Syntax

The basic syntax of the asm directive is:

asm(“parameterized assembly” :

output variable, ... :
input expression, ... :
explicitly clobbered register, ...);

3.10.2 Parameterized Assembly

The parameterized assembly consists of a text string containing the
desired assembly output with parameters that are replaced with registers

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Inline Assembly 3-27
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

or constants according to the arguments in output variable and
input expression. The syntax of a parameter is shown in Table 3.12.

In the table above, n is the index of the desired argument in output
variable or input expression. The three formats—%, %m, and %o—
control the way an argument is printed in the generated assembly. For
example, a variable of long type that the compiler has placed in r1 and
r0 is printed as r0 when the % format is specified, as a when the %m
format is specified, or as r1 when the %o format is specified.

3.10.3 Variables and Expressions

The syntax for an output variable and input expression is:

“constraint” (expression|variable)

A constraint is used to describe the requirements that an instruction
places on an argument. For example, an instruction that requires an
argument to be in a particular register would put a constraint on that
argument to ensure that the argument is placed in an allowed register.

Table 3.12 Parameter Output Syntax

Format Output

%n register name or constant

%mn accumulator name

%on high register name

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-28 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

In example 3 in Section 3.10.5, “Examples of asm Directive”, the acc
variable is constrained to be in an accumulator register. The supported
constraints are shown in Table 3.13.

Note that a constant argument can be used with an r constraint. The
SDK copies the constant to a register and uses the register as the
argument. You can combine constraints, which can be useful for
instructions that allow different types of arguments. For example, the
shla instruction can accept either a register or an immediate argument.
The appropriate constraint for this argument is rn. In example 4 in
Section 3.10.5, “Examples of asm Directive”, the input parameter is
constrained to be either a register or an immediate. Sometimes it is
necessary for two arguments to be in the same register. This requirement
can be described by constraints. The first argument should be described
with whatever constraint is appropriate, and the second argument’s
constraint must be the index of the first argument. For example, the first
argument of the add instruction is an output/input argument. You must
list this argument as an output variable and an input expression.
The constraint of this argument when it appears as an input
expression should be the index of the argument when it appears as
an output variable. In example 3 in Section 3.10.5, “Examples of asm
Directive”, the output argument and the first argument illustrate this
technique.

Table 3.13 Argument Constraints

Constraint Effect Availability

= output variable All compilers

r general-purpose register All compilers

e address register zdcc

h index register zdcc

c accumulator register All compilers

n constant All compilers

<n> same as indexed argument All compilers

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Inline Assembly 3-29
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

3.10.4 Explicitly Clobbered Registers

The syntax for an explicitly clobbered register is:

“register name”

This entry tells the compiler that the assembly code generated will
clobber the specified register. Thus the generated assembly code may
use the specified register for scratch purposes.

3.10.5 Examples of asm Directive

The examples in the subsections below illustrate the usage of the asm
directive.

3.10.5.1 Example 1

asm(“norm.e %0, %1”:
“=r” (ret) :
“r” (a));

The example shown above has one output argument, ret, and one input
expression, a. If the variable ret is in r0 and the variable a is in r4, this
directive produces:

norm.e r0, r4

3.10.5.2 Example 2

asm(“abs r5, %1\n\tst r5, %0” : :
“e” (addr), “r” (val) :
“r5”);

The example shown above stores the absolute value of val at addr.
Two instructions are generated by this directive. There are two input
expressions and no output arguments. Note that register r5 is clobbered
by this directive. If addr is in a0 and val is in r15, this directive
produces:

abs r5, r15
st r5, a0

3.10.5.3 Example 3

asm(“mac.%m0 %2, %o2” :
“=c” (acc) :

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-30 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

“0” (acc), “r” (val));

The example above adds the 32-bit product of the high and low 16 bits
of val to acc. Note that the high part of val is obtained with the %o2
operand and that the accumulator is printed with the %m0 operand. Also
note that acc is both an input and an output argument, and that the
constraint for acc when it appears as an output argument is c, an
accumulator, and when it appears as an input argument is 0, which tells
the compiler that these two arguments must be in the same location. If
acc is in r0 and val is in r3r2, the following code is generated:

mac.a r2, r3

3.10.5.4 Example 4

asm(“mov %%smode, %0” : :
“rn” (val));

The example shown above sets %smode to val. Note that %smode is not
specified as a clobbered register, because %smode has no meaning to the
compiler. If val is a symbolic constant with the value 3, the following
code is generated:

mov %smode, 3

You can find additional examples of using the asm directive in the header
file N_Intrinsic.h.

3.10.5.5 Example 5

asm(“bits %smode, 7”);

The example shown above sets bit 7 in %smode. This example illustrates
the general rule that if the assembly statement contains an argument (as
in Example 4, which contains the argument %0), a reference to a register
must contain an additional per cent (%) sign. Example 5 contains no
argument, so a single % preceding smode is used.

3.10.6 Optimization of Inline Assembly

For purposes of optimization, the compiler assumes that inline assembly
has no effect except to modify the output variables. Thus inline assembly
can be removed by optimization if none of the output variables is
subsequently used. Inline assembly that must not be deleted or

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Assembly Optimizer and Handwritten Assembly 3-31
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

significantly moved should contain the keyword volatile following the
asm directive, as shown below.

asm volatile(“bits %smode, 7”);

The volatile keyword is implicit for inline assembly with no output
variables. Thus, the use of volatile in the above example is redundant.

3.11 Assembly Optimizer and Handwritten Assembly

The assembly optimizers can be used to automatically generate the
prologue and epilogue for an assembly function and then optimize the
entire function.

sdopt -asm assemblyfile

The output is placed in standard output. The assembly optimizers expect
input of the following format:

!PROLOGUE(<function name>)
<function body>

!EPILOGUE

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-32 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

This is transformed by the assembly optimizer to:

.set REGSAVE_SIZE_<function name>, <stack space used>
<function name>:
__FUNC_START_<function name>:
<optimized function body with prologue/epilogue>
__FUNC_END_<function name>:
ret

Use the option “-asm_pe_only” if only prologue/epilogue generation is
desired.

sdopt -asm_pe_only assemblyfile

or

zdopt -asm_pe_only assemblyfile

All registers that must be preserved according to the C calling convention
are preserved. Note that the name REGSAVE_SIZE_<function name>
can be used if the size of the stack space used by the prologue/epilogue
is needed. Any input in the assembly file outside of the !PROLOGUE and
!EPILOGUE markers is copied without modification.

3.12 Debugging Options

You can debug code compiled using the gcc-supplied -g option, which
generates debugging information. Optimization levels -O0 and -O1 are
fully compatible with debugging. At level -O0 no optimization is done --
at level -O1 only optimizations that preserve debugging capability are
performed. At level -O2 debugging should only be done with the -
mno_sdopt option because the assembly optimizers do not preserve the
location of debugging information. Debugging at level -O2 can be
confusing, since instructions may be re-ordered, dead-code may be
eliminated, etc. However, in most cases the structure of the control-flow
graph is preserved, so it is usually possible to use breakpoints to stop at
a particular location in a program.

Using the -g option with optimization modifies the code generated in two
ways. First, the debugging version of the C library is linked, rather than
the optimized version. Second, leaf functions save and restore %rpc
(without the -g option, this save and restore is removed by optimization).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Code Statistics 3-33
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The -g option saves and restores this register, because the debugger
requires it to examine the call stack.

3.13 Code Statistics

CC creates four labels and symbols that are useful in analyzing the code
generated by the compiler.

Every function has a label placed on its first instruction and after its last
instruction with the following formats:

__FUNC_START_<function name>

__FUNC_END_<function name>

The difference of these two labels gives the code size of a function. A
function also has a label placed on its return instruction:

__FUNC_EXIT_<function name>

This label is used for function profiling. Every function also has an
absolute symbol that shows the number of words of stack space used
per invocation of the function.

__FUNC_FRAME_SIZE_<function name>

3.14 Example Compilations

3.14.1 Example 1

cc test.c -Tdata=0x1

This command invokes the C compiler, assembler, and linker and
produces an executable file with the default name a.out.
The -Tdata=0x1 command places the data at address 0x1 to prevent a
NULL pointer from being a valid pointer.

3.14.2 Example 2

cc -c test.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

3-34 C Cross Compiler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

This command invokes the C compiler and assembler only, producing an
object file with the default name test.obj (Windows) or test.o (UNIX).

3.14.3 Example 3

cc -S test.c

This command invokes the C compiler only, producing an assembly file
with the default name test.s.

3.14.4 Example 4

cc -O3 test.c

This command invokes the C compiler with the highest level of
optimization, that is, including all level -O2 optimizations, as well as
function inlining and loop unrolling. The assembler and linker are also
invoked, and the output is an executable file with the default name
a.out.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 4-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 4
Assembler

This chapter describes the SDK Assembler. The chapter contains the
following major sections:

• Section 4.1, “Introduction”

• Section 4.2, “Assembly Language Syntax”

4.1 Introduction

The SDK Assembler (sdas/zdas) is based on the GNU Assembler, AS,
from the Free Software Foundation. It is described in Using AS: The
GNU Assembler, by Dean Elsner, et. al., Free Software Foundation,
January 1994. The description of sdas/zdas in this chapter, for the most
part, includes only the differences from as. sdas is the assembler for the
ZSP400 architecture. zdas is the assembler for the ZSPG2 architecture.
In this chapter, unless otherwise noted, sdas refers to both the ZSP400
and ZSPG2 assemblers.

The assembler is invoked from the shell using the following command:

sdas [options] sourcefile

sdas processes an assembly source file with the .s file extension and
produces a relocatable object file in ELF format with the default file
extension .obj (Windows) or .o (UNIX).

4.2 Assembly Language Syntax

The basic format of an SDK assembly language statement is:

[label:] [statement] [!comment]

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

4-2 Assembler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Labels are identifiers that start at the beginning of a line, with no leading
spaces or tabs, and end with a colon. Identifiers begin with a letter (case
is significant) or an underscore, and can continue with more letters,
digits, and underscores. Assembly language instructions can be on the
same line as a label.

Examples:

Start: !“Start” is a label
start: !“start” is another (different) label

bnz start !“start” is a label reference
loop: add r0, r1 !“loop” is a label

bnz Start: ! Illegal reference (extra colon)
End ! Illegal label (missing colon)

Symbols beginning with ‘L’ are locally resolved, and are therefore not
visible to the linker or to other modules.

Assembler statements can be assembler directives or assembly
language instructions. Assembler directives start with a period (‘.’).

Comments start with an exclamation mark (!) and continue until the end
of the line. The symbol ‘#’ at the beginning of the line indicates that it is
a comment.

Files with the .S extension can be assembled using sdcc, which causes
the C preprocessor to run before the assembler. This enables you to use
C-style comments and #defines in your assembly code. However using
a -g option does not cause any debug symbol generation, since the
source file is an assembly program. To turn on debug information for an
assembly program with a .S extension, you can use sdcc with the -Wa
and -dbg options (the -dbg option is described in Section , “Debugging
Option (-dbg),” page 4-3).

All assembly programs must be contained within a section.

Putting .section “.text”, “ax” before any assembly code ensures
that the code gets assembled into the .text section. Refer to Using AS:
The GNU Assembler for more information on the section syntax and flag
definitions.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Assembly Language Syntax 4-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

4.2.1 Assembler Options

Please refer to Using AS: The GNU Assembler for a full description of
all options available to the assembler. A few of the more frequently-used
options as well as the options specific for the SDK are described
following.

Suppress warnings (-W) –

This option prevents warnings from the assembler from being displayed
on the screen.

Output file (-o) –

Using -o objfile assembles the output into the object file specified. If
you do not use the -o option, the resulting object file is named a.out by
default.

Include path (-I) –

The -I dir option is used to add the specified directory to the search
list used by .include directives.

Debugging Option (-dbg) –

The -dbg option adds debugging information to the executable file, which
allows you to debug the source file rather than the disassembled text.
The usage is:

sdas -dbg test.s

where test.s is the name of the assembly file.

ELF Flag (--defsym g1g2=1) –

This option is only available for zdas. When this option is used, the
resulting object file has an ELF flag of 0x1000.0000, the flag setting for
G1G2 programs. If this option is not set, the resulting object file has an
ELF flag of 0x2000.0000, the flag setting for ZSPG2 programs.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

4-4 Assembler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

4.2.2 Assembler Directives

The following subsections describe some frequently-used assembler
directives, as well as those that are specific to the SDK assembly
language.

.walign –

The .walign directive aligns the location counter on the next word
boundary specified by an integer argument. If the location counter is
already aligned, no action is taken. Intervening words are filled with nop
instructions. For example,

.walign 32 ! Align to the next 32-word boundary.

.wspace –

The .wspace directive allocates space in a segment as specified by an
integer argument. The location counter is incremented, regardless of
alignment. For example,

.wspace 7 ! Increment the location counter by seven.

An optional fill value can also be given. If no fill value is given, the space
is filled with zeroes.

.wspace 7, 0xd800! Create 7 words of 0xd800

.word –

The .word directive allows you to specify zero or more comma-separated
values to be assembled into memory.

.global –

The .global directive is used to declare a global symbol. If this directive
is not used, a symbol defined in a partial program is visible only within
its scope. The .global directive makes the symbol visible to the linker.

.section –

The .section directive assembles the code following it into the section
name specified.

Example: .section, “.text”, “ax”

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Assembly Language Syntax 4-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

This defines a section named “.text” – the characters following it tell the
assembler that the code following the directive is allocatable and is a part
of the instruction memory. Refer to Using AS: The GNU Assembler for
more information.

Although GNU assembler documentation says unnamed sections go to
the default .text section, it is necessary to specify sections explicitly for
the ZSP SDK tools.

4.2.3 Assembler Special Cases

For all instructions that require a register pair, the even register must be
specified as the operand. For the ZSP400 assembler only, If an odd
register is specified, the even register of the register pair is used as the
actual operand in the instruction, and the assembler displays a warning
message. With the ZSPG2 assembler, zdas, an odd register is not
converted to an even register and an error message is shown.

For the ZSP400 architecture, a target function must be placed at an even
address. If the value is odd, an error message is displayed. A function
can be forced to start on an even address by using the .walign 2
directive. For the ZSPG2 architecture, there are no alignment
requirements for call targets.

4.2.4 ELF Number and Flags

All ZSP400, ZSPG2, and G1G2 object files and programs have an ELF
number of 79. This number is automatically created by the assemblers
and linkers. ZSP400 object files and programs have an ELF flag of
0x8000.0000. This is automatically generated by sdas and sdld. ZSPG2
object files and programs have an ELF flag of 0x2000.0000. This is
generated by default by zdas and zdld. G1G2 object files and programs
should have an ELF number of 0x1000.0000. Object files will have this
flag only if zdas is invoked with a “--defsym g1g2=1” option. A
program has a G1G2 flag if any of the modules on the link line have a
G1G2 flag. The G1G2 compiler, zdxcc, automatically uses this option
when invoking zdas. Assembly files for G1G2 programs that are not
assembled with the “--defsym g1g2=1” option produce object files
with the G2 flag. However, these inappropriately flagged object files can
still be used to produce a G1G2 executable.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

4-6 Assembler
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The ZSP400 linker, sdld, produces an error message if any module does
not have an ELF number of 79 or if the ELF flag is not 0x8000.0000. The
ZSPG2 linker, zdld, produces an error message if any module does not
have an ELF number of 79 or if the ELF flag is not 0x2000.0000 or
0x1000.0000.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 5-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 5
Linker

This chapter describes the SDK Linker. The major sections in the chapter
are:

• Section 5.1, “Introduction”

• Section 5.2, “Sections”

• Section 5.3, “Symbols”

• Section 5.4, “Linker Command File”

• Section 5.5, “Linker Options”

• Section 5.6, “ELF Number and Flags”

5.1 Introduction

The SDK Linker (sdld/zdld) is based on the GNU linker, LD, from the
Free Software Foundation. LD is described in Using LD: The GNU
Linker, by Steve Chamberlain, Free Software Foundation, January 1994.
sdld is the linker for the ZSP400 architecture. zdld is the linker for the
ZSPG2 architecture. Unless otherwise noted, sdld refers to both the
ZSP400 and ZSPG2 linkers.

The linker processes the object files generated by the assembler
(designated with the .obj extension on Windows or .o extension on
UNIX) and produces an executable file in ELF format with the default
name a.out.

The linker is invoked from the shell using the following command:

sdld [options] sourcefile

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

5-2 Linker
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

5.2 Sections

By default, the linker generates .text, .data and .bss sections. The
.text sections contains code, .data contains data, and .bss contains
uninitialized data. If there are additional user-defined sections specified
in the linker script file, the linker generates them also.

By default, .bss follows .data in data memory unless relocated using a
linker script command.

The following section names have special meaning only on the ZSP400
linker:

• .exttext_0 through .exttext_15

• .extdata_0 through .extdata_15

Code or data in these sections is placed in the appropriate external
instruction or data memory, with the particular external page selected by
the number in the section name.

On the ZSP400 architecture, the offset of a call immediate instruction
must be even. If the assembler cannot resolve this offset, the linker will.
If the offset is odd, the linker displays an error message. Because the
assembler automatically aligns call immediate instructions on an even
address, this error occurs only if the call target was on an odd address.
To resolve this error, align the call target on an even address, using the
.walign 2 directive.

5.3 Symbols

By default, program execution begins at __start. The entry point can be
altered by specifying an alternate address, using the -e option. For
example, the following command causes execution to begin at address
0xABCD:

sdld -e 0xabcd

The C stack and heap always lie in internal data memory.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Linker Command File 5-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• __stack_start: beginning of C stack, default setting is 0xF7FF with
sdld and 0xFF.EFFF with zdld.

• __stack_size: user_required. Is an optional symbol that you set,
describing the amount of stack space that is required. If this symbol
is set, it ensures that the required stack space starting from
__stack_start is not allocated to other sections (e.g., data, BSS).
Setting this variable does not prevent the heap from growing into this
area.

• __heap_start: starting address of C heap. The default value is the
end of the BSS, ___bss_end.

• __heap_limit: limit which heap will not grow beyond. Default setting
is 0xFFFF with sdld and 0XFF.FFFF with zdld. The space between
__heap_start to __heap_limit is not reserved for the heap. The
stack can still grow into this area. These values only guarantee that
the heap does not grow out of this area.

You can inspect the values of these symbols in the map file.

The value of the symbol __stack_start can be set in a linker script file
or by using the command-line option defsym sym=Value.

5.4 Linker Command File

A linker command file (also called a linker script file) is a file containing
linker commands that explicitly define symbols and locate sections in
memory. A linker command file can be specified when the linker is
invoked. An example linker command file is shown below.

SECTIONS
{
.text 0x2000: {*(.text)}
.data 0x3000: {*(.data)}
vectors 0x0000: {*(vectors)}
}

You need to supply the previous linker command file to the linker through
the ‘-T’ option. Otherwise, it uses the default linker script file.

The previous example declares the output sections .text, .data, and
vectors. Each output section is formed by the corresponding input
sections from all files (as indicated by the ‘*’).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

5-4 Linker
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Refer to the GNU ld man page for more information.

5.5 Linker Options

The following subsections describe some frequently-used linker options,
as well as those that are specific to the SDK assembly language.

Option Description

-T linkercommandfile Replaces the linker’s default script file with the
specified linkercommandfile.

-o outputfile Names the output file. By default, the output
file name is a.out.

-l archive Adds archive file archive to the list of files to
link. The linker searches for files
libarchive.a for every archive specified
using this option.

-L searchdir Adds searchdir to the list of directories to
search for archive libraries and linker scripts.
Multiple paths can be specified by using the -
L option multiple times.

-M Prints the link map to stdout. A link map
contains information on the mapping of
symbols.

--defsym symbol=expression Creates a global symbol in the output file
containing the absolute address specified by
the expression. This option can be used
multiple times to create multiple symbols. Valid
formats for expression are hexadecimal
constants or the names of existing symbols.

-Tbss addr Locate the .bss section at the address
specified by addr.

-Ttext addr Locate the .text section at the address
specified by addr.

-Tdata addr Locate the .data section at the address
specified by addr.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ELF Number and Flags 5-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

5.6 ELF Number and Flags

All ZSP400, ZSPG2, and G1G2 object files and programs have an ELF
number of 79. This number is automatically created by the assemblers
and linkers. ZSP400 object files and programs have an ELF flag of
0x8000.0000. This is automatically generated by sdas and sdld. ZSPG2
object files and programs have an ELF flag of 0x2000.0000. This is
generated by default by zdas and zdld. G1G2 object files and programs
should have an ELF number of 0x1000.0000. Object files have this flag
only if zdas is invoked with a “--defsym g1g2=1” option. A program
has a G1G2 flag if any of the modules on the link line have a G1G2 flag.
The G1G2 compiler, zdxcc, automatically uses this option when invoking
zdas. Assembly files for G1G2 programs that are not assembled with the
“--defsym g1g2=1” option produce an object file with the G2 flag.
However, these inappropriately flagged object files can still be used to
produce a G1G2 executable.

The ZSP400 linker, sdld, produces an error message if any module does
not have an ELF number of 79 or if the ELF flag is not 0x8000.0000. The
ZSPG2 linker, zdld, produces an error message if any module does not
have an ELF number of 79 or if the ELF flag is not 0x2000.0000 or
0x1000.0000.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

5-6 Linker
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 6-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 6
Utilities

This chapter describes the SDK utility programs. The chapter contains
the following major sections:

• Section 6.1, “Introduction”

• Section 6.2, “sdar”

• Section 6.3, “sdstrip”

• Section 6.4, “sdranlib”

• Section 6.5, “sdnm”

• Section 6.6, “sdsize”

• Section 6.7, “sdstrings”

• Section 6.8, “sdobjdump”

• Section 6.9, “sdobjcopy”

• Section 6.10, “readelf”

6.1 Introduction

The SDK provides additional utilities for manipulating files that are
generated by the tools during project creation. These SDK-specific
utilities, described in Table 6.1, replace their GNU counterparts. Tools for
the ZSP400 architecture start with an “sd” prefix. Tools for the ZSPG2
architecture start with a “zd” prefix. Unless otherwise specified, the
description of a utility applies to both the ZSP400 and ZSPG2 versions
of the tools.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

6-2 Utilities
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 6.1 SDK Utilities and GNU Counterparts

Utility
GNU
Equivalent Function

sdar
zdar

ar Creates, modifies, and extracts files from an archive.

sdnm
zdnm

nm Lists symbols from object files.

sdobjdump
zdobjdump

objdump Displays information from object files.

sdranlib
zdranlib

ranlib Generates an index for an archive.

sdstrings
zdstrings

strings Prints the printable characters in the files.

sdsize
zdsize

size Lists section sizes and total size of object file.

sdstrip
zdstrip

strip Discards symbols from object files.

sdobjcopy
zdobjcopy

objcopy Copies and translates object files.

readelf readelf Displays the contents of ELF format files.

sdelfread
zdelfread

none Displays two sections ‘.text’ and ‘.data’ in hex.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

sdar 6-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

6.2 sdar

Format

sdar [-]p[mod [relpos]] archive [member...]

Description

sdar creates, modifies, and extracts from archives. An archive is a single
file holding a collection of other files in a structure that allows you to
retrieve the original individual files (called members of the archive). The
original files’ contents, mode (permissions), timestamp, owner, and group
are preserved in the archive, and can be restored on extraction.

When you specify the modifier s, sdar creates an index to the symbols
defined in relocatable object modules in the archive. Once created, this
index is updated in the archive whenever sdar makes a change to its
contents (save for the ‘q’ update operation). An archive with such an
index speeds up linking to the library, and allows routines in the library
to call each other without regard to their placement in the archive.

You may use ‘sdnm -s’ or ‘sdnm --print-armap’ to list this index table.
If an archive lacks the table, another form of ar called sdranlib can be
used to add just the table.

Options

The p keyletter specifies what operation to execute. It may be any of the
following, but you must specify only one of them:

Table 6.2 sdar p Keyletter Options

Option Description

d Deletes modules from the archive. Specify the names of modules to be deleted as
member...; the archive is untouched if you specify no files to delete. If you specify the
‘v’ modifier, ar lists each module as it is deleted.

p Prints the specified members of the archive, to the standard output file. If the ‘v’ modifier
is specified, show the member name before copying its contents to standard output. If
you specify no member arguments, all the files in the archive are printed.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

6-4 Utilities
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

A number of modifiers (mod) may immediately follow the p keyletter, to
specify variations on an operation’s behavior:

r Inserts the files member... into archive (with replacement). This operation differs from ‘q’
in that any previously existing members are deleted if their names match those being
added. If one of the files named in member... does not exist, ar displays an error
message, and leaves undisturbed any existing members of the archive matching that
name. By default, new members are added at the end of the file; but you may use one
of the modifiers ‘a’, ‘b’, or ‘i’ to request placement relative to some existing member. The
modifier ‘v’ used with this operation elicits a line of output for each file inserted, along
with one of the letters ‘a’ or ‘r’ to indicate whether the file was appended (no old member
deleted) or replaced.

t Displays a table listing the contents of archive, or those of the files listed in member...
that are present in the archive. Normally only the member name is shown; if you also
want to see the modes (permissions), timestamp, owner, group, and size, you can
request that by also specifying the ‘v’ modifier. If you do not specify a member, all files
in the archive are listed. If there is more than one file with the same name (say, ‘fie’) in
an archive (say ‘b.a’), ‘ar t b.a fie’ lists only the first instance; to see them all, you
must ask for a complete listing--in our example, ‘ar t b.a’.

x Extracts members (named member) from the archive. You can use the ‘v’ modifier with
this operation, to request that ar list each name as it extracts it. If you do not specify a
member, all files in the archive are extracted.

Table 6.2 sdar p Keyletter Options (Cont.)

Option Description

Table 6.3 sdar p Keyletter Modifiers

Option Description

f Truncates names in the archive. GNU ar normally permits file names of any length. This
causes it to create archives which are not compatible with the native ar program on some
systems. If this is a concern, the ‘f’ modifier may be used to truncate file names when
putting them in the archive.

o Preserves the original dates of members when extracting them. If you do not specify this
modifier, files extracted from the archive are stamped with the time of extraction.

u Normally, ‘ar r’... inserts all files listed into the archive. If you want to insert only the
files you list that are newer than existing members of the same names, use this modifier.
The ‘u’ modifier is allowed only for the operation ‘r’ (replace). In particular, the
combination ‘qu’ is not allowed, since checking the timestamps would lose any speed
advantage from the operation ‘q’.

q Quick append at end of files

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

sdstrip 6-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

6.3 sdstrip

Format –

sdstrip
[-R sectionname | --remove-section=sectionname]
[-s | --strip-all]
[-S | -g | --strip-debug]
[-N symbolname | --strip-symbol=symbolname]
[-o file]
[-p |--preserve-dates]
[--help]
objfile ...

Description –

sdstrip discards all symbols from the object files objfile. The list of
object files may include archives. At least one object file must be
specified. sdstrip modifies the files named in its argument, rather than
writing modified copies under different names.

Options

Table 6.4 sdstrip Options

Option Description

--help Shows a summary of the options to strip and exit.

-R sectionname |
--remove-section=sectionname

Removes the named section from the file. You may give this
option more than once. Using this option inappropriately may
make the object file unusable.

-R sectionname |
--remove-section=sectionname

Removes any section named sectionname from the output
file. You may give this option more than once. Inappropriate use
of this option may make the output file unusable.

-s | --strip-all Removes all symbols.

-S | -g | --strip-debug Removes debugging symbols only.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

6-6 Utilities
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

6.4 sdranlib

Format –

sdranlib archive

Description –

The sdranlib utility generates an index to the contents of an archive and
stores it in the archive. The index lists each symbol defined by a member
of an archive that is a relocatable object file.

You may use ‘sdnm -s’ or ‘sdnm --print-armap’ to list this index.

An archive with such an index speeds up linking to the library and allows
routines in the library to call each other without regard to their placement
in the archive.

-N symbolname |
--strip-symbol=symbolname

Removes symbol symbolname from the source file. You may
give this option more than once, and combine it with other strip
options.

-o file Puts the stripped output in file, rather than replacing the
existing file. If you use this argument, you can specify only one
objfile argument.

Table 6.4 sdstrip Options (Cont.)

Option Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

sdnm 6-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

6.5 sdnm

Format –

sdnm [-g | -s | -A | -o | -u | -l] objfile

Description –

The sdnm utility lists the symbols from object files objfile. If no object
files are given as arguments, sdnm assumes the file a.out.

Options –

Table 6.5 sdnm Options

Option Description

-A | -o | --print-file-name Precedes each symbol by the name of the input file where it was
found, rather than identifying the input file once only before all of
its symbols.

-g | --extern-only Displays only external symbols.

-p | --no-sort Prints the symbols in the order they are encountered rather than
sorting them first.

-s | --print-armap When listing symbols from archive members, includes the index,
which is a mapping (stored in the archive by ar or ranlib) of what
modules contain definitions for what names.

-t radix | --radix=radix Uses radix as the radix for printing the symbol values. It must be
‘d’ for decimal, ‘o’ for octal, or ‘x’ for hexadecimal.

-u | --undefined-only Displays only undefined symbols (those external to each object
file).

-l | --line-numbers Uses debug information to display filename and line number for
symbols.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

6-8 Utilities
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

6.6 sdsize

Format –

sdsize [-A |B | --format=compatibility][-x | --
radix=number][objfile...]

Description –

The sdsize utility lists the section sizes, and the total size, for each of
the object or archive files objfile in its argument list. By default, one
line of output is generated for each object file or each module in an
archive.

objfile... are the object files to be examined. If none are specified, the
file a.out is used.

Options –

Table 6.6 sdsize Options

Option Description

-A | -B | --format=compatibility Using one of these options, you can choose whether the
output from sdsize resembles output from System V UNIX
size (using ‘-A’, or ‘--format=sysv’), or Berkeley Software
Distribution (BSD) size (using ‘-B’, or ‘--
format=berkeley’). The default is the one-line format
similar to BSD format.

--help Shows a summary of acceptable arguments and options.

-d | -o | -x | --radix=number Using one of these options, you can control whether the
size of each section is given in decimal (‘-d’, or ‘--
radix=10’); octal (‘-o’,
or ‘--radix=8’); or hexadecimal (‘-x’, or ‘--radix=16’). In
‘--radix=number’, only the three values (8, 10, 16) are
supported.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

sdstrings 6-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Example –

Here is an example of formatting the output from sdsize closer to
System V conventions:

 sdsize --format=SysV file1
file1 :
 section size addr
 .text 294880 8192
 .data 81920 303104
 .bss 11592 385024
 Total 388392

6.7 sdstrings

Format –

sdstrings [-min-len] [-n min-len] [-t radix]
[--print-file-name] [--bytes=min-len][--radix=radix]
file...

Description –

For each file given, the sdstrings utility prints the printable character
sequences that are at least 4 characters long (or the number given with
the options below) and are followed by an unprintable character. By
default, only strings from the initialized and loaded sections of object files
are printed; for other types of files, it prints the strings from the entire file.

sdstrings is mainly useful for determining the contents of nontext files.

Options –

Table 6.7 sdstrings Options

Option Description

-f | --print-file-name Prints the name of the file before each string.

-min-len | -n min-len |
--bytes=min-len

Prints sequences of characters that are at least min-len
characters long, instead of the default 4.

-t radix | --radix=radix Prints the offset within the file before each string. The single
character argument specifies the radix of the offset:‘o’ for octal,
‘x’ for hexadecimal, or ‘d’ for decimal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

6-10 Utilities
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

6.8 sdobjdump

Format –

sdobjdump
[-d | --disassemble]
[-f | --file-headers]
[-j section | --section=section]
[-h | --section-headers]
[-s | --full-contents]
[-t | --syms]
[--start-address=address]
[--stop-address=address]
[--help]
objfile...

Description –

The sdobjdump utility displays information about one or more object files.
The options control what particular information to display. This
information is most useful to programmers who are working on the
compilation tools, as opposed to programmers who just want their
program to compile and work.

objfile... are the object files to be examined. When you specify
archives, objdump shows information on each of the member object files.

Options –

The long and short forms of options, shown here as alternatives, are
equivalent. At least one option from the list must be given.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

sdobjdump 6-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 6.8 sdobjdump Options

Option Description

-d | --disassemble Displays the assembler mnemonics for the machine instructions from
objfile. This option only disassembles those sections which are
expected to contain instructions.

-f | --file-header Displays summary information from the overall header of each of the
objfile files.

-h | --section-header |
--header

Displays summary information from the section headers of the object
file. You may relocate file segments to nonstandard addresses, for
example, by using the -Ttext, -Tdata, or -Tbss options to ld.

--help Prints a summary of the options to objdump and exit.

-j name | --section=name Displays information only for named section.

--start-
address=address

Starts displaying data at the specified address. This affects the output
of the -d, -r and -s options.

--stop-address=address Stops displaying data at the specified address. This affects the output
of the -d, -r and -s options.

-t | --syms Prints the symbol table entries of the file. This is similar to the
information provided by the ‘nm’ program.

-s | --full-contents Display the full contents of any section requested in hex.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

6-12 Utilities
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

6.9 sdobjcopy

Format –

sdobjcopy
[-O bfdname | --output-target=bfdname]
[-b byte | --byte=byte]
[-i interleave | --interleave=interleave]
[--gap-fill=val]
[--pad-to=address]
[--set-start=val] [--adjust-start=incr]
infile [outfile]

Description –

The sdobjcopy utility copies the contents of an object file to another
object file. It uses the GNU BFD Library to read and write the object files.
It can write the destination object file in a format different from that of the
source object file. The exact behavior of sdobjcopy is controlled by
command-line options.

sdobjcopy generates S-records if you specify an output target of ‘srec’
(use ‘-O srec’).

sdobjcopy generates binary output if you specify an output target of
‘binary’ (use ‘-O binary’).

sdobjcopy generates a raw binary file if you specify an output target of
‘binary’ (e.g., use ‘-O binary’). When sdobjcopy generates a raw binary
file, it essentially produces a memory dump of the contents of the input
object file. All symbols and relocation information are discarded. The
memory dump starts at the load address of the lowest section copied into
the output file.

When generating an S-record or a raw binary file, it may be helpful to
use ‘-S’ to remove sections containing debugging information. In some
cases ‘-R’ is useful to remove sections which contain information which
is not needed by the binary file.

infile

outfile

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

sdobjcopy 6-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The source and output files, respectively. If you do not specify outfile,
objcopy creates a temporary file and destructively renames the result
with the name of infile.

Options –

Table 6.9 sdobjcopy Options

Option Description

-O bfdname |
--output-target=bfdname

Write the output file using the object format bfdname.

-b byte | --byte=byte Keep only every byteth byte of the input file (header data is not
affected). byte can be in the range from 0 to interleave-1, where
interleave is given by the -i or --interleave option, or the default
of 4. This option is useful for creating files to program ROM. It is
typically used with an srec output target.

-i interleave | --
interleave=interleave

Copy only one out of every interleave bytes. Select which byte to copy
with the -b or --byte option. The default is 4. objcopy ignores this
option if you do not specify either -b or --byte.

--gap-fill val Fill gaps between sections with val. This operation applies to the load
address (LMA) of the sections. It is done by increasing the size of the
section with the lower address, and filling in the extra space created
with val.

--pad-to address Pad the output file up to the load address address by increasing the
size of the last section. The extra space is filled in with the value
specified by --gap-fill (default zero).

--set-start val Set the address of the new file to val. Not all object file formats
support setting the start address.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

6-14 Utilities
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

6.10 readelf

Fomat –

readelf
[-h | --file-headers]
[-v | --version]
[-H | --help]

Description –

readelf displays information about one or more ELF format object files.
The options control what particular information to display. elffile... are the
object files to be examined.

The long and short forms of options, shown here as alternatives, are
equivalent.

Options –

Table 6.10 elfread Options

Options Description

-h | --file-header Displays the information contained in the ELF header at the start of
the file.

-v | --version Displays the version number of readelf.

-H | --help Displays the command line options understood by readelf.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 7-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 7
ZSP SDK Functional-
Accurate Simulator

This chapter describes the ZSP SDK functional-accurate simulator
(ZISIM).

ZISIM simulates the behavior of the ZSP400 and ZSPG2 cores at the
architectural level, including the memory model, the operand register file,
and the control register file.

This chapter contains the following major sections:

• Section 7.1, “Using ZISIM”

• Section 7.2, “ZISIM Commands”

• Section 7.3, “I/O Port Usage”

• Section 7.4, “Example Session Using ZISIM”

7.1 Using ZISIM

ZISIM can be accessed as a target through the debugger or as a stand-
alone program. This chapter describes the interface to ZISIM as a stand-
alone program. ZISIM can be used in batch mode or interactively, as
described in the following subsections. The commands supported in both
modes of operation are described in Section 7.2, “ZISIM Commands,”
page 7-4. Table 7.1 shows available simulators.

Table 7.1 Functional-Accurate Simulators

Name Use when simulating...

zisim400 code written for ZSP400 architecture.

zisimg2 code written for ZSPG2 architecture.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-2 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.1.1 Batch Mode

The simulator can be invoked in batch mode from the command line
using the -exec option, as shown below.

zisim400 executeable_file -exec [options]
zisimg2 executable_file -exec [options]

The simulator can also be invoked in batch mode using a script file
containing ZISIM commands that load, execute, and gather results for a
specified executable. Script files may contain any valid ZISIM
commands. Comments must be preceded by the comment specifier (#).
ZISIM ignores all commands between the # character and the end of
line. ZISIM also ignores empty lines.

A simple script file that turns on instruction tracing and then executes the
program test.exe is shown below.

load test.exe
enable trace write
run 100000
exit

Assuming the file batch.scr contains the commands shown above, you
can generate a trace file for test.exe as follows:

zisim400 -s batch.scr > test.trace
or
zisimg2 -s batch.scr > test.trace

Refer also to Section 7.2.21, “script,” page 7-16.

7.1.2 Interactive Mode

In interactive mode, ZISIM is invoked from the shell using the following
command:

zisim400 [executable_file] [options]

or

zisimg2 [executable_file] options

An executable file may or may not be specified, followed by zero or more
command-line options separated by spaces The executable file is a ZSP
binary file generated using the SDK compiler, assembler, and linker tools,

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Using ZISIM 7-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

as explained in other chapters of this document. ZISIM processes the
source file according to the specified command-line options (refer to
Table 7.2). If no options are specified, ZISIM initializes itself, then
displays the ZISIM prompt:

zisim{1}>

The simulator is now ready to accept and respond to ZISIM commands,
which are described in Section 7.2, “ZISIM Commands.”. An executable
file may be loaded from within ZISIM using the load exe command.

An example interactive simulation session is described in Section 7.4,
“Example Session Using ZISIM.” Refer also to the description of using
ZISIM as the target of the SDK’s Debugger in Section 9.2.1, “Functional-
Accurate Simulator Connection.”

Table 7.2 ZISIM Command-Line Options

Option Description

-c NUM Limits number of executed instructions to NUM. By default, NUM =
2,000,000,000. Execution continues until a breakpoint is reached or
the number of executed instructions hit the limit. Use this option to
ensure termination of an algorithm.

-h Prints brief usage summary.

-i mode_register=value Initializes an architectural control (mode) register with specified value.
The control register is written without its usual percent (%) sign, and
there are no spaces around the equal sign (=). For example, the option
to set %SMODE control register is:
-i smode=0x1234.
The option to set r0 register is
-i r0=0x9876.
Refer to Appendix B, "ZSP400 Control Registers" for information on
ZSP400 core-based device control registers.

-ignore Ignore run-time warning messages such as uninitialized memory
accesses, invalid circular buffer size.

-m Enables memory trace. ZISIM prints a trace of the execution program
to standard output whenever a write to a memory occurs. The format
of this output is similar to option -t.

-noiboot Fetches instructions from external ROM space. If you do not specify
this option, instructions are fetched from internal ROM space. ROM is
mapped from 0xF800 to 0xFFFF. This option is specific to zisim400.

-radix {dec|hex} Displays data in specified radix, either decimal or hexadecimal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-4 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.2 ZISIM Commands

This section describes commands recognized by the ZISIM command
line. Table 7.3 provides a brief summary of commands. The output of any
ZISIM command can be sent to a file using the standard redirection
identifier (>). For example, the command show attr > filename dumps
the output of the show command to filename.

-reg Enables register trace. All the architectural registers are displayed after
executing an instruction.

-s sourcefile Reads all the simulator commands from file.

-t Enables flow trace. ZISIM prints a trace of the executing program to
standard output. The information printed includes the instruction
sequence number, instruction address, the disassembled instruction
and operands, and the resulting architectural state. Example output for
the -t option is shown in Section 7.4, “Example Session Using
ZISIM,” page 7-25.

-exec Invokes the simulator in noninteractive mode.

-v Prints version number and exit.

-cl arg1 ... argn Pass any command line arguments after -cl to the program.

Table 7.2 ZISIM Command-Line Options (Cont.)

Option Description

Table 7.3 ZISIM Command Summary

Command Modifier Argument Description

alias – [tag command_sequence] Creates alias (tag) for command
sequence.

clear break breakpoint_number Clears specified breakpoint.

dmem {int | ext} addr size Clears internal or external data memory.

imem {int | ext} addr size Clears internal or external instruction
memory.

stats – Clears statistics information.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

disable break breakpoint Disables specified breakpoint.

trace {mem | reg | write} Disables run-time instruction tracing.

warning - Disables run-time warning messages
such as uninitialized memory accesses
or invalid circular buffer size.

dump dmem {int | ext} filename addr size Dumps internal or external data memory
range to a text file.

imem {int | ext} filename addr size Dumps internal or external instruction
memory range to a text file.

enable break breakpoint_number Enables breakpoint.

trace {mem | reg | write} Enables run-time instruction tracing.

warning - Enables run-time warning messages
such as uninitialized memory accesses
or invalid circular buffer size.

exit – – Exits simulation session.

fill dmem {int | ext} addr size value Fills internal/external data memory range
with value.

imem {int | ext} addr size value Fills internal/external instruction memory
range with value.

help – {category | command} Prints list of commands in a category or
command usage.

load dmem {int | ext} filename addr size Loads internal/external data memory
from file.

exe filename Loads ZSP executable into instruction
memory from file.

imem {int | ext} filename addr size Loads internal/external instruction
memory from file.

reset – {hard | soft} Resets simulator.

run – [number_of_instructions] Runs for specified number of simulation
instructions.

script – filename Loads and execute ZISIM script file.

Table 7.3 ZISIM Command Summary (Cont.)

Command Modifier Argument Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-6 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

set args arg1 arg2 ... argn Pass arg1 to argn to the program as run-
time arguments.

attr {history | radix | run} value Assigns value to specified attribute.

break pc addr Creates a new breakpoint at the
specified PC address.

break symbol label Creates a new breakpoint at the
specified label.

reg register value Assigns value to specified register.

show attr {run | history | radix | version} Shows value of the specified attribute.

bits register Displays the bit-level states for the
specified register.

break – Displays list of defined breakpoints.

dmem {int | ext} addr size Shows contents of a region of
internal/external data memory.

imem {int | ext} addr size Shows contents of a region of
internal/external instruction memory.

reg {category | reg}... Shows contents of register or register
set.

stats [opcode] Shows current run-time statistics.

trace – Shows trace information during
simulation.

step – – Advances simulation by one instruction.
Same as run 1.

unalias – alias Deletes alias.

Table 7.3 ZISIM Command Summary (Cont.)

Command Modifier Argument Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.2.1 alias

This command allows the user to create ZISIM commands by aliasing
new commands to existing commands or sequences of commands.
Sequences of commands must be contained in quotes and separated by
semicolons. Issuing the alias command without arguments shows all
current aliases.

Format –

alias tag command_sequence

Examples –

zisim{32} alias r0 show reg r0
zisim{32} alias adv “step ; show pipe ; show reg gpr”
zisim{32} alias
adv step ; show pipe ; show reg gpr

Table 7.4 ZISIM400 Specific Commands

Command Modifier Argument Description

set size [dmem|imem] size Set internal instruction or internal data
memory size starting from 0. Default size
is maximum value of 0xF800 words.

show size [dmem|imem] Show size of internal instruction or data
memory.

Table 7.5 ZISIMG2 Specific Commands

Command Modifier Argument Description

set size [dmem|imem] [int|ext]
beg_value end_value

Set the size of internal/external instruc-
tion or data memory starting from
beg_value to end_value including the
boundary. Each memory block could
overlap one another. Default value for
each of them is from 0 to 0x00FF.FFFF
words.

show size [dmem|imem] [int|ext] Show the current size of internal/exter-
nal instruction or data memory.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-8 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

r0 show reg r0
zisim{33}

7.2.2 clear break

This command deletes a breakpoint from the current list of defined
breakpoints. The breakpoint number is assigned when a breakpoint is
set. Use the show break command to display a list of breakpoints.

Format –

clear break breakpoint_number

Example –

zisim{32} clear break 5

7.2.3 clear dmem

This command clears the contents of internal or external data memory.
You specify internal or external memory, the starting address, and the
size of the region to clear.

Format –

clear dmem {int|ext} addr size

Example –

zisim{32} clear dmem int 0x1000 0x0100

7.2.4 clear imem

This command clears the contents of internal or external instruction
memory. You specify internal or external memory, the starting address,
and the size of the region to clear.

Format –

clear imem {int|ext} addr size

Example –

zisim{32} clear imem ext 0x7000 0x1000

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.2.5 clear stats

This command clears all run-time statistic information.

Format –

clear stats

7.2.6 disable break

This command disables a breakpoint from the list of active breakpoints.
Use the show break command to display a list of current breakpoints.

Format –

disable break breakpoint_number

Example –

zisim{32} disable break 4

7.2.7 disable trace

This command disables specified trace. See the enable trace command
for a description of the trace types.

Format –

disable trace {mem|reg|write}

Examples –

zisim{32} disable trace pipe
zisim{32} disable trace reg

7.2.8 dump dmem

This command generates a text file representing the contents of the
specified address range of internal or external data memory. You specify
internal or external memory, the starting address, and the size of the
region to dump.

Format –

dump dmem {int|ext} filename addr size

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-10 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Example –

zisim{32} dump dmem ext data.dat 0x0000 0xffff
% cat data.dat
0000 /* 0x0000 */
0000 /* 0x0001 */
0000 /* 0x0002 */
0000 /* 0x0003 */
0000 /* 0x0004 */
0000 /* 0x0005 */
0000 /* 0x0006 */
...
28e2 /* 0x00fd */
2f6a /* 0x00fe */
325d /* 0x00ff */
%

7.2.9 dump imem

This command generates a text file representing the contents of the
specified address range of internal or external instruction memory. You
specify internal or external memory, the starting address, and the size of
the region to dump.

Format –

dump imem {int|ext} filename addr size

Example –

zisim{32} dump imem int imem.dat 0x1000 0x30

% cat imem.dat
0000 /* 0x1000 */
0000 /* 0x1001 */
0000 /* 0x1002 */
0000 /* 0x1003 */
...
0000 /* 0x102c */
0000 /* 0x102d */
0000 /* 0x102e */
0000 /* 0x102f */
%

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.2.10 enable break

This command enables a breakpoint from the current list of defined
breakpoints. Use the show break command to display a list of current
breakpoints.

Format –

enable break breakpoint_number

Example –

zisim{32} enable break 1

7.2.11 enable trace

This command enables a predefined trace type. There are three types of
predefined runtime tracing. Run-time traces generate text output
instruction by instruction. The three trace types are:

• write

Displays architectural state changes associated with memory or
registers for each instruction in the following formats:

(seqID) PC Opcode Instruction ! register=value

(seqID) PC Opcode Store Instruction ! [Memory-Address]=value

(seqID) PC Opcode Load Instruction ! register=value [Memory-Address]

(seqID) PC Opcode Branch Instruction ! direction, result

seqID: unique ascending sequence number for each instruction.

PC: address of instruction in memory.

Instruction: disassembled instruction.

Register: architecture register name.

Direction: direction for a discontinuity instruction such as branch or
conditional execution. Direction is either forward, or backward and
the result is either taken or not taken.

For example,

(1) 0x000002 6200 mov %fmode, r0 !fmode=0x0014

Instruction mov %fmode, r0 modifies %fmode to value 0x0014.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-12 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• mem

Displays address and data for any memory location which is
updated. Information is generated after the instruction is executed.
This option is a subset of ‘enable trace write’ because it does not
display register updates.

• reg

Displays all registers and register values for every instruction.

Format –

enable trace {mem|reg|write}

Example –

zisim{32} enable trace write

7.2.12 exit

This command terminates the current simulation session.

Format –

exit

7.2.13 fill dmem

This command fills internal or external data memory range with specified
value. You specify internal or external memory, the starting address, and
the size of the region to fill.

Format –

fill dmem {int|ext} addr size value

Example –

zisim{32} fill dmem ext 0x1000 0xff 0x0505

7.2.14 fill imem

This command allows you to specify internal or external memory, the
starting address, and the size of the region to fill.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

fill imem {int|ext} addr size value

Example –

zisim{32} fill imem ext 0x1000 0xff 0x0505

7.2.15 help

This command displays help information. Help is available for individual
commands as well as for command categories. Specifying a command
displays the description and usage for that command. Requesting help
for a specified category displays the instructions associated with that
category. Commands are categorized according to their function (for
instance, all show commands).

Issuing the help command with no other specifiers displays help on the
command categories.

Format –

help [category|command]

Examples –

zisim{32} help
zisim{32} help all
zisim{32} help show
zisim{32} help show reg

7.2.16 load dmem

This command loads internal or external data memory from a specified
text file. You specify internal or external memory, the starting address,
and the size of the region to load. The format of the text file should be
the same as the file produced by the dump command. The first column
contains the data that is loaded, with each data on a single line. Data
must be in hex format without 0x prefix. Comments must be enclosed by
/* */ characters.

Format –

load dmem {int|ext} filename addr size

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-14 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Example –

zisim{32} load dmem int data.dat 0x1000 0x0fff

The output format of the file is:

%cat data.dat
2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a00f /* 0x0004 */
80c0 /* 0x0005 */
...

7.2.17 load exe

This command loads a valid ZSP executable into instruction memory.
This command performs the same function as specifying the executable
filename when ZISIM is invoked. Without the filename specified, this
command reloads the previous executable program into memory.

Format –

load exe {filename}

Example –

zisim{32} load exe test.exe
or

zisim{32} load test.exe

7.2.18 load imem

This command loads internal or external instruction memory from a
specified text file. You must specify internal or external memory, the
starting address, and the size of the region to load. You must ensure that
the format of the text file is the same as the file produced by the dump
command. The first column contains the data that is loaded, with each
data on a single line. Data must be in hex format without the 0x prefix.
Comments must be enclosed by /* */ characters.

Format –

load imem {int|ext} filename addr size

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-15
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Example –

% cat inst.txt
2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a00f /* 0x0004 */
80c0 /* 0x0005 */
bc4c /* 0x0006 */
6f4c /* 0x0007 */

zisim{32} load imem int inst.txt 0x1000 8

7.2.19 reset

This command resets the state of the simulator. A soft reset initializes all
aspects of the simulator except the memory. A hard reset also initializes
memories. Issuing the reset command without options performs a soft
reset.

Format –

reset [soft|hard]

Examples –

zisim{32} reset soft
zisim{32} reset hard

The reset command does not reload the program into memory. To
restart the program, perform one of the following sequences of
commands:

zisim{32} reset
zisim{32} set reg pc <start_address>

or

zisim{32} reset hard; load
zisim{33} load

Note: zisimg2 does not support the soft reset feature.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-16 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.2.20 run

This command advances the simulator the specified number of
instructions. The simulator uses the value of the run attribute if no
instruction count is specified. Simulation halts if the instruction count is
reached, the maximum instruction count is reached, or a system halt
occurs.

Format –

run [number_of_instructions]

Examples –

zisim{32} run
zisim{32} run 100

7.2.21 script

This command loads and processes the script file. Script files may
contain any valid ZISIM commands. Comments are allowed in the script
file; the comment specifier is the # character. ZISIM ignores all
commands between the # character and the end of line. Empty lines are
also ignored.

Format –

script filename

Example –

zisim{32} script standard.scr

Sample Script File –

A simple script is shown following.

This example script demonstrates how to turn on
instruction tracing using a command.
load test.exe
enable trace write
run
exit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-17
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.2.22 set attr

This command allows you to set three internal ZISIM variables. Table 7.6
shows the configurable ZISIM attributes.

Format –

set attr [history|radix|run] value

Examples –

zisim{32} set attr run 1000
zisim{32} set attr radix hex

7.2.23 set break

This command creates and enables a new breakpoint at a specified
address. Execution halts when the PC reaches the specified address.
When a new breakpoint is created, ZISIM tags it with a breakpoint
number which is used for other breakpoint commands (use the show
break command to view a list of current breakpoints).

Format –

set break pc addr
set break symbol label

Example –

zisim{2} set break pc 0x0010

Table 7.6 Configurable ZISIM Attributes

Attribute Value Description

history any integer Number of commands to maintain in history
buffer.

radix [int | hex] Radix (integer or hexadecimal) used to generate
output.

run any integer Default instruction count for the run command
(when issuing the run command with no
argument). If undefined, the default value of the
run attribute is 2,000,000,000.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-18 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Breakpoint 1 on PC at address 0x0010
zisim{3} set break symbol main
Breakpoint 2 on PC at address 0xf9b9 of main

7.2.24 set reg

This command assigns a value to the specified register.

Format –

set reg register value

Example –

zisim{32} set reg r0 0x1234

7.2.25 set size

This command is slightly different for the two ZSP architectures.

7.2.25.1 zisim400

This command sets the size of internal data memory or instruction
memory. The default size of internal data or instruction memory is 63488
words (62K words), which is also the maximum size that can be set.

This command does not apply to external memory. (The simulator has
1M words for each external instruction and external data memory.)

Format –

set size {dmem|imem} size

Examples –

zisim{32} set size dmem 0x4000

This command sets the size of internal data memory to 16 Kwords.

zisim{32} set size imem 0x4000

This command sets the size of internal instruction memory to 16 Kwords

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-19
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.2.25.2 zisimg2

This command sets the size of internal/external data memory or
instruction memory. The default size of internal/external data or
instruction memory is 0xFF.FFFF words (16M words) starting from 0,
which is also the maximum size that can be set.

This command does not apply to external memory. (The simulator has
1M words for each external instruction and external data memory.)

Format –

set size {dmem|imem} {int|ext} beg_value end_value

Examples –

zisim{32} set size dmem int 0 0xffff

This command sets the size of internal data memory to 16 Kwords.

zisim{32} set size imem int 0 0xffff

This command sets the size of internal instruction memory to 16 Kwords.

7.2.26 show attr

This command shows the value of the specified attribute. You can view
the value of the three attributes which are configurable with the set attr
command as well as view version information for ZISIM.

Format –

show attr {run|history|radix|version}

Example –

zisim{1} show attr run
zisim{2} show attr history
zisim{3} show attr radix
zisim{4} show attr version

7.2.27 show bits

This command displays the bit and field values for the specified register.
Do not use the % specifier for control registers.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-20 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

show bits register

Example –

zisim{32} show bits hwflag
hwflag = 0x0000

 er: 0
 ex: 0
 ir: 0
 z: 0
 gt: 0
 ge: 0
 c: 0
 gsv: 0
 sv: 0
 gv: 0
 v: 0

7.2.28 show break

This command displays the list of currently defined breakpoints.

Format –

show break

Example –

zisim{32} show break
Num ID Address Status

 2 PC 0x2000 Active
 1 PC 0xf9b9 Active

7.2.29 show dmem

This command displays a range of internal or external data memory. You
must specify internal or external memory, the starting address, and the

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-21
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

size of the region to display. The default settings for the show dmem
command are shown in Table 7.7.

Format –

show dmem {int|ext} addr size

Example –

zisim{32} show dmem int 0xf000 0x10

For zisimg2, you can use a symbol instead of an absolute address value.

zisim{1} show dmem int array1 20

7.2.30 show imem

This command displays a range of internal or external instruction
memory. You specify internal or external memory, the starting address,
and the size of the region to show. The size and addr fields may be
omitted, in which case defaults are used. The default settings for the
show imem command are shown in Table 7.8.

Format –

show imem {int|ext} [addr] [size]

Example –

Table 7.7 Default Arguments for show dmem

Argument Value

{int | ext} int

addr 0x0

size 16

Table 7.8 Default Arguments for show imem

Argument Value

{int | ext} int

addr 0x0

size 16

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-22 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

zisim{32} show imem int 0xf000 0x10

For zisimg2, you can use a symbol instead of an absolute address value.

zisim{1} show imem int foo_function 20

7.2.31 show reg

This command displays the value of a specified register or the value of
a category of registers. More than one category and/or register can be
specified. The register categories are:

• gpr

All general purpose registers, r0–r15.

• cfg

All control registers (such as %smode and %hwflag). Do not include
the percent sign (%) in the register name.

• addr

All address and index registers for the ZSPG2 architecture. Thus, it
is specific for zisimg2.

Format –

show reg {category|register} ...

Examples –

zisim{32} show reg
zisim{32} show gpr
zisim{32} show cfg r0
zisim{32} show gpr hwflag smode

7.2.32 show size

Like set size, this command is slightly different for the two ZSP
architectures.

7.2.32.1 zisim400

This command shows the size of internal data or instruction memory. The
output is not affected by the radix attribute.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZISIM Commands 7-23
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

show size {dmem|imem}

Examples –

zisim{32} show size dmem
zisim{32} show size imem

7.2.32.2 zisimg2

This command shows the size of internal/external data or instruction
memory. The output is not affected by the radix attribute.

Format –

show size {dmem|imem}{int|ext}

Examples –

zisim{32} show size dmem int
zisim{32} show size imem int

7.2.33 show stats

This command displays run-time statistics collected by ZISIM. If no
argument is specified, ZISIM displays overall statistical information. If the
opcode argument is specified, ZISIM displays instruction opcode
statistics.

Format –

show stats [opcode]

Examples –

zisim{32} show stats
zisim{32} show stats opcode

7.2.34 show trace

This command shows currently enabled/disabled trace information.
Traces currently set to ON are enabled during simulation.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-24 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

show trace

Example –

zisim{32} show trace
***(info) Supported trace information:
 - Instruction trace: OFF

 - Register trace: OFF
 - Memory trace: OFF

zisim{33}> enable trace write
***(info) Instruction trace is ON.
zisim{34}> show trace
***(info) Supported trace information:
 - Instruction trace: ON
 - Register trace: OFF
 - Memory trace: OFF

7.2.35 step

This command single-steps the simulator. Issuing the step command is
equivalent to issuing the command run 1.

Format –

step

Example –

zisim{32} step

7.2.36 unalias

This command deletes an alias. (Use the alias command to display a
list of currently defined aliases.)

Format –

unalias alias

Example –

zisim{32} unalias adv

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

I/O Port Usage 7-25
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

7.3 I/O Port Usage

ZISIM400 models serial I/O as a memory-mapped device. Programs
perform terminal I/O by reading from and writing to the appropriate
address locations. The simulator defines two serial ports and one host
processor interface (HPI) port. Each port has a transmit buffer and a
receive buffer. Table 7.9 shows the memory addresses and
corresponding files for the I/O ports for the LSI402ZX, LSI403Z, and
ZSP400-core based devices.

The format of input and output files is the same. Data must be in decimal
digits, with each data on a single line. If the input file is not present in
the current running directory at the time of the request, the simulator
prints an error message to standard output and exits.

7.4 Example Session Using ZISIM

This section contains an example simulation session using ZISIM400 in
interactive mode. A simulation session using zisim for other architectures
is similar.

In the example simulation, demo.exe is invoked using the -t (enable
trace) command-line option. Trace information is displayed in five fields:

(0) 0x2000 2cfb movl r12, 0xfb ! r12 = 0x00fb

• The first field is the instruction sequence number (in parenthesis).

• The second field is the program counter (PC) of the executed
instruction.

Table 7.9 I/O Device Memory Map and Associated Files

I/O Port

Read Write

Address File Address File

Serial Port 0 0xF901 sp0in 0xF900 sp0out

Serial Port 1 0xFA01 sp1in 0xFA00 sp1out

Host Interface Port 0xFB01 hpiin 0xFB00 hpiout

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-26 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• The third field is the instruction opcode.

• The fourth field is the disassembled instruction, including operands.

• The fifth field describes the result of the executed instruction.

The trace shown in this example is for the ZSP400 core. The text is
linked and loaded at 0x2000.

(shell prompt) zisim400 demo.exe -t

 ZISIM 1.206
 ZSP400
 Instruction Set Simulator

 LSI Logic

***(info) Starting address: 0x2000
.text : Loading to INT-INST memory ... 0x2000 -> 0x2950 (0x0951)
.data : Loading to INT-DATA memory ... 0x0001 -> 0x005f (0x005f)
Loading "demo.exe" successfully.
zisim{1}_

If you do not specify a test for initialization, you can load a test from the
ZISIM command line. Check the contents of the instruction memory to
confirm proper loading of the test. These steps are demonstrated
following.

zisim{1}show imem int 0x2000 4
0x2000 0x2cfb movl r12, 0xfb
0x2001 0x3cf7 movh r12, 0xf7
0x2002 0xa6d0 mov r13, 0x0
0x2003 0x2460 movl r4, 0x60
zisim{2}> _

Instruction fetch begins at the entry point you specify in an executable
program. You can change this before execution begins by setting the PC
to the desired value using the set reg command.

The simulator output following demonstrates use of the PC breakpoint: a
breakpoint is set for address 0x10 and the simulator advances until the
PC reaches address 0x10.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Session Using ZISIM 7-27
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

zisim{3}> set break pc 0x2050
Breakpoint 1 on PC at address 0x2050
zisim{4}> set break symbol main
Breakpoint 2 on PC at address 0x2010 of main
zisim{5}> run
(0) 0x2000 2cfb movl r12, 0xfb ! r12 = 0x00fb
(1) 0x2001 3cf7 movh r12, 0xf7 ! r12 = 0xf7fb
(2) 0x2002 a6d0 mov r13, 0x0 ! r13 = 0x0000
(3) 0x2003 2460 movl r4, 0x60 ! r4 = 0x0060
(4) 0x2004 3400 movh r4, 0x0 ! r4 = 0x0060
(5) 0x2005 bc54 mov r5, r4 ! r5 = 0x0060
(6) 0x2006 a051 add r5, 0x1 ! hwflag = 0x0030
(6) 0x2006 a051 add r5, 0x1 ! r5 = 0x0061
(7) 0x2007 6054 st r5, r4, 0 ! INT-DATA[0x0060] = 0x0061
(8) 0x2008 bb1d mov rpc, r13 ! rpc = 0x0000
(9) 0x2009 2510 movl r5, 0x10 ! r5 = 0x0010
(10) 0x200a 3520 movh r5, 0x20 ! r5 = 0x2010
(12) 0x200c a750 call r5 ! rpc = 0x200d
(PC BREAKPOINT #2)................ Instruction Count=000013 PC=0x2010
zisim{6}> show reg gpr
 r0 = 0x0000 r1 = 0x0000
 r2 = 0x0000 r3 = 0x0000
 r4 = 0x0060 r5 = 0x2010
 r6 = 0x0000 r7 = 0x0000
 r8 = 0x0000 r9 = 0x0000
 r10 = 0x0000 r11 = 0x0000
 r12 = 0xf7fb r13 = 0x0000
 r14 = 0x0000 r15 = 0x0000
zisim{7}> disable trace write

After the final command, the simulator no longer prints the instruction
flow trace.

zisim{8}> run
Hello World!
(SYSTEM HALT)..................... Instruction Count=000673 PC=0x200e

Execution halts when a breakpoint is reached, a system halt occurs, or
the maximum instruction count is reached. A system halt sets halt mode
as defined by the %smode control register. Execution statistic information
can be seen by using show stats command.

zisim{9}> show stats
 673 instructions executed
 88 load instructions (13.08%)
 65 - single (9.66%)
 23 - double (3.42%)
 56 store instructions (8.32%)
 37 - single (5.50%)
 19 - double (2.82%)
 104 discontinuities (15.45%)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

7-28 ZSP SDK Functional-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

 15 - calls (2.23%)
 63 - conditional (9.36%)
 10 - agnx (1.49%)
 25 mispredicts (39.68% of conditional branch)

Terminate the simulation session with the exit command.

zisim{10}> exit
***(info) Exiting ZISIM.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 8-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 8
ZSP SDK Cycle-Accurate
Simulator

This chapter describes the ZSP SDK Simulator (ZSIM).

ZSIM is a cycle-accurate simulator for ZSP400 and ZSPG2 architecture-
based devices. ZSIM models the architectural features necessary for
cycle-by-cycle tracing of architectural state, including the execution
pipeline, instruction and data caches, internal and external
instruction/data memories, and register files.

This chapter contains the following major sections:

• Section 8.1, “Using ZSIM”

• Section 8.2, “ZSIM Commands”

• Section 8.3, “I/O Port Usage”

• Section 8.4, “Example Session Using ZSIM”

8.1 Using ZSIM

ZSIM can be accessed either as a target through the debugger or as a
stand-alone program. This chapter describes the interface to ZSIM as a
stand-alone program. ZSIM can be used in batch mode or interactively,
as described in the following subsections. The commands supported in
both modes of operation are described in Section 8.2, “ZSIM
Commands,” page 8-6. For the debugger target ZSIM, see Chapter 9,
“Debugger.“ Table 8.1 shows available cycle-accurate simulators.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-2 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.1.1 Batch Mode

The simulator can be invoked in batch mode from the command line
using the -exec option, as shown following:

zsim[400/g2] executeable_file -exec [options]

The simulator can also be invoked in batch mode using a script file
containing ZSIM commands that load, execute, and gather results for a
specified executable. Script files may contain any valid ZSIM commands.
Comments are allowed and must be preceded by the comment specifier
(#). ZSIM ignores all commands between the # character and the end of
line. ZSIM also ignores empty lines.

A simple script file that turns on instruction tracing and then executes the
program test.exe is shown following:

load test.exe
enable trace write
run 100000
exit

Assuming the file batch.scr contains the commands shown above, a
trace file for test.exe could be generated as follows:

zsim400 -s batch.scr > test.trace

or

zsimg2 -s batch.scr > test.trace

Refer also to Section 8.2.26, “script,” page 8-26.

Table 8.1 Cycle-Accurate Simulators

Name Use when Simulating...

zsim400 code written for ZSP400 architecture.

zsimg2 code written for ZSPG2 architecture.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Using ZSIM 8-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.1.2 Interactive Mode

In interactive mode, ZSIM is invoked from the command line using the
following command:

For ZSP400 architecture:

zsim400 [executable_file] [options]

For ZSPG2 architecture:

zsimg2 [executeable_file] [options]

You may optionally specify an executable file, followed by zero or more
command-line options, which must be separated by spaces. The
command line options are processed on a first-come, first-serve basis.

The executable file is a ZSP binary file generated using the SDK
compiler, assembler, and linker tools, as explained in other chapters of
this document. ZSIM processes the source file according to the specified
command-line options (refer to Table 8.2).

If no options are specified, ZSIM initializes itself, then displays the ZSIM
prompt:

zsim{1}>

The simulator is now ready to accept and respond to ZSIM commands,
which are described in Section 8.2, “ZSIM Commands” on page 8-6. An
executable file may be loaded from within ZSIM using the load exe
command.

An example interactive simulation session is described in Section 8.4,
“Example Session Using ZSIM” on page 8-40. Refer also to the
description of using ZSIM as the target of the SDK Debugger in
Section 9.2.2, “Cycle-Accurate Simulator Connection,” page 9-4.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-4 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 8.2 ZSIM Command-Line Options

Option Description

-exec Invokes the simulator in noninteractive mode.

-c num Specifies maximum cycle count. Execution terminated after num
cycles.

-h Prints brief usage summary.

-i mode_register=value Initializes an architectural control (mode) register with the specified
value. The control register is written without its usual percent (%) sign,
and there are no spaces around the equal sign (=). For example, the
option to set the %smode control register is:
-i smode=0x1234.
The option to set the r0 register is:
-i r0=0x9876.
Refer to Appendix B, “ZSP400 Control Registers,“ for information on
ZSP400 core-based device control registers or Appendix C, “ZSPG2
Control Registers,“

-ignore Ignores run-time warning messages such as uninitialized memory
accesses, invalid circular buffer size.

-m Turns on memory trace.

-p Turns on pipeline trace.

-pf Turns on all profile information.

-pfiu Turns on instruction unit profile information.

-pfpipe Turns on pipeline unit profile information.

-q Suppresses startup banner.

-radix {dec | hex} Displays data in the specified radix, either decimal (dec) or
hexadecimal (hex).

-reg Turns on register trace.

-s sourcefile Executes the specified script file following initialization.

-t Turns on instruction trace.

-v Prints ZSIM version number.

-cl arg1 ... argn Passes any command-line arguments after -cl to the program.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Using ZSIM 8-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 8.3 Command-Line Options Specific to zsim400

Options Description

-wed num Sets EXT-DATA memory wait state to be num. Default is 1.

-wei num Sets EXT-INST memory wait state to be num. Default is 1.

-sid num Sets INT-DATA memory size to be num. Default is 63488 words.

-sii num Sets INT-INST memory size to be num. Default is 63488 words.

-mempcr num Sets the MEMPCR address to be num. Default is 0xF807.

-nomempcr Indicates that the system does not have MEMPCR.

-noiboot Sets the IBOOT signal LOW to boot from external ROM. If this option is not speci-
fied, instructions are fetched from internal ROM space. ROM is mapped from 0xF800
to 0xFFFF.

-pfdu Turns on data unit profile information.

Table 8.4 Command-Line Options Specific to zsimg2

Options Description

-pflsu Turns on Load Store Unit profile information.

-tic Turns on instruction cache trace every cycle.

-svtadd ADDR Sets system vector table address to be ADDR.

-idealmss Uses ideal memory subsystem with zero delay for internal memory and no
checking for banking conflict between two data access ports.

-bimlib LIBNAME Uses bus interface library LIBNAME to run in cosimulation environment such as
SWIFT or CVE Seamless.

-msslib LIBNAME Uses a different memory subsystem library LIBNAME other than default. The
default library is libzmiug2.

-cpilib LIBNAME Uses coprocessor library LIBNAME. SDK tools come with an example G711
coprocessor library called libzcpig711.so on Solaris or libzcpig711.dll on
Windows platforms.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-6 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2 ZSIM Commands

The ZSIM commands are described briefly in Table 8.5 and in detail in
the following subsections.

The output of any ZSIM command can be sent to a file using the
standard redirection identifier (>). For example, the command
show attr > mydisplay writes the output of the show command in the
file mydisplay.

Table 8.5 ZSIM Command Summary

Command Modifier Argument Description

4
0
0

G
2

alias – [tag command_sequence] Creates alias (tag) for command
sequence.

x x

clear break breakpoint_number Clears specified breakpoint. x x

dcache – Invalidates data cache. x

dmem {int | ext} addr size Clears internal or external data
memory.

x x

icache – Clears instruction cache. x

imem {int | ext} addr size Clears internal or external
instruction memory.

x x

pipe – Invalidates the pipeline. x x

stats – Clears run-time statistics. x x

opcode Clears opcode run-time statistics. x

(Sheet 1 of 6)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

disable break breakpoint_number Disables specified breakpoint. x x

profile du Disables data unit profile
information.

x

iu Disables instruction unit profile
information.

x x

lsu Disables load store unit profile
information.

x

pipe Disables pipeline unit profile
information.

x x

resource Disables resource profile
information

x

trace {write | pipe | reg|mem} Disables run-time tracing. x x

icache Disables instruction cache run-
time tracing.

x

warning – Disables run-time warning
messages such as uninitialized
memory accesses or invalid
circular buffer size.

x x

dump dmem {int | ext} filename addr size Dumps internal or external data
memory to a text file filename.

x x

imem {int | ext} filename addr size Dumps internal or external
instruction memory to a text file
filename.

x x

Table 8.5 ZSIM Command Summary (Cont.)

Command Modifier Argument Description

4
0
0

G
2

(Sheet 2 of 6)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-8 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

enable break breakpoint_number Enables breakpoint. x x

profile du Enables data unit profile. x

iu Enables instruction unit profile. x x

lsu Enables load store unit profile. x

pipe Enables pipeline unit profile. x x

resource Enables resource profile. x

trace {mem | pipe | reg | write} Enables run-time cycle tracing. x x

icache Enables instruction cache run-
time tracing.

x

warning – Enables run-time warning
messages such as uninitialized
memory accesses or invalid
circular buffer size.

x x

exit – – Exits simulation session. x x

fill dmem {int | ext} addr size value Fills internal/external data
memory segment with value.

x x

imem {int | ext} addr size value Fills internal/external instruction
memory segment with value.

x x

help – {category | command} Prints list of commands in a
category or command usage.

x x

istep – [number_of_instructions] Advances the simulator by one
instruction for zsim400.
For G2, you can specify the
number of instructions.

x x

load dmem {int | ext} filename addr Loads internal/external data
memory from file.

x x

exe filename Loads ZSP executable into
instruction memory.

x x

imem {int | ext} filename addr Loads internal/external instruction
memory from file.

x x

reset hard {hard | soft} Resets simulator (hard or soft
– is only applied for zsim400).

x x

Table 8.5 ZSIM Command Summary (Cont.)

Command Modifier Argument Description

4
0
0

G
2

(Sheet 3 of 6)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

run – [number_of_cycles] Runs for specified number of
simulation cycles.

x x

script – filename Loads and executes ZSIM script
file.

x x

set args arg1 arg2 ... argn Passes arg1 to argn to the
program as run-time arguments.

x x

attr {history | radix | run} value Assigns value to specified
attribute.

x x

addrwidth value Assigns value from 1 to 32 to
address width. Default is 24 bits.

x

break pc addr Creates a new breakpoint at the
specified PC address.

x x

break symbol label Creates a new breakpoint at the
specified label.

x x

delay [edata|einst] num Sets wait state for external
memory. Default for both external
data and instruction memory is 1.

x

latency [dmem|imem] [int|ext] num Sets wait state latency for
internal/external instruction or
data memory. Default value for
internal memory is 1 and external
memory is 5.

x

reg register value Assigns value to specified
register.

x x

size [dmem|imem] size Sets internal instruction or data
memory size starting from 0.
Default size is maximum value of
0xF800 words.

x

[dmem|imem] [int|ext]
beg_value end_value

Sets the size of internal/external
instruction or data memory
starting from beg_value to
end_value including the
boundary. Each memory block
could overlap one another.
Default value for each of them is
from 0 to 0x00FF.FFFF words.

x

Table 8.5 ZSIM Command Summary (Cont.)

Command Modifier Argument Description

4
0
0

G
2

(Sheet 4 of 6)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-10 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

show attr {history | radix | run | version} Shows value of the specified
attribute.

x x

bits register Displays the bit-level states for
the specified register.

x x

break – Shows list of defined breakpoints. x x

dcache – Show data cache contents. x x

dmem { int | ext} addr size Shows contents of a region of
internal/external data memory.

x x

icache – Shows current instruction cache
contents.

x x

imem {int | ext} addr size Shows contents of a region of
internal/external instruction
memory.

x x

operand instruction_number Shows operand values of an
instruction currently in the pipe.
Instructionnumber can be
obtained by looking at the output
of show pipe command.

x

pred – Shows static branch prediction
table.

x

pipe – Shows contents and state of
execution pipeline.

x x

profile – contents of register or registe Displays supported profile
information.

x x

reg {category | reg}... Shows contents of register or
register set.

x x

rule – Shows the affected grouping rule
in the current cycle.

x x

size {dmem | imem} [int|ext] Shows size of data or instruction
memory.

x x

stats <incremented | opcode> Shows current run-time statistics. x x

grouping Displays the statistic of grouping
rule.

x

trace – Shows the current status of all
tracing attributes.

x x

Table 8.5 ZSIM Command Summary (Cont.)

Command Modifier Argument Description

4
0
0

G
2

(Sheet 5 of 6)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2.1 alias

This command creates an alias for a ZSIM command. This command
allows you to customize the ZSIM commands by aliasing new commands
to existing commands or sequences of commands. Sequences of
commands must be contained in quotes and separated by semicolons.
Issuing the alias command without arguments displays all current
aliases.

Format –

alias [tag] [command_sequence]

Examples –

zsim{32} alias r0 show reg r0
zsim{32} alias adv “step ; show pipe ; show reg gpr”
zsim{32} alias
adv step ; show pipe ; show reg gpr
r0 show reg r0
zsim{33}

8.2.2 clear break

This command deletes a breakpoint from the current list of defined
breakpoints. The breakpoint number is assigned when a breakpoint is
set. Use the show break command to display a list of breakpoints.

Format –

clear break breakpoint_number

step – – Advances simulation by one
cycle. Same as run 1.

x x

unalias – alias Deletes alias. x x

Table 8.5 ZSIM Command Summary (Cont.)

Command Modifier Argument Description

4
0
0

G
2

(Sheet 6 of 6)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-12 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Example –

zsim{32} clear break 5

8.2.3 clear dcache

This command invalidates the contents of the data cache for ZSP400.

Format –

clear dcache

Example –

zsim{32} clear dcache

8.2.4 clear dmem

This command clears the contents of internal or external data memory.
You specify internal or external memory, the starting address, and the
size of the region to clear.

Format –

clear dmem {int|ext} addr size

Example –

zsim{32} clear dmem int 0x1000 0x0100

8.2.5 clear icache

This command clears the contents of the instruction cache.

Format –

clear icache

Example –

zsim{32} clear icache

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2.6 clear imem

This command clears the contents of internal or external instruction
memory. You specify internal or external memory, the starting address,
and the size of the region to clear.

Format –

clear imem {int|ext} addr size

Example –

zsim{32} clear imem ext 0x7000 0x1000

8.2.7 clear stats

This command clears all the run-time statistical information, which
includes the cycle count, the number of executed instructions, and the
number of instructions that are being grouped in the pipe.

Format –

clear stats

Example –

zsim{32} clear stats

8.2.8 disable break

This command disables a breakpoint from the current list of active
breakpoints. (Use the show break command to display current list.)

Format –

disable break breakpoint_number

Example –

zsim{32} disable break 4

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-14 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2.9 disable profile

This command disables the specified type of profile information. If you
do not specify a profile type, the command disables all types. Profile
types are described in Section 8.2.14, “enable profile,” page 8-16.

Format –

disable profile [du|iu|pipe|lsu|resource]

Examples –

zsim{32} disable profile du
zsim{32} disable profile iu
zsim{32} disable profile pipe
zsim{32} disable profile lsu

8.2.10 disable trace

This command disables the specified type of trace. Trace types are
described in Section 8.2.15, “enable trace,” page 8-19.

Format –

disable trace type

Examples –

zsim{32} disable trace pipe
zsim{32} disable trace reg

8.2.11 dump dmem

This command generates a text file listing the contents of the specified
address range of the internal or external data memory. Parameters are
internal or external memory, file name, the starting address, and the size
of the region to dump.

Format –

dump dmem {int|ext} filename addr size

Example –

zsim{32} dump dmem ext data.dat 0x0000 0x100

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-15
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

% cat data.dat
0000 /* 0x0000 */
0000 /* 0x0001 */
0000 /* 0x0002 */
0000 /* 0x0003 */
0000 /* 0x0004 */
0000 /* 0x0005 */
0000 /* 0x0006 */
...
28e2 /* 0x00fd */
2f6a /* 0x00fe */
325d /* 0x00ff */
%

8.2.12 dump imem

This command generates a text file listing the contents of the specified
address range of the internal or external instruction memory. Parameters
are internal or external memory, filename, starting address, and size of
the region to dump.

Format –

dump imem {int|ext} filename addr size

Example –

zsim{32} dump imem int imem.dat 0x1000 0x30

% cat imem.dat
0000 /* 0x1000 */
0000 /* 0x1001 */
0000 /* 0x1002 */
0000 /* 0x1003 */
...
0000 /* 0x102c */
0000 /* 0x102d */
0000 /* 0x102e */
0000 /* 0x102f */
%

8.2.13 enable break

This command enables a breakpoint from the current list of defined
breakpoints. See Section 8.2.28, “set break,” page 8-27, for a description
of how to create a breakpoint.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-16 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

enable break breakpoint_number

Example –

zsim{32} enable break 1

8.2.14 enable profile

This command enables a predefined trace type. Run-time traces
generate text output representing the state of the architecture on a cycle-
by-cycle basis. There are four types of predefined runtime tracing:

• du

Displays information from the data unit of the ZSP400 architecture,
such as data cache hits and the du_imem_read signal. This is not
valid for G2.

• iu

Displays information from the instruction unit, such as instruction
cache hits and instruction fetch signal.

For zsim400, the output looks like:

cycle# - IU_IMEM_READ : address

cycle# - ICACHE hits : address

For zsimg2, the output looks like:

1 - PFU_COND: NO_VAL_INST_FETCH_PC cond_abort_mode=0
1 - PFU_PC: 0x00f800 pf_addr:0x00f800
1 - PFU_AGN: p0:0, c0:0, a0:0, p1:0, c1:0, a1=0
1 - PFU_cl_unv[1 0 0 0 0 0 0 0] cl_disc_unv[1 0 0 0 0 0 0 0]
1 - PFU C:d1=-1, C:d2=-1, C:d3=-1, C:d4=-1, N:d1=0, N:d2=0, N:d3=0, N:d4=0
1 Grouping Rule: none (0 instructions in G stage).

The first column displays the cycle count. The PFU_COND line displays
the condition of the PFU state machine and the mode it operates in.
The possible states are shown in Table 8.6. The field
cond_abort_mode=1 means the PFU receives the reqi_cond_abort
signal from the memory subsystem. The PFU_PC line displays the
current PC address coming from the ISU (Instruction Sequencing
Unit). The PFU_AGN line displays agn status for the loop awakening
logic. The next line shows the state of the cl_unv (cache-line
unavailable) and cl_disc_unv (cache-line discontinuity unavailable)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-17
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

bits. The last line displays cache line pointers associated with the
state machine.

• pipe

Displays information from the pipeline unit, such as cycle-by-cycle
grouping rule information of instructions issued in the G stage.

13 (9) 0x0000000e movlw a4, 0x20 AGU0
13 (10) 0x00000010 movhw a0, 0x0 AGU1
13 Grouping Rule: 19.1 (2 instructions in G stage).

The first number is the cycle count. The second number, in
parentheses, is the instruction sequence number. The third number,
in hexadecimal, is the instruction address. The last column shows
the unit in which the instruction is executed.

Table 8.6 PFU State Machine

Cond Description

DEFAULT Default condition.

WAIT_ON_MSS_RETRY Prefetch queue is full or memory subsystem asserts retry for
a request.

MID32_FETCH_PC Current PC lands into the middle of a 32-bit instruction.

STRAD_NIC_FETCH_PCP8 The second half of a 32-bit instruction that straddles a cache
line is not in cache.

NO_VAL_INST_FETCH_PC Current PC is not in cache.

PCP8_IC_NO_PREFETCH Current PC+8 is in cache, no need to prefetch.

PCP8_NIC_PREFETCH Current PC+8 is not in cache, prefetch that address.

PCP8_NIC_CLUNV_NO_PREFECH Current PC+8 is not in cache. Machine can not prefetch
because that line is unavailable.

VDISC_WAIT Wait for a loop or register based discontinuity.

VDISC_IC_NO_PREFETCH Target of an immediate discontinuity is in cache, no need to
prefetch.

VDISC_NIC_PREFETCH Target of an immediate discontinuity is not in cache.

VDISC_NIC_CLUNV_NO_PREFETCH Target of an immediate discontinuity is not in cache, but it
maps to a line that is not available

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-18 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• resource

Displays information on resource usage of the AGU, ALU, and MAU
units for the G2 simulator. The output has the following format:

cycle# - insts:#, AGU:#, ALU:#, MAU:#, words
transferred:#

or

cycle# - GR stalls.

For the first format line, the first number is the cycle count. The
second field displays the number of issued instructions. The third
field displays the number of AGU units that are being used. The forth
field displays the number of ALU units that are being used. The fifth
field displays the number of MAU units that are being used. The sixth
field indicates the number of words that are being transferred to or
from memory.

The resource information is collected in the GR stage of the pipeline.
The second format line is the output when the GR stage is stalled.

• lsu

Displays information from the load/store unit of ZSPG2 architecture.
The first two fields have the following format:

<cycle#> - <port#>

The <cycle#> field describes the cycle when a transaction is being
made. The <port#> describes on which port the request is being
made. The subsequent fields will be of one the following formats:

lsu_mss_req_read <addr> <size> [<pf direction>] <cond> <status> <insn#>
lsu_mss_req_write<addr> <size> <status> <insn#>
lsu_mss_send_data<addr> <insn#>
lsu_mss_get_data<addr> <size> <data> <status> <insn#>
lsu_mss_cond_abort(<cond-cycle#>) <insn#>

The first field describes the action being requested. The possible
actions are described in Table 8.7. The <addr> field describes the
address of the action. The <size> field describes the size of the
request. The <pf direction> field describes the direction of the
prefetch. The <condition> field describes whether the transaction
is conditional or unconditional. The <status> field shows if the
request was accepted by the MSS (memory subsystem) or needs to
be retried. The <insn#> field is the sequence number of the
instruction associated with the action. The <cond-cycle#> field

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-19
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

shows in which cycle the core received an abort signal from the
MSS.

Format –

enable profile {du|iu|pipe|lsu}

Examples –

zsim{1} enable profile du
***(info) Data Unit profile information is ON.

zsim{2} enable profile iu
***(info) Instruction Unit profile information is ON.

zsim{3} enable profile pipe
***(info) Pipeline Unit profile information is ON.

8.2.15 enable trace

This command enables a predefined trace type. Run-time traces
generate text output representing the state of the architecture on a cycle-
by-cycle basis. There are four types of predefined runtime tracing:

• write

Displays architectural state changes associated with memory or
registers for each cycle in the following format:

<cycle> (seqID) PC Opcode Instruction ! register=value
<cycle> +=+=+=+=+=+=+=+=+=+=+=+ ! register=value
<cycle> (seqID) PC Opcode Store Instruction ! [Memory-Address]=value
<cycle> (seqID) PC Opcode Load Instruction ! register=value [Memory-Address]

<cycle> (seqID) PC Opcode Branch Instruction ! direction, result

Table 8.7 LSU Output Description

TAG Description

lsu_mss_req_read Request a read from MSS.

lsu_mss_req_write Request a write to MSS.

lsu_mss_send_data Send data for req_write.

lsu_mss_get_data Receive data for req_read.

lsu_mss_cond_abort Receive cond_abort signal from the
MSS to abort any requests in previous
and current cycle.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-20 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

cycle: Cycle count that the register is modified.

seqID: Unique ascending sequence number for each instruction.

PC: Address of instruction in memory.

Instruction: Disassembled instruction.

Register: Architecture register name.

Direction: Direction for a discontinuity instruction such as branch or
conditional execution. Direction is either forward or backward, and
the result is either taken or not taken.

+=+=: A register is modified without any associated instruction such
as when an interrupt is taken or a timer enable mode.

For example:

<13> (1) 0x000002 6200 mov %fmode, r0 ! fmode=0x0014

Instruction mov %fmode, r0 modifies %fmode to value 0x0014 at
cycle 13.

• mem

Displays address and data for any memory location which is
updated. Information is generated in the cycle in which the write
occurs. This option is a subset of ‘enable trace write’ because it does
not display register updates.

<cycle> (seqID) PC Opcode Instruction [Memory
Address]=Value

For example:

<99> (255) 0x00006d 1884 stu r0, a4, 1
! [0x00000024]=0x9966

Instruction stu r0, a4,1 writes value 0x9966 to memory location
0x24 at cycle 99.

• icache

Displays the entire instruction cache in every cycle. See show
icache command for output description. This command is valid only
for G2.

• pipe

Displays the entire pipeline in every cycle. See show pipe command
for output description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-21
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• reg

Displays all registers and values in every cycle.

Format

enable trace {mem|pipe|reg|write}

Example

zsim{32} enable trace write

8.2.16 exit

This command terminates the current simulation session.

Format –

exit

Example –

zsim{32} exit

8.2.17 fill dmem

This command fills the internal or external data memory range with the
specified value.

Format –

fill dmem {int|ext} addr size value

Example –

zsim{32} fill dmem ext 0x1000 0xff 0x0505

8.2.18 fill imem

This command fills the internal or external instruction memory range with
the specified value.

Format –

fill imem {int|ext} addr size value

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-22 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Example –

zsim{32} fill imem ext 0x1000 0xff 0x0505

8.2.19 help

This command displays help information about commands. Commands
are categorized according to their function. Requesting help without
specifiers displays help on the command categories; requesting help for
a specified category displays the instructions associated with that
category. Specifying a particular command displays the description and
usage for that command.

Format –

help [category|command]

Examples –

zsim{32} help
zsim{32} help all
zsim{32} help show
zsim{32} help show reg

8.2.20 istep

This command steps the program instruction by instruction. By default,
this command is aliased to is.

For zsimg2, you can specify the number of instructions to be executed.

Format –

istep

or

is

Examples –

zsim{22}> istep
CYCLE=000012 PC=0x200c
0x2008 mov rpc, r13
zsim{23}> is
CYCLE=000012 PC=0x200c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-23
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

0x2009 movl r5, 0x10
zsim{24}>
CYCLE=000013 PC=0x200c
0x200a movh r5, 0x20
zsim{25}>
CYCLE=000013 PC=0x200c
0x200b nop
zsim{26}>
CYCLE=000015 PC=0x200d
0x200c call r5
zsim{27}>
CYCLE=000020 PC=0x2014
0x2010 mov r13, rpc

8.2.21 load dmem

This command loads internal or external data memory from the specified
text file. You must specify internal or external memory, the starting
address, and the size of the region to load. You must ensure that the
format of the text file is the same as the file produced by the dump
command. The first column contains the data that are loaded, with each
data on a single line. Data must be in hex format without the 0x prefix.
Comments must be enclosed by /* */ characters.

Format –

load dmem {int|ext} filename addr size

Example –

zsim{32} load dmem int data.dat 0x1000 20

The format of the file is:

%cat data.dat
2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a00f /* 0x0004 */
80c0 /* 0x0005 */
...

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-24 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2.22 load exe

This command loads a valid ZSP executable into instruction memory.
This command performs the same function as specifying the executable
filename when ZSIM is invoked.

Format –

load exe filename

Example –

zsim{32} load exe test.exe

or

zsim{32} load test.exe

8.2.23 load imem

This command loads internal or external instruction memory from the
specified text file. You must specify internal or external memory, the
starting address, and the size of the region to load. You must ensure that
the format of the text file is the same as the file produced by the dump
command. The first column contains the data that is loaded, with each
piece of data on a single line. Data must be in hex format without the 0x
prefix. Comments must be enclosed by /* */ characters.

Format –

load imem {int|ext} filename addr size

Example –

% cat inst.txt
2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a00f /* 0x0004 */
80c0 /* 0x0005 */
bc4c /* 0x0006 */
6f4c /* 0x0007 */

zsim{32} load imem int imem.txt 0x1000 8

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-25
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2.24 reset

This command resets the state of the simulator. The default is a soft
reset, which initializes all aspects of the simulator except the instruction
memory. A hard reset performs full initialization.

Format –

reset [soft|hard]

Examples –

zsim{32} reset
zsim{32} reset hard

Important: The reset command does not reload the program into
memory. To restart the program, perform one of the follow-
ing sequence of commands:

zsim{32} reset
zsim{32} set reg pc <start_address>

or

zsim{32} reset hard; load

Note: zsimg2 no longer supports the soft reset feature.

8.2.25 run

This command advances the simulator for the specified number of
cycles. If no cycle count is specified, the default cycle count defined for
the run attribute is used (refer to Section 8.2.27, “set attr,” page 8-26).
Simulation halts if the cycle count is reached, the maximum cycle count
is reached, or a system halt occurs.

Format –

run [number_of_cycles]

Examples –

zsim{32} run
zsim{32} run 100

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-26 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2.26 script

This command loads and processes a script file. The script file may
contain any valid ZSIM commands. Comments are allowed in the script
file, preceded by the hash (#) character. ZSIM ignores all commands
between the # character and the end of line. Empty lines are also
ignored.

Format –

script filename

Example –

zsim{32} script standard.scr

Example Script File –

This example script demonstrates how to turn on
instruction and pipeline tracing and profile using
a command file.
load test.exe
enable profile pipe # turn on grouping rule info
enable trace write # turn on instruction trace info
enable trace pipe # turn on pipeline info
run
exit

Note: The same script can be invoked as a command-line argu-
ment to the simulator as shown following.

%zsim400 -s standard.scr

or

%zsimg2 -s standard.scr

8.2.27 set attr

This command allows you to set three internal ZSIM attributes. These
configurable attributes are described in Table 8.8.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-27
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

set attr attribute value

Examples –

zsim{32} set attr run 1000
zsim{32} set attr radix hex

8.2.28 set break

This command creates and enables a new breakpoint at the specified
address. Breakpoints can be set for the program counter. Execution halts
at the cycle when the instruction at the specified address is in the set of
instructions which are about to be executed in the pipeline’s E stage.

When a new breakpoint is created, it is tagged with a breakpoint number
which is used by other breakpoint commands. Use the show break
command to display a list of current breakpoints.

Format –

set break pc addr
set break symbol label

Table 8.8 Configurable ZSIM Attributes

Attribute Value Description

4
0
0 G2

history any integer Number of commands to maintain in
history buffer.

x x

radix {dec | hex} Radix (decimal or hexadecimal) used
to generate output.

x x

run any integer Default cycle count for the run
command (when issuing the run
command with no argument). If
undefined by the set attr command,
the default run value is 100000 cycles.

x x

addrwidth any integer
from 1 to 32

Number of bits in address bus for G2
architecture.

x

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-28 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Example –

zsim{1} set break pc 0x0010
Breakpoint 1 on PC at address 0x0010

zsim{2} set break symbol main
Breakpoint 2 on PC at address 0xf9b9 of main

8.2.29 set delay (for zsim400 only)

This command sets the delay wait state of external data memory or
instruction memory. The default delay value is 1 for both external data
and instruction memory.

The wait state is the number of cycles between requesting data and
having it returned. For example, wait state equals 1 means that data is
returned 1 cycle after it is requested.

Format –

set delay {edata | einst} num

Example –

zsim{1} set delay edata 10
zsim{2} set delay einst 20

8.2.30 set latency (for zsimg2 only)

This command sets the delay wait state of internal/external data memory
or instruction memory. The default delay value is 2 for both internal data
and instruction memory. The default delay value is 5 for both external
data and instruction memory.

The wait state is the number of cycles between requesting data and
having it returned. For example, wait state equals 2 means that data is
returned 2 cycles after it is requested.

Format –

set latency {imem | dmem} {int | ext} num

Example –

zsim{1} set latency dmem int 10
zsim{2} set latency dmem ext 20

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-29
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

8.2.31 set reg

This command assigns a new value to the specified register.

Format –

set reg register value

Example –

zsim{32} set reg r0 0x1234

8.2.32 set size

The format of this command is different for the two simulators.

8.2.32.1 set size for zsim400

This command sets the size of internal data memory or instruction
memory. The default size of internal data or instruction memory is 63488
words (62 Kwords), which is also the maximum size that can be set.

Important: This command does not apply to external memory. (The
simulator has 1 Mwords for each external instruction and
external data memory.)

Format –

set size {dmem|imem} size

Examples –

zsim{1} set size dmem 0x4000
zsim{2} set size imem 0x3000

8.2.32.2 set size for zsimg2

This command sets the size of internal/external instruction or data
memory from a begin value to an end value. The boundary is inclusive.
The default size for each of the 4 memory types is the maximum value
from 0 to 0x00FF.FFFF words (16 Mwords). A word is a 16-bit value for
the ZSPG2 architecture.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-30 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

set size {dmem|imem} {int|ext} beg_value end_value

Examples –

zsim{1} set size dmem int 0 0xffff
zsim{2} set size imem int 0 0xffff
zsim{3} set size dmem ext 0 0x00fffff
zsim{4} set size imem ext 0 0x00fffff

8.2.33 show attr

This command displays the value of the specified attribute. See set attr
for a list of defined attributes. The version and pred attribute can be
used only with the show attr command; they can not be used with the
set attr command.

Format –

show attr {addrwidth|history|radix|run|version|pred}

Example –

zsim{32} show attr run

8.2.34 show bits

This command displays the bit and field values for the specified register.
When specifying control registers, do not include the percent (%) sign.

Format –

show bits register

Example –

zsim{32} show bits hwflag
hwflag = 0x0000

 er: 0
 ex: 0
 ir: 0
 z: 0
 gt: 0
 ge: 0
 c: 0
 gsv: 0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-31
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

 sv: 0
 gv: 0
 v: 0

8.2.35 show break

This command displays the list of currently defined breakpoints.

Format –

show break

Example –

zsim{32} show break

8.2.36 show dcache

This command displays the current contents of the data cache.

Format –

show dcache

Example –

For the zsim400 simulator:

zsim{1}> show dcache
R13 - D$[0]: ------ I ------ ------ ------ ------
R13 - D$[1]: ------ I ------ ------ ------ ------
R13 - D$[2]: ------ I ------ ------ ------ ------
R14 - D$[3]: ------ I ------ ------ ------ ------
R14 - D$[4]: ------ I ------ ------ ------ ------
R14 - D$[5]: ------ I ------ ------ ------ ------
R15 - D$[6]: ------ I ------ ------ ------ ------
R15 - D$[7]: ------ I ------ ------ ------ ------
R15 - D$[8]: ------ I ------ ------ ------ ------
UL - D$[9]: ------ I ------ ------ ------ ------
UL - D$[10]: ------ I ------ ------ ------ ------
UL - D$[11]: ------ I ------ ------ ------ ------
UL - D$[12]: ------ I ------ ------ ------ ------
UL - D$[13]: ------ I ------ ------ ------ ------
UL - D$[14]: ------ I ------ ------ ------ ------
UL - D$[15]: ------ I ------ ------ ------ ------
UL - D$[16]: ------ I ------ ------ ------ ------

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-32 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The first nine lines are dedicated for the linked loads of the r13, 14, and
15 registers respectively. The next eight lines are used for any unlinked
load. For each line, the first “------” column shows the address of the line.
The next column indicates that the line is invalid (I) or valid. The next
four columns show the data contained in that line.

• For the zsimg2 simulator without invoking the option -idealmss:

D$[0] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------ lru[0]
D$[1] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[2] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[3] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[4] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[5] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[6] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[7] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[8] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[9] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[10] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------
D$[11] 0x000001 ------ ------ ------ ------ ------ ------ ------ ------

The second column shows the address tag of the line and the next eight
columns contain data. Address tag 0x000001 means invalid address tag.
‘-----’ means the cache line is empty. The example shows the initial state
of the cache. The symbol lru[0] indicates the least recently used cache
line.

8.2.37 show dmem

This command displays a range of internal or external data memory. You
specify internal or external memory, the starting address, and the size of
the region to display. The default settings for the show dmem command
are shown in Table 8.9.

Table 8.9 Default Arguments for show dmem

Argument Value

{int | ext} int

addr 0x0

size 16

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-33
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

show dmem {int|ext} addr size

Example –

zsim{32} show dmem int 0xf000 0x10

For zsimg2, you can use a symbol instead of an absolute address.

zsim{1} show dmem int array1 20

8.2.38 show icache

This command displays the current contents of the instruction cache.

Format –

show icache

Example –

zsim{32} show icache

8.2.39 show imem

This command displays a range of internal or external instruction
memory. The size and addr fields may be omitted, in which case defaults
are used. The default settings for the show imem command are shown in
Table 8.10.

Table 8.10 Default Arguments for show imem

Argument Value

{int | ext} int

addr 0x0

size 16

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-34 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

show imem {int|ext} [addr] [size]

Example –

zsim{1} show imem int 0xf000 0x10

For zsimg2, you can use a symbol instead of the absolute address value.

zsim{1} show imem int foo_function 20

8.2.40 show pipe

This command shows the contents of all stages of the pipeline. An
instruction in the pipeline is represented in the following format:

(seqID) Address:Opcode:IssueBit:Disassembled
instructions,

where:

• SeqID: Unique ascending sequence number for each instruction.

• Address: Address of the instruction in memory.

• Opcode: Binary opcode of an instruction in hexadecimal digit.

• IssueBit: Instruction is issued to the next stage in the following cycle.

For zsim400, the output displays a five-stage pipeline

CYCLE: 0
 -- F(0:0)
 -- G(0:0)
 -- R(0:0)
 -- E(0:0)
 -- W(0:0)

stage(#:#): five stages of the execution pipeline are identified with a
single letter – F (Fetch/decode), G (Group), R (Read), E (Execute), and
W (Write Back) – followed by two integers representing the number of
instructions currently in that stage and the number of instructions that
advance to the next stage in the following cycle.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-35
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

For zsimg2, the output displays an eight-stage pipeline.

CYCLE: 0 <stall>
 -- FD(0:0)
 -- GR(0:0)
 -- RD(0:0)
 -- AG(0:0)
 -- M0(0:0)
 -- M1(0:0)
 -- EX(0:0)
 -- WB(0:0)

stage(#:#): eight stages of the execution pipeline are identified with
double letters – FD (Fetch/decode), GR (Group), RD (Read), AG
(Address Generation), M0 (Memory stage 0), M1 (Memory Stage 1), EX
(Execute), and WB (Write Back) – followed by two integers representing
the number of instructions currently in that stage and the number of
instructions that advance to the next stage in the following cycle.

The <stall> field next to the cycle number indicates a stall has occurred
in the current cycle. Table 8.11 shows all three possible stalls for G2.

Format –

show pipe

Example –

zsim{32} show pipe
CYCLE: 8

 -- F(4:2)
 (13)000d:5448:0:mac2.a r4.e, r8.e
 (12)000c:788f:0:lddu r8.e, r15, 2
 (11)000b:784e:1:lddu r4.e, r14, 2
 (10)000a:9a00:1:xor.e r0.e, r0.e
 -- G(4:2)

Table 8.11 Pipe Stall Description

Stall Description

Pipe stalls by instruction # Full pipe stall occurs by the indicated
instruction number.

Half pipe stalls AG Pipe stalls from AG and up.

Half pipe stalls M0 Pipe stalls from M0 and up.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-36 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

 (9)0009:2d18:0:movl r13, 0x18
 (8)0008:3f00:0:movh r15, 0x0
 (7)0007:3d01:1:movh r13, 0x1
 (6)0006:3e00:1:movh r14, 0x0
 -- R(0:0)
 -- E(1:1)
 (5)0005:ad02:1:bits fmode, 2
 -- W(1:1)
 (4)0004:d700:1:movl guard, 0x0

8.2.41 show profile

This command shows the current status (enabled/disabled) for each
profile type.

Format –

show profile

Example –

zsim{32} show profile
***(info) Supported profile information:

 - Instruction Unit: OFF
 - Data Unit: OFF
 - Pipeline Unit: OFF

8.2.42 show reg

This command displays the values of a category of registers or the value
of the specified register. You can list more than one category and/or
register. The register categories are:

• gpr

All general purpose registers, r0–r15.

• cfg

All control registers (such as %smode and %hwflag). Do not include
the percent (%) sign in the control register name.

• addr

All address and index registers for the ZSPG2 architecture. Thus, it
is specific for zsimg2.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSIM Commands 8-37
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

show reg [category|register] ...

Examples –

zsim{32} show reg
zsim{32} show reg r0
zsim{32} show reg hwflag smode [Do not include the percent

(%) sign.]

8.2.43 show rule

This command displays the affected grouping rule for the current cycle.

Format –

show rule

Examples –

zsim{32} show pipe
CYCLE: 8

 -- F(4:2)
 (13)000d:5448:0:mac2.a r4.e, r8.e
 (12)000c:788f:0:lddu r8.e, r15, 2
 (11)000b:784e:1:lddu r4.e, r14, 2
 (10)000a:9a00:1:xor.e r0.e, r0.e
 -- G(4:2)
 (9)0009:2d18:0:movl r13, 0x18
 (8)0008:3f00:0:movh r15, 0x0
 (7)0007:3d01:1:movh r13, 0x1
 (6)0006:3e00:1:movh r14, 0x0
 -- R(0:0)
 -- E(1:1)
 (5)0005:ad02:1:bits fmode, 2
 -- W(1:1)
 (4)0004:d700:1:movl guard, 0x0

zsim{33} show rule
Active grouping rule in current cycle: 23. Only two
instructions requiring an alu or one instruction that
requires both the alus can be grouped.

8.2.44 show size

This command shows the size of internal data or instruction memory. The
output is not affected by the radix attribute.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-38 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Format –

show size {dmem|imem}{int|ext}

Examples –

zsim{32} show size dmem int
The size of internal data memory is 0xf800 words.
zsim{32} show size imem int
The size of internal instruction memory is 0xf800 words.

8.2.45 show stats

This command displays all the run-time statistics generated by ZSIM. If
no argument is specified, ZSIM displays overall statistical information. If
the opcode argument is specified, ZSIM displays instruction opcode
statistics.

Format –

show stats

Example –

zsim{32} show stats
zsim{32} show stats opcode

8.2.46 show trace

This command shows currently enabled/disabled trace information.
Traces currently set to ON are enabled during simulation.

Format –

show trace

Example –

zsim{32} show trace
***(info) Supported trace information:

 - Instruction trace: OFF
 - Pipeline trace: OFF
 - Register trace: OFF
 - Memory trace: OFF

zsim{33} enable trace pipe
***(info) Pipeline trace is ON.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

I/O Port Usage 8-39
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

zsim{34} show trace
***(info) Supported trace information:

 - Instruction trace: OFF
 - Pipeline trace: ON
 - Register trace: OFF
 - Memory trace: OFF

8.2.47 step

This command single-steps the simulator. Issuing the step command is
equivalent to issuing the command run 1.

Format –

step

Example –

zsim{32} step

8.2.48 unalias

This command deletes an alias.

Format –

unalias [alias]

Example –

zsim{32} unalias adv

8.3 I/O Port Usage

ZSIM400 models serial I/O as a memory-mapped device. Programs
perform terminal I/O by reading from and writing to the appropriate
address locations. The simulator defines two serial ports and one host
processor interface (HPI) port. Each port has a transmit buffer and a
receive buffer. Table 8.12 shows the memory addresses and
corresponding files for the I/O ports for the LSI402ZX, LSI403Z, and
ZSP400-core based devices.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-40 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The format of input and output files are the same. Data must be in
decimal digits, with each piece of data on a single line. If the input file is
not present in the current running directory at the time of the request, the
simulator prints an error message to standard output and exits.

ZSIM400 also supports user-specified I/O ports. You can create a library
containing peripheral devices and then use it in place of the default
library in the directory $SDSP_HOME/sdspI/bin, which is created when
the ZSP SDK tools are installed. The peripheral library is called
libzperiph.dll on Windows and libzperiph.so on Solaris platforms.
For information on writing the peripheral library, refer to the ZSIM
Peripheral API Reference Guide, document DB06-000299-00.

8.4 Example Session Using ZSIM

This section contains an example simulation session using zsim400 in
interactive mode. A simulation session using ZSIM for other architecture
is similar.

zsim{1}> load exe test.exe
***(info) Starting address: 0x2000
.text : Loading to INT-INST memory ... 0x2000 -> 0x2950 (0x0951)
.data : Loading to INT-DATA memory ... 0x0001 -> 0x005f (0x005f)
Loading "test.exe" successfully.

The contents of the instruction memory can be checked to confirm proper
loading of the test:

zsim{2}> show imem int 0x2000 4
0x2000 0x2cfb movl r12, 0xfb
0x2001 0x3cf7 movh r12, 0xf7

Table 8.12 I/O Device Memory Map and Associated Files

I/O Port

Read Write

Address File Address File

Serial Port 0 0xF901 sp0in 0xF900 sp0out

Serial Port 1 0xFA01 sp1in 0xFA00 sp1out

Host Interface Port 0xFB01 hpiin 0xFB00 hpiout

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Session Using ZSIM 8-41
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

0x2002 0xa6d0 mov r13, 0x0
0x2003 0x2460 movl r4, 0x60
zsim{3}> _

Before execution cycles begin, you can check to make sure that the
pipeline and caches are empty:

zsim{3}> show pipe
-- F(0:0)
-- G(0:0)
-- R(0:0)
-- E(0:0)
-- W(0:0)

As shown above, the five stages of the execution pipeline are identified
with a single letter – F (Fetch/decode), G (Group), R (Read), E
(Execute), and W (Write Back) – followed by two integers representing
the number of instructions currently in that stage and the number of
instructions that advance to the next stage in the following cycle.

zsim{4}> show icache
I$[0]: ------ I ------ I ------ I ------ I ------
I$[1]: ------ I ------ I ------ I ------ I ------
I$[2]: ------ I ------ I ------ I ------ I ------
I$[3]: ------ I ------ I ------ I ------ I ------
I$[4]: ------ I ------ I ------ I ------ I ------
I$[5]: ------ I ------ I ------ I ------ I ------
I$[6]: ------ I ------ I ------ I ------ I ------
I$[7]: ------ I ------ I ------ I ------ I ------

In the above example, the 8 lines of the instruction cache are shown to
be empty . The first column contains the address (four word boundary)
and the remaining four columns contain the corresponding instruction
opcodes. An ‘I’ to the left of a cell indicates an invalid instruction.

zsim{5}> show dcache
R13 - D$[0]: ------ I ------ ------ ------ ------
R13 - D$[1]: ------ I ------ ------ ------ ------
R13 - D$[2]: ------ I ------ ------ ------ ------
R14 - D$[3]: ------ I ------ ------ ------ ------
R14 - D$[4]: ------ I ------ ------ ------ ------
R14 - D$[5]: ------ I ------ ------ ------ ------
R15 - D$[6]: ------ I ------ ------ ------ ------
R15 - D$[7]: ------ I ------ ------ ------ ------
R15 - D$[8]: ------ I ------ ------ ------ ------
UL - D$[9]: ------ I ------ ------ ------ ------
UL - D$[10]: ------ I ------ ------ ------ ------
UL - D$[11]: ------ I ------ ------ ------ ------
UL - D$[12]: ------ I ------ ------ ------ ------
UL - D$[13]: ------ I ------ ------ ------ ------

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-42 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

UL - D$[14]: ------ I ------ ------ ------ ------
UL - D$[15]: ------ I ------ ------ ------ ------
UL - D$[16]: ------ I ------ ------ ------ ------

The 17 lines of the data cache are shown to be empty in the above
example. The first column contains the address (four word boundary)
and the remaining four columns contain data values. An ‘I’ to the left of
a data line indicates that the corresponding data line is invalid.

Continuing with the example, as execution proceeds, the pipeline and
instruction cache reflect changes expected by instruction flow:

zsim{6}> run 4 ; show pipe
CYCLE=000004 PC=0x2000
CYCLE: 4
 -- F(4:1)
 (7)2007:6054:0:st r5, r4, 0
 (6)2006:a051:0:add r5, 0x1
 (5)2005:bc54:0:mov r5, r4
 (4)2004:3400:1:movh r4, 0x0
 -- G(4:1)
 (3)2003:2460:0:movl r4, 0x60
 (2)2002:a6d0:0:mov r13, 0x0
 (1)2001:3cf7:0:movh r12, 0xf7
 (0)2000:2cfb:1:movl r12, 0xfb
 -- R(0:0)
 -- E(0:0)
 -- W(0:0)
zsim{7}> show icache
I$[0]: 0x2000 V 0x2cfb V 0x3cf7 V 0xa6d0 V 0x2460
I$[1]: 0x2004 V 0x3400 V 0xbc54 V 0xa051 V 0x6054
I$[2]: ------ I ------ I ------ I ------ I ------
I$[3]: ------ I ------ I ------ I ------ I ------
I$[4]: ------ I ------ I ------ I ------ I ------
I$[5]: ------ I ------ I ------ I ------ I ------
I$[6]: ------ I ------ I ------ I ------ I ------
I$[7]: ------ I ------ I ------ I ------ I ------
zsim{8}> _

The simulator output following demonstrates the use of the PC
breakpoint. A breakpoint is set for address 0x10 and the simulator is
advanced. Execution halts when the instruction associated with the
breakpoint address reaches the Group stage. The state of the pipeline
and operand registers are shown after the breakpoint halt occurs.

zsim{8}> set break sym main
Breakpoint 1 on PC at address 0x2010 of main
zsim{9}> enable trace write
***(info) Instruction trace is ON.
zsim{10}> run

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Session Using ZSIM 8-43
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

<6> (0) 0x2000 2cfb movl r12, 0xfb ! r12 = 0x00fb
<7> (1) 0x2001 3cf7 movh r12, 0xf7 ! r12 = 0xf7fb
<7> (2) 0x2002 a6d0 mov r13, 0x0 ! r13 = 0x0000
<8> (3) 0x2003 2460 movl r4, 0x60 ! r4 = 0x0060
<9> (4) 0x2004 3400 movh r4, 0x0 ! r4 = 0x0060
<10> (5) 0x2005 bc54 mov r5, r4 ! r5 = 0x0060
<11> (6) 0x2006 a051 add r5, 0x1 ! hwflag = 0x0030
<11> (6) 0x2006 a051 add r5, 0x1 ! r5 = 0x0061
<11> (7) 0x2007 6054 st r5, r4, 0 ! INT-DATA[0x0060] = 0x0061
<12> (9) 0x2009 2510 movl r5, 0x10 ! r5 = 0x0010
<13> (8) 0x2008 bb1d mov rpc, r13 ! rpc = 0x0000
<13> (10) 0x200a 3520 movh r5, 0x20 ! r5 = 0x2010
<14> (12) 0x200c a750 call r5 ! rpc = 0x200d
(PC BREAKPOINT #1)....................... CYCLE=000020 PC=0x2014

Trace information is displayed in six fields:

• The first field is the cycle count number (enclosed by (< >).

• The second field is the instruction sequence number (in parenthesis).

• The third field is the program counter (PC) of the executed
instruction.

• The fourth field is the instruction opcode.

• The fifth field is the disassembled instruction, including operands.

• The sixth field describes the result of the executed instruction.

zsim{11}> run 7; show pipe
<20> (13) 0x2010 2501 movl r5, 0x1 ! r5 = 0x2001
<20> (14) 0x2011 b91d mov r13, rpc ! r13 = 0x200d
<21> (15) 0x2012 3500 movh r5, 0x0 ! r5 = 0x0001
<21> (16) 0x2013 6fdc stu r13, r12, -1 ! INT-DATA[0xf7fb] = 0x200d
<21> (16) 0x2013 6fdc stu r13, r12, -1 ! r12 = 0xf7fa
<22> (17) 0x2014 a0cf add r12, 0xffff ! hwflag = 0x0040
<22> (17) 0x2014 a0cf add r12, 0xffff ! r12 = 0xf7f9
<22> (19) 0x2016 1060 call 0x20d6 ! rpc = 0x2017
<23> (18) 0x2015 615c st r5, r12, 1 ! INT-DATA[0xf7fa] = 0x0001
<25> (20) 0x20d6 a641 mov r4, 0x1 ! r4 = 0x0001
<26> (21) 0x20d7 b91d mov r13, rpc ! r13 = 0x2017
<26> (22) 0x20d8 6fdc stu r13, r12, -1 ! INT-DATA[0xf7f9] = 0x2017
<26> (22) 0x20d8 6fdc stu r13, r12, -1 ! r12 = 0xf7f8
<27> (23) 0x20d9 bc6c mov r6, r12 ! r6 = 0xf7f8
CYCLE=000027 PC=0x20dc
CYCLE: 27
 -- F(4:3)
 (33)20ea:bc34:0:mov r3, r4
 (32)20e9:6f7c:1:stu r7, r12, -1
 (31)20e8:b910:1:mov r0, rpc
 (30)20e7:6b2c:1:stdu r2.e, r12, -2
 -- G(4:3)
 (29)20e6:3d00:0:movh r13, 0x0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

8-44 ZSP SDK Cycle-Accurate Simulator
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

 (28)20e5:6b0c:1:stdu r0.e, r12, -2
 (27)20e4:2d68:1:movl r13, 0x68
 (26)20dc:1004:1:call 0x20e4
 -- R(1:1)
 (25)20db:a063:1:add r6, 0x3
 -- E(2:2)
 (24)20da:725c:1:ld r5, r12, 2
 (23)20d9:bc6c:1:mov r6, r12
 -- W(2:2)
 (22)20d8:6fdc:1:stu r13, r12, -1
 (21)20d7:b91d:1:mov r13, rpc
zsim{12}> show reg gpr
 r0 = 0x0000 r1 = 0x0000
 r2 = 0x0000 r3 = 0x0000
 r4 = 0x0001 r5 = 0x0001
 r6 = 0xf7f8 r7 = 0x0000
 r8 = 0x0000 r9 = 0x0000
 r10 = 0x0000 r11 = 0x0000
 r12 = 0xf7f8 r13 = 0x2017
 r14 = 0x0000 r15 = 0x0000
zsim{14}>

Execution halts when a breakpoint is reached, the maximum cycle count
is reached, or a system halt occurs. A system halt refers to the halt mode
as defined by the power level (lvl) field in the DSP’s %smode control
register.

A simulation session is terminated with the exit command.

zsim{12}> exit
***(info) Exiting ZSIM.
%_

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 9-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 9
Debugger

This chapter describes the SDK source and assembly-level debugger for
the ZSP400 and ZSPG2 architectures.

The SDK debuggers are based on the GNU Debugger (gdb) from the
Free Software Foundation. gdb is described in Debugging with GDB: The
GNU Source Level Debugger, by Richard Stallman, et. al., Free Software
Foundation, January 1994. The description of the SDK debuggers in this
chapter, for the most part, includes only the differences from gdb.

For Windows 98/NT/2000/XP platforms, the debuggers can be accessed
using the ZSP Integrated Development Environment, as described in
Chapter 11, “ZSP Integrated Development Environment.“ This chapter
describes the debuggers’ standard GNU command-line interface,
available for all platforms.

9.1 Using the Debugger

The debugger is invoked from the command line as follows:

<debugger name> [options] [executable_file]

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-2 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

where debugger name is the name of the desired debugger as listed in
Table 9.1.

The above command both invokes and initializes the debugger.

Command-line options only available in the SDK debuggers are listed in
Table 9.2. All other options are described in Stallman, et. al.

Use the following command to load the symbol table from the executable
file:

(sdbug) file a.out

Next, select the debugger’s target execution environment (as described
in the following section). For example, to target the cycle-accurate
simulator:

Table 9.1 Debugger Names

Debugger Name Use when debugging...

sdbug400 code written for devices based on the ZSP400 architecture.

zdxbug code originally written for devices based on the ZSP400
architecture, but cross-compiled for the ZSPG2
architecture.

zdbug code designed for devices based on the ZSPG2
architecture.

Table 9.2 Special Options

Option Description Availability

-mempcr=ADDR Sets the address of the mempcr register. sdbug400

-no_mempcr Specifies that the hardware target has no MEMPCR register sdbug400

-jtag_type=TYPE Gives priority to the detection of the JTAG interface specified.
TYPE can be either pci (Corelis PCI JTAG), pcmcia (Corelis
PCMCIA JTAG), or raven (Macraigor Raven) By default,
SDBUG first attempts to use the PCMCIA JTAG card, then
the PCI JTAG card, then the Macraigor Raven interface.

sdbug400,
zdxbug
zdbug

-jtag_mapfile=FILE Makes the debugger look for the map file FILE, rather than
the default called “mapfile” in the current directory and
SDSP_HOME/sdspI/misc.

sdbug400,
zdxbug,
zdbug

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Debugger Execution Environments 9-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

(sdbug) target zsim

Use the following command to load the text and data sections of the
executable file:

(sdbug) load a.out

Now you are ready to debug your program using standard gdb
commands.

9.2 Debugger Execution Environments

The debugger supports four execution environments:

• Functional-accurate software simulation on the host (using ZISIM)

• Cycle-accurate software simulation on the host (using ZSIM)

• Target hardware, connected through the serial port

• Target hardware, connected through a JTAG probe (Windows
98/NT/2000/XP platforms only)

These environments are described in the following subsections.

9.2.1 Functional-Accurate Simulator Connection

The ZISIM target simulator is invoked by the following command:

(sdbug) target sim [option...]

where option is any of the simulator options described in Table 7.2 on
page 7-1.

With this connection, program execution is performed by the
functional-accurate simulator, ZISIM, under the control of the debugger.
The debugger examines the simulator state to process queries from the
user.

Target commands that change the behavior of the subordinate ZISIM
instance controlled by the SDK debugger are listed in Table 9.3 and
described in detail in Section 7.2, “ZISIM Commands,” page 7-4.

The format for sending commands to ZISIM is:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-4 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

(sdbug) sim simulator-command

9.2.2 Cycle-Accurate Simulator Connection

The ZSIM target simulator is invoked by the following command:

(sdbug) target zsim

With this connection, the cycle-accurate simulator (ZSIM) executes your
program under the control of the debugger. The debugger examines the
simulator state to process queries from the user.

Table 9.3 ZISIM Simulator Target Commands

Command Description

clear-stats Resets the statistics.

close filename Closes file filename.1

help Displays the list of simulator commands that can be
invoked.

max_number_of_files number Sets the maximum number of files that can be opened
at the same time to number.1

1. This command may also be invoked without specifying the target name. See Section 9.3.1,
“Generic Target-Specific Commands” on page 9-13 for details.

memory_download filename addr size Writes size of items to memory addr from file
filename.1

memory_upload filename addr size Reads size of items from memory addr to file
filename.1

print-stats Prints statistics such as instruction mix, load, store,
discontinue, and mispredicts to stdout.

reg-off Sets the simulator register tracing off.

reg-on Sets the simulator register tracing on.

trace-off Sets the simulator trace off.

trace-on Sets the simulator trace on.

print-opcode Prints statistics of opcode usage.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Debugger Execution Environments 9-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Target commands that change the behavior of the subordinate ZSIM
instance controlled by the SDK debugger are listed in Table 9.4 and
described in detail in Section 8.2, “ZSIM Commands,” page 8-6.

The format for ZSIM commands is:

(sdbug) zsim simulator-command

Table 9.4 ZSIM Target Commands

Command Description

clear-stats Resets the general statistics.

close filename Closes file filename.1

help Displays the list of simulator commands that can be
invoked.

max_number_of_files number Sets the maximum number of files that can be opened at
the same time to number.1

memory_download filename addr size Writes size of items to memory addr from file
filename.1

memory_upload filename addr size Reads size of items from memory addr to file
filename.1

pfdu-off Turns off data unit profile information.

pfdu-on Turns on data unit profile information.

pfiu-off Turns off instruction unit profile information.

pfiu-on Turns on instruction unit profile information.

pfpipe-off Turns off pipeline unit profile information.

pfpipe-on Turns on pipeline unit profile information.

pfresource-off G2 only. Turns on resource usage information.

pfresource-on G2 only. Turns off resource usage information.

pipe-off Sets the simulator pipeline off.

pipe-on Sets the simulator pipeline on.

print-dcache Prints contents of data cache to stdout.

print-icache Prints contents of instruction cache to stdout.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-6 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

print-opcode Prints instruction opcode history to stdout.

print-pipe Prints contents of the pipeline to stdout.

print-profile Prints collected profile information to stdout.

print-rule [# | all] Prints grouping rule to stdout2.

print-stats When cycle count is on, prints statistics to stdout.

print-stats-inc Prints incremental statistics information to stdout.

pf functionName start end Collects profile information for functionName from
start to end addresses. Follow by profile-on
command to turn on the profile collector.

profile-func Collects profile information for all functions in the program.
Follow by the profile-on command to turn on the profile
collector.

profile-off Turns off profile collector.

profile-on Turns on profile collector

profile-reset Clears all collected profiling information.

reg-off Sets the simulator register tracing off.

reg-on Sets the simulator register tracing on.

trace-off Sets the simulator trace off.

trace-on Sets the simulator trace on.

1. This command may also be invoked without the target name. See Section 9.3.1, “Generic Target-
Specific Commands” on page 9-13 for details.

2. The optional arguments only work in sdbug400. zdbug and zdxbug only supports the display of the
grouping rules that are currently active.

Table 9.4 ZSIM Target Commands (Cont.)

Command Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Debugger Execution Environments 9-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

9.2.2.1 User-Specified Profiling

When used with the cycle-accurate simulator, the debugger supports
profiling of selected areas of your project code. To use this feature, you
must define the regions to be profiled using the following pair of
assembler directives in your source code:

asm(“\n__FUNC_START_region_name:”);

<code to be profiled>

asm(“\n__FUNC_EXIT_region_name:”);

The profiling can then be enabled using the following commands:

(sdbug) profile-func

(sdbug) profile-on

Execute the program by typing:

(sdbug) run

Display the profiling statistics using:

(sdbug) print_profile

With respect to profiling, the profile-func command treats
region_name just like a function. Note that for function profiling to
operate correctly, execution that passes through the start label must
also pass through the exit label.

9.2.3 UART Connection

The UART connection is invoked by the following commands:

(sdbug) set remotebaud [baud_rate]

(sdbug) target sdsp-remote serial_port

The required baud rate can be specified when setting remotebaud. The
default baud rate setting is 38400.

To use this connection, your target evaluation board must be able to
support UART-based debugging with appropriate hardware and
firmware. In addition, your target must be booted from flash memory that

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-8 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

contains the UART debug code. For instructions on programming the
flash memory, refer to the application note, Programming the Flash. To
ensure that your EB402 Evaluation Board is booted from (external) flash
memory, set the IBOOT pin LOW. Refer also to the EB402 Evaluation
Board User’s Guide.

Use the commands in Table 9.5 to communicate with the target board
though the serial port connection.

The format for serial port commands is:

(sdbug) sdsp-remote sdsp-remote-command

9.2.4 JTAG Probe Connection

To use the JTAG connection, you must install a Corelis PCI or PCMCIA
Type II Boundary Scan Controller card in your machine and install a
cable connecting it to your evaluation board.

Note: The JTAG target is available only for Windows
98/NT/2000/XP platforms.

The JTAG target is invoked by the following commands:

(sdbug) jtag set_clk 2 0 0

(sdbug) target jtag

Table 9.5 UART Target Commands

Command Description

close file filename Close file filename.1

1. This command may also be invoked without the target name. See Section 9.3.1, “Generic Target-
Specific Commands” on page 9-13 for details.

help List UART connection commands.

max_number_of_files number Specify the maximum number of files that can be
opened at the same time.1

memory_download filename addr size Write size of items to memory addr from file
filename. addr can be a label.1

memory_upload filename addr size Read size of items from memory addr to file
filename. addr can be a label.1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Debugger Execution Environments 9-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The first command is required to set the parameters for the JTAG clock
(TCK) on the Corelis Boundary Scan Controller card, where the first
parameter (2) specifies the base clock oscillator to be used (50 MHz), the
second parameter (0) disables the clock prescaler, and the third
parameter (0) is used as the clock divisor (divide by 2). (These are the
default settings for boards running at 100 MHz and above.) The second
command establishes the connection.

Refer to the Corelis Software Development Kit User’s Manual for
information on supported JTAG clock speeds.

The JTAG commands described in Table 9.6 are used to select
information that is requested from the target using the JTAG connection.

The format for JTAG commands is:

(sdbug) jtag jtag-command

Table 9.6 JTAG Target Commands

Command Description

close filename Close file filename.1

1. This command may also be invoked without the target name. See Section 9.3.1, “Generic Target-
Specific Commands” on page 9-13 for details.

help List JTAG commands.

set_clk val1 val2 val3 Sets the JTAG clock according to the JTAG interface in
question. With the Corelis JTAG interfaces, the values
are base clock oscillator, prescaler enable, and clock
divisor, respectively.

For Macraigor Raven, it is the speed value followed by
a zero and the lpt port to use.

Generally speaking, the JTAG clock speed should be
approximately 1/10th to 1/20th of the ZSP clock speed.

max_number_of_files number Specify the maximum number of files that can be
opened at the same time.1

memory_download filename addr size Write size of items to memory addr from file
filename. addr can be a label.1

memory_upload filename addr size Read size of items from memory addr to file
filename. addr can be a label.1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-10 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

9.2.4.1 Hardware-Assisted Debugging

The JTAG target environment supports hardware-assisted debugging.
The format for a hardware-assisted debugging command is:

(sdbug) hw hardware_assisted_debugging_command

Important: All breakpoints must be disabled before using hard-
ware-assisted debugging. Only one hardware breakpoint
may be set, and when it is set, any previously-set break-
point is deactivated. You cannot perform I/O during hard-
ware-assisted debugging.

Important: Hardware-assisted debugging will function correctly
only with the correct map file for the specific part being
debugged. The SDK comes with the map file for LSI402ZX
rev. 1 (mapfile), LSI402ZX rev. 2 (mapfile_rev2), and
LSI403LP (mapfile_403lp); if your application uses a differ-
ent processor, please contact the vendor for the correct
map file. The default map file loaded is mapfile. To change
the map file used, either copy the new map file to the direc-
tory the debugger is invoked in as “mapfile,” or copy to the
current directory or $SDSP_HOME/sdspI/misc and use the
--jtag_mapfile command line option to specify the map file
to use.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Debugger Execution Environments 9-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The commands available for hardware-assisted debugging are shown in
Table 9.8. For an example on how to use hardware-assisted debugging,
refer to Section 9.6.2, “Example 2,” page 9-21.

Table 9.7 Hardware-Assisted Debugging Commands for G1

Command Description

enable_ice Enable hardware-assisted debugging.

resume Resume execution.

step n Step n cycles.

insn_addr_brk addr Set a breakpoint when executing an instruction at addr.

st_addr_brk addr Set a breakpoint when storing to addr.

st_data_brk data Set a breakpoint when storing the value data.

st_addr_and_data_brk addr
data

Set a breakpoint when storing data to addr.

st_addr_or_data_brk addr data Set a breakpoint when storing to addr or storing the value
data.

disable_brk Disable hardware breakpoint.

return_to_sw_dbg Return to software debug mode. Must have executed in
hardware debug mode for at least one cycle in order for this to
work.

Table 9.8 Hardware-Assisted Debugging Commands for G2

Command Description

enable_ice Enable hardware-assisted debugging.

resume Resume execution.

step n Step n cycles.

insn_addr0_brk addr
...
insn_addr3_brk addr

Set a breakpoint when executing an instruction at addr.

disable_insn_addr0_brk
...
disable_insn_addr3_brk

Disable instruction address breakpoint.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-12 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

ext0_brk
...
ext3_brk

Set external breakpoint.

disable_ext0_brk
...
disable_ext3_brk

Disable external breakpoint.

st_addr_brk addr Set a breakpoint when storing to addr.

disable_addr_brk Disables hardware data address breakpoint.

st_data_brk data Set a breakpoint when storing the value data.

disable_data_brk Disables hardware data value breakpoint.

ld_addr_and_data_brk addr data Set a breakpoint when loading data from addr.

st_addr_and_data_brk addr data Set a breakpoint when storing data to addr.

ld_addr_or_data_brk addr data Set a breakpoint when loading from addr or the value
data is loaded.

st_addr_or_data_brk addr data Set a breakpoint when storing to addr or storing the value
data.

ext0_and_ld_addr_and_data_brk
addr data

Set a breakpoint when loading data from addr and
external BP0.

ext0_and_st_addr_and_data_brk
addr data

Set a breakpoint when storing data to addr and
external BP0.

ext0_and_ld_addr_or_data_brk addr
data

Set a breakpoint when (loading from addr or the value
data is loaded) and external BP0.

ext0_and_st_addr_or_data_brk addr
data

Set a breakpoint when (storing to addr or storing the value
data) and external BP0.

disable_combination_brk Disables hardware combination breakpoint.

disable_brk Disable all hardware breakpoints.

addr_mask Sets the bit mask for data address breakpoints.

data_mask Sets the bit mask for data value breakpoints.

not_addr Applies logical NOT to the data address breakpoint.

not_data Applies logical NOT to the data value breakpoint.

Table 9.8 Hardware-Assisted Debugging Commands for G2 (Cont.)

Command Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Debugger Commands – Special Cases 9-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

9.3 Debugger Commands – Special Cases

Some SDBUG commands have special cases, which are described in
the following subsections. For more information on the usage of any
command, issue the help command at the (sdbug) prompt.

9.3.1 Generic Target-Specific Commands

To make test scripts that need to run under multiple targets more generic,
the hardware and software target-specific commands memory_upload,
memory_download, close, and max_number_of_files may be used
without their target prefixes after the target has been specified.

For example, the command:

(sdbug) jtag max_number_of_files 1

may be replaced by

(sdbug) max_number_of_files 1

within a script after you have issued the target command.

9.3.2 Backtrace Command

To use the backtrace command, you must adhere to the calling
conventions described in Section 3.2, “Compiler Conventions.” To use
this command to display the call stack, set breakpoints on the function

ahb_clk_resume Resumes the AHB clock without restarting the core.

ahb_clk_stop_en Makes AHB clock stop when hardware breakpoints are hit.

io_clk_resume Resumes IO clock without restarting the core.

io_clk_stop_en Makes IO clock stop when hardware breakpoints are hit.

return_to_sw_dbg Returns to software debug mode. Must have executed in
hardware debug mode for at least one cycle in order for
this to work.

Table 9.8 Hardware-Assisted Debugging Commands for G2 (Cont.)

Command Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-14 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

name. This command may display incorrect results when the debugger
is halted inside a function prologue or epilogue.

9.3.3 Info Registers Command

9.3.3.1 sdbug400, zdxbug

To use this command, the %rpc register must be stored on the stack,
even for leaf functions. Otherwise, the compiler returns incorrect values
for the %pc and %rpc registers when traversing the stack. Refer to
Section 3.2, “Compiler Conventions.”

9.3.3.2 zdbug

The code still needs to following the compiler convention, though the
convention has now been changed. Refer to Section 3.2, “Compiler
Conventions.” for details.

9.3.4 Breakpoint Command

The SDK debugger reserves the use of pc value zero. If two breakpoints
are inadvertently set at pc value zero, the debugger loops while trying to
execute the instruction. If a breakpoint has to be set at pc value zero,
set only one breakpoint at that address.

9.3.5 Print Command

The print command is typically used to display the values of variables
and arrays. It may also be used to display the values in any memory
location.

9.3.6 Set Command

The set command is used to change the state of the processor or the
debugger. It can be used to change any register value, the value of any
word in any memory, or the value of any variable.

Keep in mind that with the cycle-accurate simulator (ZSIM), the set
command may not operate correctly if it is used to change the contents
of a register that will be used by an instruction currently in the pipeline—
if the instruction is in a pipeline stage older than Group (G), the
instruction may read the old value. Also, using the ZSIM set to modify a

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Debugger Commands – Special Cases 9-15
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

memory location that has already been loaded into the data cache
modifies both the data cache and the memory. (With UART and JTAG
targets, modifying memory does not affect the data cache.)

9.3.7 Cycle-Step Command

The cycle-step command is only available for use with the cycle-
accurate simulator (ZSIM). This command causes the simulator to
advance the pipeline cycle-by-cycle.

Format:

cycle-step #

Example:

(sdbug) cycle-step 10

The simulator is advanced by 10 clock cycles.

9.3.8 Accessing Memory with the Debugger

9.3.8.1 sdbug400, zdxbug

Debugger commands use memory addresses that are seven
hexadecimal digits in length.

The address format is shown in Figure 9.1. The seventh (left-most and
most-significant) digit is the page number (0x0–0xF) from the mempcr
register, the sixth digit selects between internal (0) or external (1)
memory, the fifth digit selects instruction (0) or data (2) memory, and the
first four (right-most and least-significant) digits are the normal 16-bit
address. If any of the three most-significant digits are omitted from an
address, they are assumed to be zero.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-16 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 9.1 Debugger Memory Addressing (sdbug400, zdxbug)

Note: All other ZSP SDK tools and linker scripts use four-digit
addressing. The debugger is the only tool that uses seven-
digit memory addressing.

Some examples of debugger memory addressing are shown below:

9.3.8.2 zdbug

Debugger commands use memory addresses that are eight hexidecimal
digits in length.

The address format is shown in Figure 9.2. The eighth (left-most and
most-significant) digit’s fourth bit (0x80000000) selects between internal
(0) or external (1) memory, the eighth digit’s third bit (0x40000000)
selects instruction (0) or data (1) memory. The other seven digits are
used to determine the address. If any of the left-most digits are omitted
from an address, they are assumed to be zero.

0 x 0 1 2 3 4 5 6

Page Number

Internal (0) or External (1)
Memory

Instruction (0) or Data (2)
Memory

Address
from mempcr register

0x0001000 Internal instruction at address 0x1000

0x0022000 Internal data at address 0x2000

0x0103000 Page 0, external instruction memory at address 0x3000

0x2124000 Page 2, external data memory at address 0x4000

0xa105000 Page 10, external instruction memory at address 0x5000

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Dynamic Breakpoints 9-17
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 9.2 Debugger Memory Addressing (zdbug)

Note: All other ZSP SDK tools and linker scripts use 24-bit
addressing. The debugger is the only tool that uses 30-bit
addressing.

Some examples of debugger memory addressing are shown below:

9.4 Dynamic Breakpoints

Command-line debugging supports dynamic breakpoints for all target
execution environments while in software debug mode. Dynamic
breakpoints are set by pressing ctrl-C.

0 x 0 1 2 3 4 5 6 7

Internal (0) or External (8)
Memory

Instruction (0) or Data (4)
Memory

Address

0x00001000 Internal instruction at address 0x1000

0x40002000 Internal data at address 0x2000

0x80003000 External instruction memory at address 0x3000

0xC0004000 External data memory at address 0x4000

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-18 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

9.5 Configuration Files

Each target comes with a configuration file that is installed in
%SDSP_HOME/MDI/Resources directory. The following table indicates
which file belongs to which targets.

For a description of all the MDI configuration files and what they do, see
Chapter 10, “ZSP MDI Configuration Files.“

9.6 Example Debugging Sessions

This section contains two examples demonstrating the use of SDBUG.
The first example uses the functional-accurate simulator, ZISIM. The
second example uses the JTAG controller connection for hardware-
assisted debugging.

9.6.1 Example 1

In this sample debugging session, the executable is built from the C and
assembly programs shown in Appendix A, "Example Programs" The
name of the executable is demo.exe, and the start address is 0x1000.
The target is set to the functional-accurate simulator (ZISIM) for the
LSI402Z. The complete command name is used the first time the
command is invoked (for example, backtrace); subsequent invocations
use the abbreviated command name (bt).

Table 9.9 Target Configuration Files

File Name Target Use in Debugger

zisim400.resource sim sdbug400

zsim400.resource zsim sdbug400

jtag400.resource jtag sdbug400

zisim500.resource sim zdbug

zsim500.resource zsim zdbug

jtag500.resource jtag zdbug

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Debugging Sessions 9-19
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

(shell) sdbug400
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=sparc-sun-solaris2.6 --target=sdsp-zsp-elf"...
(sdbug) file demo.exe
Reading symbols from demo.exe...done.
(sdbug) target sim
Connected to the simulator.
(sdbug) load demo.exe
.text : 0x 0 .. 0x cd ... Loading
.data : 0x cd .. 0x cf ... Loading
Transfer rate: 3312 bits in <1 sec.
(sdbug) breakpoint main
Breakpoint 1 at 0x13: file demo.c, line 9.
(sdbug) b func_1
Breakpoint 2 at 0x56: file func1.s, line 9.
(sdbug) b func_2
Breakpoint 3 at 0x89: file func2.c, line 4.
(sdbug) b func_3
Breakpoint 4 at 0x70: file func1.s, line 50.
(sdbug) run
Starting program: /user/Tools/MyProject02/demo.exe

Breakpoint 1, main () at demo.c:9
9 char ch = ’A’;
(sdbug) list
4
5 int t=500;
6
7 main()
8 {
9 char ch = ’A’;
10 int i,j = 100,k;
11
12 for (i=0; i< 2; i++) {
13 func_2();
(sdbug) step
10 int i,j = 100,k;
(sdbug) print j
$1 = 0
(sdbug) p i
$2 = 0
(sdbug) continue
Continuing.

Breakpoint 3, func_2 () at func2.c:4
4 int x=0,n=0;
(sdbug) next
5 while(n < 20)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-20 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

(sdbug) n 5
25 t1 = x;
(sdbug) backtrace
#0 func_2 () at func2.c:25
#1 0x21 in main () at demo.c:13
(sdbug) up
#1 0x21 in main () at demo.c:13
13 func_2();
(sdbug) down
#0 func_2 () at func2.c:25
25 t1 = x;
(sdbug) info reg r2 r3 r12 rpc pc
r2 0x0 0
r3 0x0 0
r12 0xf7f3 -2061
rpc 0x21 33
pc 0xc0 192
(sdbug) c
Continuing.

Breakpoint 2, func_1 () at func1.s:14
14 mov r5, r4
Current language: auto; currently asm
(sdbug) l
9 mov r13, %rpc
10 stu r13, r12, -1
11
12 /** END PROLOGUE **/
13
14 mov r5, r4
15 ld r4, r5
16 mov r6, 500
17 cmp r4, r6 /* *t <= 500; */
18 bgt L2
(sdbug) s 6
20 mov r6, 100
(sdbug) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000013 in main at demo.c:9
 breakpoint already hit 1 time
2 breakpoint keep y 0x00000056 func1.s:9
 breakpoint already hit 1 time
3 breakpoint keep y 0x00000089 in func_2 at func2.c:4
 breakpoint already hit 1 time
4 breakpoint keep y 0x00000070 func1.s:50
(sdbug) delete 4
(sdbug) b demo.c:23
Breakpoint 5 at 0x3b: file demo.c, line 23.
(sdbug) c
Continuing.

Breakpoint 3, func_2 () at func2.c:4
4 int x=0,n=0;

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Debugging Sessions 9-21
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

(sdbug) n 3
9 x += 5;
(sdbug) bt
#0 func_2 () at func2.c:9
#1 0x21 in main () at demo.c:13
(sdbug) c
Continuing.

Breakpoint 2, func_1 () at func1.s:14
14 mov r5, r4
(sdbug) disable 2 3
(sdbug) c
Continuing.

Breakpoint 5, main () at demo.c:23
23 while (i < 20) {
(sdbug) p i
$3 = 2
(sdbug) p j
$4 = 100
(sdbug) c
Continuing.

Breakpoint 5, main () at demo.c:23
23 while (i < 20) {
(sdbug) d 5
(sdbug) c
Continuing.
(SYSTEM HALT).. PC=0x000e
Total Instructions: 1384

Program exited normally.
(sdbug) exit

9.6.2 Example 2

This example illustrates the use of hardware-assisted debugging with the
JTAG connection. The example program hw_dbg.s is shown in
Appendix A, "Example Programs"

GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-cygwin32 --target=sdsp-zsp-elf".
(sdbug) file a.out
Reading symbols from a.out...done.
(sdbug) jtag set_clk 2 0 0
(sdbug) target jtag

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-22 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Connected to the target JTAG.
(sdbug) load
.data: 0x 1 .. 0x 1 ... Loading
.text: 0x 0 .. 0x ce ... Loading
(sdbug) hw enable_ice
(sdbug) hw insn_addr_brk 0x11
(sdbug) run
Starting program: hardware_debug.out
Connected to the target JTAG.
.data: 0x 1 .. 0x 1 ... Loading
.text: 0x 0 .. 0x ce ... Loading
Before:
 r0:0000 r4:0000 r8:0000 r12:0000
 r1:0000 r5:0000 r9:0000 r13:0000
 r2:0000 r6:0000 r10:0000 r14:0000
 r3:0000 r7:0000 r11:0000 r15:0000

 %fmode:0000 %hwflag:0004 %pc:0000 %timer1:0000
 %tc:0000 %ireq:0060 %rpc:0000 %loop2:0000
 %imask:0000 c10:0000 %tpc:ffff %loop3:0000
 %ip0:0000 c11:0000 %cb0_beg:0000 c27:0000
 %ip1:0000 %vitr:0000 %cb1_beg:0000 c28:0000
 %loop0:0000 c13:0000 %cb0_end:0000 c29:0000
 %loop1:0000 amode:0000 %cb1_end:0000 %dei:0000
 %guard:0000 %smode:0200 %timer0:0000 %ded:0000

Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
Successfully entered HW Debug mode ...

(sdbug) i r 14
r14 0x00
(sdbug) i r 15
r15 0x00
(sdbug) i r pc
pc 0x1319
(sdbug) hw st_data_brk 0xab02
(sdbug) hw resume
Host: Scanning into target 6024 bits
Host: Finished scanning into target 6024 bits
Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14
r14 0x44
(sdbug) i r 15
r15 0x00
(sdbug) i r pc
pc 0x3048
(sdbug) hw resume
Host: Scanning into target 6024 bits
Host: Finished scanning into target 6024 bits

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Debugging Sessions 9-23
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14
r14 0x77
(sdbug) i r 15
r15 0x00
(sdbug) i r pc
pc 0x4569
(sdbug) hw st_addr_brk 0x2000
(sdbug) hw resume
Host: Scanning into target 6024 bits
Host: Finished scanning into target 6024 bits
Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14
r14 0x88
(sdbug) i r 15
r15 0x00
(sdbug) i r pc
pc 0x4c76
(sdbug) hw st_addr_and_data_brk 0x2001 0xab01
(sdbug) hw resume
Host: Scanning into target 6024 bits
Host: Finished scanning into target 6024 bits
Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14
r14 0xd13
(sdbug) i r 15
r15 0x22
(sdbug) i r pc
pc 0x82130
(sdbug) quit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

9-24 Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 10-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 10
ZSP MDI Configuration
Files

This chapter describes the configuration files for the ZSP SDK MDI
libraries.

The ZSP SDK MDI library supports various hardware and software
debug targets used by the SDK debugger. This library uses various
configuration files to set itself up. For the most part, the default values in
the configuration files are fine, but there are some fields that you may
want to change, such as the register mapping file or the clock speed for
JTAG.

There are two kinds of configuration files: Device Configuration Files and
Device Resource Files, both of which uses a similar syntax.

10.1 Configuration File Basics

The configuration files share the same syntax for both types of
configuration files.

10.1.1 Comments

Comments may be put in the configuration file by placing a ‘#’ sign at
the beginning of the line. These lines are not processed by the
configuration file parser, but are meant to convey information to a human
reader.

#This is a comment

The comment ends at the end of the line.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

10-2 ZSP MDI Configuration Files
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.1.2 Section Headers

A section header is a line that begins with an opening bracket ([) and
ends with a closing bracket(]), with the name of the section in between
the brackets. A section ends with the end of the file or another section
header.

[Device Libs]

The above example declares a new section called “Device Libs”

10.1.3 Fields

In each section, various fields are expected to exist. Each field is defined
by its case-insensitive name, followed by a equal sign, followed by the
field’s value. Some fields may be optional, and may be left out of a
section when the default values are acceptable.

Family = “DSP”

The above defines a field called Family with the value “DSP”, a string.
There are five possible field types: string fields, endian fields, numeric
fields, boolean fields, and memory mapping fields.

10.1.3.1 String Fields

String fields are defined by a double quote and end with a double quote.
Some strings may have a fixed maximum length. Strings are case-
sensitive.

Family = “DSP”

The above defines the field Family as a string “DSP.”

10.1.3.2 Endian Fields

Endianness fields may have the value of “big” for big endian, or “little”
for little endian.

Endian = little

This sets Endianness to little endian.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Device Configuration Files 10-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.1.3.3 Numeric Fields

A numeric field is defined by one or more digits. For example,

Number = 123

Defines a field named “Number” with a numeric value of 123. Fields may
have restrictions on the range of values it accepts. The number may also
be a hexadecimal value. For example,

Number = 0x7B

is an equivalent of the previous example, as well.

10.1.3.4 Boolean Fields

Boolean fields have the values of “true” or “false.”

IsTrue = true

Sets IsTrue to true.

10.1.3.5 Memory Mapping Fields

Memory mapping fields are a comma-delimited list of memory addresses
and their read and write permissions. The smallest applicable block
determines whether an address is readable, writable, or neither. For
example,

Memory = 0x0-0xffffrw, 0xf800-0xfa00r

sets the address 0x0 to 0xf7ff and 0xfa01-0xffff to be both readable
and writable, but 0xf800 to 0xfa00 is read-only.

10.2 Device Configuration Files

Device configuration files are in a common format for all available ZSP
MDI targets. They reside in the Devices subdirectory where the MDI
library happens to be. Device configuration files consist of two sections:
a device information section and a device library section. The fields
contained in each section are listed below.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

10-4 ZSP MDI Configuration Files
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.2.1 Device Information Section

This section contains information obtainable via standard MDI device
queries, and is generally meant to inform the user of the target in
question.

10.2.2 Device Libs Section

This section specifies the exact MDI driver and configuration file to use
for this particular device.

Table 10.1 Field Listing -- Device Information Section

Field Name Field Type Comments

DeviceName String Max. length is 80

Family String Max. length is 14

FClass String Max. length is 14.

FPart String Max. length is 14.

FISA String Max. length is 14.

Vendor String Max. length is 14.

VFamily String Max. length is 14.

VPart String Max. length is 14.

VPartRev String Max. length is 14.

VPartData String Max. length is 14. Currently used by the
debugger to determine the target type (May be
jtag, sim, or zsim)

Endian Endian Max. length is 14.

Table 10.2 Field Listing -- Device Libs Section

Field Name Field Type Comments

Driver String Specify a file in the Drivers subdirectory.

Configuration String Specify a file in the Resources subdirectory.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Driver Configuration (Resource) Files 10-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.3 Driver Configuration (Resource) Files

The driver configuration files are stored in the Resources subdirectory
where the MDI library happens to be. As their name implies, these are
processed by the specific driver libraries. Therefore, the sections and
fields that exists in the files can be different from one driver to the next.
However, they all use the same syntax, as mentioned above.

In the current version of the SDK, three different types of driver
configuration files exist: zsim resource files, zisim resource files, and
JTAG resource files.

10.3.1 ZSP400 ZISIM

10.3.1.1 General Settings Section

Table 10.3 Field Listing -- ZSP400 ZSIM General Settings

Field Name Field Type Comments

 Simulator Library String Name of simulator library. File name
extension is not required. It will be
extended with “.so” on Solaris or “.dll” for
Windows.

 iboot pin Number Set pin IBOOT=1 to start from internal
memory location 0xf800.
If iboot pin = 0, simulation will start from
external memory location 0xf800.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

10-6 ZSP MDI Configuration Files
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.3.1.2 Memory Settings Section

10.3.2 ZSP400 ZSIM

10.3.2.1 General Settings Section

Table 10.4 Field Listing -- ZSP400 ZISIM Memory Settings

Field Name Field Type Comments

Internal Instruction Memory Memory Mapping Only one memory range is
supported. The beginning
value must be 0, and the
maximum ending value is
0xf7ff

Internal Data Memory Memory Mapping Only one memory range is
supported. The beginning
value must be 0, and the
maximum ending value is
0xf7ff

Table 10.5 Field Listing -- ZSP400 General Settings

Field Name Field Type Comments

 Simulator Library String Name of simulator library. File name
extension is not required. It will be
extended with “.so” on Solaris or “.dll” for
Windows.

 iboot pin Number Set pin IBOOT=1 to start from internal
memory location 0xf800.
If iboot pin = 0, simulation will start from
external memory location 0xf800.

MSS Library String Name of Memory Subsystem library. File
name extension is not required. It will be
extended with “.so” on Solaris or “.dll” for
Windows.
The default library name is “libzmss400”.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Driver Configuration (Resource) Files 10-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.3.2.2 Memory Settings Section

Table 10.6 Field Listing -- ZSP400 ZSIM Memory Settings

Field Name Field Type Comments

Internal Instruction Memory Memory Mapping Only one memory range is
supported. The beginning
value must be 0, and the
maximum ending value is
0xf7ff

Internal Data Memory Memory Mapping Only one memory range is
supported. The beginning
value must be 0, and the
maximum ending value is
0xf7ff

hasmempcr Number Indicates that the system has
MEMPCR memory mapped
register.
hasmempcr = 0 indicates
that the system doesn’t have
MEMPCR and the next entry
is not required.

mempcr address Number Specifies the address of
MEMPCR.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

10-8 ZSP MDI Configuration Files
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.3.3 ZSP400 JTAG

10.3.3.1 General Settings Section

10.3.3.2 Memory Settings Section

Table 10.7 Field Listing -- ZSP400 JTAG General Settings

Field Name Field Type Comments

Probe Driver String Requires the full name of the
library. This library is used to
talk to the actual JTAG probe
hardware.

Probe Speed Number Speed settings for the JTAG
Probe.

Hardware Mode Boolean Whether ZSP400 starts in
hardware or software debug
mode.

Register Mapfile String Mapping for all the register
bits in the core scan chain.
Used for hardware debug.

Table 10.8 Field Listing -- ZSP400 JTAG Memory Settings

Field Names Field Type Comments

internal instruction memory Memory Mapping

internal data memory Memory Mapping

external instruction memory Memory Mapping

external data memory Memory Mapping

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Driver Configuration (Resource) Files 10-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.3.4 ZSP500/ZSP600 ZISIM

10.3.4.1 General Settings Section

10.3.4.2 Memory Settings Section

Table 10.9 Field Listing -- ZSP500/ZSP600 ZISIM General Settings

Field Names Field Type Comments

Architecture String May be either “zsp500” or
“zsp600”.

Simulator Library String Name of simulator library.
File name extension is not
required. It will be extended
with “.so” on Solaris or “.dll”
for Windows.

SVT Address Number Specify system vector table
address.

Table 10.10 Field Listing -- ZSP500/ZSP600 ZISIM Memory Settings

Field Name Field Type Comments

internal instruction memory Memory Mapping 0xffffff is the maximum value

internal data memory Memory Mapping 0xffffff is the maximum value

external instruction memory Memory Mapping 0xffffff is the maximum value

external data memory Memory Mapping 0xffffff is the maximum value

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

10-10 ZSP MDI Configuration Files
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.3.5 ZSP500/ZSP600 ZSIM

10.3.5.1 General Settings Section

Table 10.11 Field Listings -- ZSP500/ZSP600 ZSIM General Settings

Field Name Field Type Comments

Architecture String May be either “zsp500” or
“zsp600”.

Simulator Library String Name of simulator library.
File name extension is not
required. It will be extended
with “.so” on Solaris or “.dll”
for Windows.

SVT Address Number Specify system vector table
address.

Co-Processor Library String Name of Co-Processor
library. File name extension
is not required. It will be
extended with “.so” on
Solaris or “.dll” for Windows.

Bus Interface Library String Name of Bus Interface
library. File name extension
is not required. It will be
extended with “.so” on
Solaris or “.dll” for Windows.
Specify “none” if no special
libraries are needed.

MSS Library String Name of Memory Subsystem
library. File name extension
is not required. It will be
extended with “.so” on
Solaris or “.dll” for Windows.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Driver Configuration (Resource) Files 10-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.3.5.2 Memory Settings Section

10.3.6 ZSP500/ZSP600 JTAG

10.3.6.1 General Settings Section

Table 10.12 Field Listings -- ZSP500/ZSP600 ZSIM Memory Settings

Field Name Field Type Comments

internal instruction memory Memory Mapping 0xffffff is the maximum value

internal data memory Memory Mapping 0xffffff is the maximum value

external instruction memory Memory Mapping 0xffffff is the maximum value

external data memory Memory Mapping 0xffffff is the maximum value

Table 10.13 Field Listing -- ZSP500/ZSP600 JTAG General Settings

Field Name Field Type Comments

Probe Driver String Requires the full name of the
library. This library is used to
talk to the actual JTAG probe
hardware.

Probe Speed Number Speed settings for the JTAG
Probe.

Hardware Mode Boolean Whether ZSP400 starts in
hardware or software debug
mode.

Register Mapfile String Mapping for all the register
bits in the core scan chain.
Used for hardware debug.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

10-12 ZSP MDI Configuration Files
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

10.3.6.2 Memory Settings Section

Table 10.14 Field Listing -- ZSP500/ZSP600 JTAG Memory Settings

Field Names Field Type Comments

internal instruction memory Memory Mapping

internal data memory Memory Mapping

external instruction memory Memory Mapping

external data memory Memory Mapping

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 11-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 11
ZSP Integrated Development
Environment

The ZSP Integrated Development Environment (ZSP IDE) is a graphical
user interface (GUI) application for ZSP software project management.
ZSP IDE enhances productivity for users of ZSP processors, allowing
easy setup, build, and debug of ZSP software projects. This chapter
focuses on managing project structures and building executable ZSP
programs using ZSP IDE. Chapter 9, “Debugger,“ describes the GUI for
the debuggers.

This chapter contains the following major sections:

• Section 11.1, “ZSP IDE Overview”

• Section 11.2, “ZSP IDE Filename Extensions”

• Section 11.3, “Working With Workspaces and Projects”

• Section 11.4, “Project Settings”

• Section 11.5, “ZSP IDE Detailed Description”

• Section 11.6, “Parallel Debug Manager”

• Section 11.7, “Help Menu”

• Section 11.8, “Editor”

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-2 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.1 ZSP IDE Overview

ZSP IDE provides an integrated tool suite for ZSP software developers
by managing projects, building code, and debugging for all ZSP
processors and supported targets. Refer to Figure 11.1. The graphical
user interface allows easy project setup for users with minimal familiarity
with ZSP tools and hardware.

Figure 11.1 ZSP IDE Tools Suite Implementation

11.1.1 Features

• Workspaces to organize projects and default settings

• ZSP Project Build Support - G2, G1/G2, ZSP400

• Compatibility - Backward-compatible with Version 3.2 projects

• Windows and UNIX (planned) platforms

• Multiple projects in same directory

• Build output linked to Source File View

• Parallel Debug Manager

11.1.2 Introduction to Workspaces and Projects

As shown in Figure 11.2, a workspace may contain any grouping of
projects with any combination of processor settings and debug targets.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Overview 11-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The workspace component of ZSP IDE allows maintenance of default
settings for its component projects.

Figure 11.2 ZSP IDE Workspace

The basic element of each ZSP software project is an executable file.
Each executable file is managed by ZSP IDE based on settings that are
created within ZSP IDE and stored in a project file. Project settings
include all information needed to build and debug an executable:

• Target ZSP architecture

• Compiler settings

• Include and archive file directories

• Assembler settings

• Debugger settings

• IDE Debugger window settings

11.1.2.1 IDE

Figure 11.3 shows the Main window of the IDE.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-4 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.3 ZSP IDE Main Window

The Main window contains the main menu, toolbar, project tree, source
file editing area and output/utility windows.

All of the major functions of ZSP IDE are available through the main
menu. The most commonly used functions from the main menu are also
accessible through the toolbar. The project tree displays the workspace
and project structure, allows opening of source files for editing, and
provides quick access to pertinent menu functions through popup menus.

At the bottom of the ZSP IDE Main screen is the output window which
displays the output of build and compile commands. An additional tab
grouped with the output window in the lower section provides an output
window for post-processing functions (such as object dump utility) or for
custom commands. The Utility Output tab displays output of utility
commands available from within the IDE.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Filename Extensions 11-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The bottom part of the Main window shows status information. The
current cursor location in the editor window is also reflected in this status
area.

11.2 ZSP IDE Filename Extensions

ZSP IDE produces a number of files when you create and compile a
project or workspace. These are categorized in Table 11.1.

11.3 Working With Workspaces and Projects

The purpose of a workspace is to organize and to provide default
settings for a project or group of projects. New and existing projects may
be added to a workspace. A project may belong to multiple workspaces.

11.3.1 Working With Workspaces

A set of default properties exists for each workspace. After the
workspace is created, the workspace properties may be modified. Any
new project added to the workspace inherits the default settings of the
workspace.

The Workspace menu has submenus to open, close and save
workspace files. It also has submenus to add new or existing projects to
a workspace. You can also delete projects from a workspace. A history
of the previous workspaces visited is also available to quickly switch

Table 11.1 ZSP IDE Filename Extension Assignments

Filename Extension File Description

.c C Source file

.S or .s Assembly source file

.h Header file

.pjt Project file

.ws Workspace file

.exe Executable file

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-6 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

between workspaces (see Figure 11.4). Only one workspace may be
active at any time. Switching to a different workspace closes the existing
workspace and the component projects.

Figure 11.4 Recent Workspaces List

11.3.1.1 Creating a New Workspace

To create a new workspace, select Workspace -> New in the IDE Main
menu. A dialog box is displayed to enter the filename for the new
workspace.

Note: Filenames may not contain space characters.

11.3.1.2 Opening a Workspace

To open an existing workspace, use the same procedure as described in
the previous section.

11.3.1.3 Saving a Workspace

To save the current workspace, select Save in the Workspace menu.

To save a workspace with a different name or in a different directory,
select Save As in the Workspace menu to display the File Selection
dialog box. The new workspace becomes the current session after
executing Workspace -> Save As.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Working With Workspaces and Projects 11-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.3.1.4 Adding Projects to a Workspace

To add new or existing projects to a workspace, select Add Project in the
Workspace menu. The File Selection dialog for projects is similar to that
used for creating workspaces. The default filename extension for project
files is .pjt.

11.3.1.5 Deleting a Project from a Workspace

To delete a project from a workspace, select the project to be deleted in
the Project Explorer window, then select Workspace -> Remove Project.

11.3.1.6 Closing a Workspace

To close a workspace, select Workspace -> Close from the Workspace
menu. Before the workspace closes, you are prompted to save any
unsaved files.

11.3.2 Working With Projects

A project is a container for source files, object files, executable files, build
settings and debugger settings.

Each project’s settings are stored in a file with a .pjt extension. It is not
necessary for the constituent files to be resident in the same directory as
the project. The project can be moved as long as the paths to the source
files are correct. Source files, header files, libraries and object modules
can be shared across multiple projects. Multiple project files may exist in
the same directory.

The Project menu, shown in Figure 11.5, has submenus to open, close,
and save project files, and a submenu to add new or existing files to a
project. You can also delete files from a project. A history of projects
recently visited is available to quickly move between projects. Only one
project can be active at any time. Switching to a different project closes
the existing project. If a source file was altered, a warning is issued and
you are provided with an option to save changes before switching to a
different project.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-8 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.5 Project Menu

11.3.2.1 Creating a New Project

To create a new project within a workspace, select either Workspace ->
Add Project -> New Project in the Main menu or Add Project ->
New Project in the Project Tree popup menu over the active workspace
node.

A dialog box is displayed so you can create the new project.

11.3.2.2 Opening an Existing Project

To open an existing project, follow these steps:

Step 1. Select Project -> Open.

This displays the File Selection dialog box.

Step 2. Browse to the appropriate directory and highlight the project file
(.pjt file) to be opened.

Step 3. Click OK

This opens the selected project. All associated component source,
header, and object files are shown in the Project Explorer pane.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Project Settings 11-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.3.2.3 Saving a Project

To save a project, select Project -> Save.

To save a project to a new project filename, select Project -> Save As.
A dialog box is displayed to save the project with a different name or in
a different directory. The new name is immediately reflected in the
Project Explorer window and the new project becomes active.

11.3.2.4 Adding Files to a Project

To add new or existing files to a project, select Project -> Add File. The
File Selection dialog box for files is similar to that used for creating
projects. There is no default filename extension for files.

11.3.2.5 Deleting Files from a Project

To delete a file from a project, use the popup menu over the file you want
to remove to select “Remove From Project.” You may also select the file
to be deleted from the Project Explorer window then select Project ->
Remove Files from the Main menu.

11.3.2.6 Closing a Project

To close a project, select Project -> Close in the Main menu.

11.4 Project Settings

Selecting Build -> Settings or Debug -> Settings in the main menu
displays the Settings dialog box. If a workspace node is selected in the
Project Tree, then the Settings dialog box reflects the default settings for
the workspace.

The Settings dialog box contains a tabbed notebook view that contains
all of the settings for a project, including settings for the ZSP compiler,
assembler, linker, debugger, and GUI debugger preferences. These tabs
are described in the following subsections. You may page between the
various tabs in the Settings dialog box and make changes. When the
changes are complete for all of the tabs, select Save and Exit to save
the settings to the project file and close the dialog box. Select Exit
without Saving to discard the changes.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-10 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.4.1 Build Methodology and Project Tree Structure

The ZSP IDE Project Tree partitions project files into folders based on
filename extensions.

• Source files with a “.c” extension (for C sources) are added to the
C Source Files folder.

• Source files with an “.S” extension are assembly sources that require
C preprocessing.

• Files with an “.s” extension are assembly source files, which do not
require preprocessing.

Files with extension of “.S” or “.s” are inserted into the IDE Project Tree
in the Assembly Source Files folder. Include files which have extensions
of “.h” or “.inc” are added to the Project Tree’s Include Files folder.
Additionally, when a file with an “.h” or “.inc” extension is added to the
project, the ZSP IDE provides a prompt allowing the directory containing
the files to the Include Directories list. Files with any other extension than
those described here are inserted into the project in the Other Files folder
and are not part of the build process.

The ZSP IDE invokes the appropriate ZSP compiler (SDCC ZDCC
ZDXCC) based on the processor type selected in the Settings dialog box.
The ZSP compiler invokes each of the component processes that
complete the build process. You may specify options in the Settings
panel to direct the behavior of the compiler, assembler, and linker.

11.4.2 Compiler/Assembler Settings

The Compiler settings tab (see Figure 11.6) is the primary control for
each project. The processor architecture selected in the Compiler
settings tab controls the entire set of underlying command line tools and
utilities. The three available architecture choices are

• G2 - This option selects the ZSP G2 architecture.

• ZSP400 - This option selects the ZSP400 architecture.

• G1G2 - This option is provided to enable building ZSP400 code for
processors based on ZSP G2 architecture.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Project Settings 11-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

ZSP400 is the first generation ZSP architecture. This setting works for all
ASSPs based on this core (for example, the LSI402ZX, LSI403Z, and
LSI403LP).

ZSPG2, the next generation architecture in the ZSP roadmap, has many
new instructions, new resources, and a bigger address range. It is
assembly compatible with the ZSP400.

The dual mac core called ZSP500 is based on the ZSPG2 architecture.
It supports a 24-bit address range and is a four issue machine. The
simulators in the toolchain support the ZSP500 in a cycle accurate and
instruction accurate modes. Refer to the ZSP400 and ZSPG2 manuals
for more information. Select G2 to compile for ZSP500 or G1/G2 to
compile ZSP400 source code for G2.

Figure 11.6 Compiler Settings

Figure 11.7 shows the Assembler settings tab.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-12 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.7 Assembler Settings

Table 11.2 describes the other settings that control the Compiler and
Assembler.

Table 11.2 Compiler/Assembler Settings

Option (Command Line Equivalent) Description

Produce debugging information (-g) This option instructs the compiler to produce debug-
ging information for source-level debugging.

Print stages of compilation (-v) This option instructs the compiler to print the com-
mands executed in stages of compilation, and to print
the version number of the tools before compilation.

Optimization (-O number) This option instructs the compiler to produce opti-
mized code. Select optimization level 0-3. See the
compiler section of this document for more details
regarding optimization levels and the impact of optimi-
zation on debugging capabilities.

No assembly optimization (-mno_sdopt) This option suppresses back-end optimization that is
otherwise automatically performed on compiler-gener-
ated assembly code.

Use Long calls (-mlong_call) This option tells the compiler to use register-based
calls (long calls). These calls can be optimized where
possible if back-end optimization is enabled.

Use Large Data Model (-mlarge_data) The large data model has no requirements on the size
or placement of the data and bss sections.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Project Settings 11-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Additional compiler options Text Box (option) This option specifies any compiler options that do not
have a check box in the Compiler/Assembler settings
tabs. Separate multiple options with spaces.

Output
Options

Create object files (-c) This option instructs the compiler to compile and
assemble the source files and produces object file(s)
only (no linking is performed).

Create assembly files (-s) This option instructs the compiler to stop after compi-
lation and produces assembly code files for each C
source file specified.

Preprocess files (-E) This option stops compilation after the preprocessing
stage and redirects the preprocessed output to stan-
dard output.

Create executable (-o) This option instructs the compiler to compile all
sources and link objects into the executable file spec-
ified in the Executable File Name entry.

Executable File Name Specify the name of the executable file you want
here.

No standard includes (-nostdinc) This option directs the compiler not to search the
standard system directories for header and include
files.

Include Directories (-I) This is a list of directories that the compiler searches
for header and include files.

No Standard Libraries (-nostdlib) This option forces the compiler to not use the stan-
dard system startup files or libraries during linking.

Listing option (-a) This option produces a listing file. The listing file
includes high-level source information, assembly
instruction information, and symbol information. Type
a filename in the text box to save the listing to a file.
The listing is sent to standard output if no filename is
specified.

Additional compiler options Text Box (option) This option specifies any compiler options that do not
have a check box in the Compiler/Assembler settings
tab. Separate multiple options with spaces.

Table 11.2 Compiler/Assembler Settings (Cont.)

Option (Command Line Equivalent) Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-14 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.4.3 Linker Settings

The Linker Settings window, shown in Figure 11.8, provides detailed
control over link behavior. See the Linker section of this manual for more
detail.

Figure 11.8 Linker Settings

For archive and object files, you can invoke a file browser to select the
files by selecting the appropriate Add command button. To remove a file
from the list, select it with the mouse and then select the Remove
command button.

Produce debugging information (-dbg) This option includes debugging symbols in the object
file to allow source-level debugging of assembly files.

Additional assembler options Text Box
(option)

This option specifies any assembler options that do
not have a check box in the Compiler/Assembler set-
tings tab. Separate multiple options with spaces.

Table 11.2 Compiler/Assembler Settings (Cont.)

Option (Command Line Equivalent) Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Project Settings 11-15
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 11.3 describes the options that control the linker.

Table 11.3 Linker Options

Option (Command Line
Equivalent) Description

Entry Point (-e) The Entry Point directive to the linker specifies the starting address or
label of the executable. The default is the label “__start” (provided in
crt0.obj for C programs). For assembly programs you may specify
the entry point to be any valid label or address, or you may accept the
default which is the start of the .text section.

Locate Stack (__stack_start) This entry defines the __stack_start symbol that determines the
starting address of the program stack pointer.

Define symbols (-defsym) Creates a symbol in the output file containing the absolute address
specified by the expression. Enter the symbol and the expression in
the text box, using the following syntax: symbol=expression. Spaces
are not allowed next to the ‘=’ sign.

Code Section(-Ttext) This entry specifies the starting address for the text segment of the
output file. The default value is 0x0

Data Section (-Tdata) This entry specifies the starting address of the initialized data segment
of the output file. The default value is 0x0.

Data Section (-Tbss) This entry specifies the starting address of the uninitialized data seg-
ment of the output file. The default value is 0x0.

Link Script This entry specifies a filename to be used as a Linker Command file,
if you need more control over the locations of sections in your execut-
able. The filename extension must not conflict with source/object
filename extensions. If you specify a relative pathname, it should be
relative to your project directory.

Object Files Specifies external object files to be linked with the project’s object files
to produce the executable. Select the Add button to select new object
files from a File Selection dialog box. To remove an object file from the
list, select the entry with the mouse and then select Remove.

Archive files List Box (-L) Specifies external archive files to be linked with the project’s object
files to produce the executable. Select the Add button to select new
archive files from a File Selection dialog box. To remove an archive file
from the list, select the entry with the mouse and then select Remove.

Additional options This entry specifies any linker options that do not have a check box in
the Linker Settings tab. Separate multiple options with spaces.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-16 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.5 ZSP IDE Detailed Description

This section provides more detail about the ZSP IDE graphical user’s
interface.

11.5.1 Paned Window Controls

The IDE Main window is divided into resizable sections by paned window
controls, as shown in Figure 11.9. The IDE screen area displayed in the
paned window may be resized by dragging the handles of the paned
window controls that separate the screen areas.

Figure 11.9 Paned Window Handles

11.5.2 Project Tree

The Project Tree component of the ZSP IDE (see Figure 11.10) shows a
hierarchical view of the files included in your projects and workspace.
The Project Tree also provides the primary means of selecting the active
project or workspace component.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-17
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.10 ZSP IDE Project Tree

Select the workspace node of the tree to customize default settings for
your workspace. Default settings are applied to new projects when they
are created within your workspace. Default settings may also be applied
to existing projects when they are added to your workspace. To apply
default settings to newly created projects, select the checkbutton labeled
Use Workspace Settings in the Preferences window. To display the
Preferences window, select View -> Preferences. See Section 11.5.3.5,
“View Menu,” page 11-21 for details on the Preferences window.

Select a project or file from the tree to activate the project file as the
current project. The current project is the project affected by Build and
Debug operations.

Double-click the left mouse button while the mouse cursor is positioned
over a source file in the Project Tree to edit the file in the Edit window.

A popup menu is available for the workspace node of the Project Tree.
To invoke the Workspace popup menu, click the right mouse button over
the workspace node of the tree. See Figure 11.11.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-18 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.11 Workspace Popup Menu

The Workspace popup menu shows the name of the workspace followed
by shortcuts to workspace menu items from the main menu.

A popup menu is also available for a project node of the Project Tree.
Clicking the mouse on a project node causes the menu in Figure 11.12
to pop up.

Figure 11.12 Project Popup Menu

Additionally, the File popup menu shown in Figure 11.13 is displayed
when you click on a file node.

Figure 11.13 File Popup Menu

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-19
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.5.3 Main Menu

The Main menu provides access to major functions of the ZSP IDE such
as opening, closing, and maintaining workspaces, projects and files, as
well as building and debugging projects

11.5.3.1 Operating the Main Menu

Main menu items may be selected either by left-clicking with the mouse
or by typing the menu accelerator key (underlined character in the menu
name). To open the menus from the keyboard, depress the ALT key and
the desired accelerator key concurrently. You may also use the Up,
Down, Left, and Right arrow keys to navigate through the menus,
terminating your choice with either the Enter key to open a menu or the
Escape key to cancel your selection.

11.5.3.2 Main Menu Functions

The ZSP IDE Main menu provides the following submenus:

• File menu

• Edit menu

• View menu

• Project menu

• Workspace menu

• Build menu

• Debug menu

• Utilities menu

11.5.3.3 File Menu

The File menu, shown in Figure 11.14, is used for operations on text files
such as source files, include files, batch files, or any other text files. It
opens new or existing files and saves and closes active files.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-20 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.14 File Menu

A file opened using the File menu does not automatically belong to the
active project. You need to explicitly add it to a project as described in
Section 11.3.2, “Working With Projects.” You can open and edit a file
even if no workspace or project is active.

11.5.3.4 Edit Menu

A simple editor is included in the IDE. The Edit menu, Figure 11.15,
provides options that may be useful during editing. It is fairly intuitive to
use and provides standard edit functionality like Cut, Copy, Paste, Indent,
Outdent, Find, Replace, Select All, Undo, and Redo.

The Edit functions are active for a file you are editing in the Edit window.
They are not active for projects, workspaces, and directories, and they
will cause errors if used for anything but file editing.

Shortcut keys are also available for common edit functions.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-21
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.15 Edit Menu

11.5.3.5 View Menu

The View menu is available to selectively display and customize ZSP
IDE screen components. See Figure 11.16.

Figure 11.16 View Menu

View Preferences – You may set IDE enviromnent preferences by
selecting View -> Preferences. The Preferences dialog box, shown in
Figure 11.17, offers options to alter editor settings in a tab labeled Editor.
You can set colors, text style, line number, and other preferences in this
window.

The checkbox labeled “Use Workspace Settings” controls the default
project settings when a new project is created. If it is checked, then the
project is created with the default workspace settings, otherwise the
project is created with generic defaults.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-22 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The checkbox labeled “Use Relative Path” controls the type of path that
is created within the workspace and projects. If it is not checked, then
absolute paths are used for workspace components (projects, files,
include directories, etc.) Otherwise, relative paths are used. Relative path
hierarchy begins with the workspace, which is always an absolute path.
Projects are relative to the workspace. Files and other project component
paths are relative to the project directory.

For interoperation of projects and workspaces between Windows and
Solaris platforms, always use relative paths.

Figure 11.17 View Preferences Dialog Box

After you set the preferences, click OK to save the settings.

View Window – View -> Window provides the option to display or hide
the Project Explorer set of tabs and the Output set of tabs. A check mark
to the left of the item denotes if the window is active. The setting is
toggled each time an item is selected.

View Toolbar – The Toolbar button icons at the top of the IDE window
can be customized to your liking. Select View -> Toolbar -> Customize
to display the Customize Toolbar dialog box shown in Figure 11.18. The
dialog box shows the current icon assignments.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-23
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

There is a default that comes up as the standard toolbar. A user may
select View->Toolbar->customize to customize the toolbar. When
customize is selected a window titled “Customize Toolbar” pops up that
shows the various options available for customizing. When you click OK,
the toolbar is altered to display the customized settings.

Figure 11.18 Customize Toolbar Dialog Box

You can switch back to the standard settings by selecting
View->Toolbar->Standard.

A check mark to the left of the item denotes if the selection is active. The
setting is toggled each time an item is selected.

11.5.3.6 Project Menu

The Project menu, shown in Figure 11.19, allows you to create and
maintain projects.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-24 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.19 Project Menu

11.5.3.7 Workspace Menu

The Workspace Menu, shown in Figure 11.20, allows you to create and
maintain workspaces.

Figure 11.20 Workspace Menu

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-25
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.5.3.8 Build Menu

The Build menu invokes the ZSP IDE Build process and allows you to
customize project build parameters. The Build menu is shown in
Figure 11.21.

Figure 11.21 Build Menu

Build Project – Once a project is created and the constituent files are
added to it, the build settings which control the options with which the
underlying tools (compiler, assembler, linker) are invoked can be set and
the executable can be built.

Build project builds the executable, using the options specified in the
Project Settings window. This functionality is also available from the
popup menu on the Project Tree when a project file is the selected node.

When building the executable, build messages are displayed in the
Output window in the Build/Compile Output tab, if enabled. See
Figure 11.22.

Figure 11.22 Build/Compile Output Window

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-26 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The Build Output window displays the output of the process of building
or compiling a project. The output can be saved by right clicking on the
window. If errors in building are shown in the Build Output window, you
may easily display the source file and line containing the error in the Edit
window by double-clicking with the left mouse button on the line in the
Build Output window.

A popup menu is available within the Build Output window (see
Figure 11.23) to save or clear the window contents.

Figure 11.23 Build Output Window Popup Menu

Settings – Select Settings in the Build menu to customize the
parameters to be used for building your project. This functionality is also
available from the popup menu on the Project Tree when the project file
is the selected node.

Compile Current – Select Compile Current in the Build menu to compile
the currently selected source file. The ZSP compiler is invoked with the
-c option and an object file is produced with the same base name as the
input file and an extension of .obj. This functionality is also available
from the popup menu on the Project Tree when the source file is the
selected node.

11.5.3.9 Debug Menu

The Debug menu, shown in Figure 11.24, provides configuration and
control of project debugging.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-27
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.24 Debug Menu

Settings – Select Settings in the Debug menu to display the project
Settings dialog box. In the project Settings dialog box, select Debug
Target or Debug Setup tabs to display debugger settings.

As shown in Figure 11.25, Debug Target displays the valid target types
for the processor type that is specified in your project’s compiler settings.

Figure 11.25 Debug Target Dialog Box

The Debug Setup dialog box is shown in Figure 11.26.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-28 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.26 Debug Setup Dialog Box

Run – Select Run in the Debug menu to launch the ZSP IDE Debugger
using the selected processor and debug target settings.

Invoke PDM – Select Invoke PDM in the Debug menu to run the Parallel
Debug Manager (PDM) component of ZSP IDE. PDM allows concurrent
debugging of projects. PDM is valid when a workspace is active and
operates on all projects selected from within the current workspace. See
Section 11.6, “Parallel Debug Manager,” page 11-36, for more
information on this feature.

11.5.3.10 Utilities Menu

The Utilities menu, shown in Figure 11.27, provides the ability to examine
object files, execute custom commands and work with a makefile to
create custom targets.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-29
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.27 Utilities Menu

objdump – Select objdump in the Utilities menu to display the Object
File Utility dialog box shown in Figure 11.28.

The Object File Utility dialog box shows information about object files.
The default object file is the compiler output file from the currently
selected project. You may select another object file from a file selection
dialog for processing by selecting the Choose File button.

Figure 11.28 Object File Utility Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-30 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.29 Utility Output Window Showing Disassembled Code

User Command – Select User Command in the Utilities menu to display
a dialog box (see Figure 11.30) that allows execution of a custom
command to be executed.

Figure 11.30 Run User Command Dialog Box

Make – Select Make from the Utilities menu to display the Make Utility
shown in Figure 11.31.

The Make Utility creates a makefile named ‘makefile’ in the project
directory of the current project. This filename is reserved for use by the
Make Utility and is overwritten each time the Make Utility is invoked.

A set of makefile variables is maintained by the Make Utility and stored
in the ZSPIDE project file for your current project.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-31
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.31 Make Utility

The Make Utility includes

• Command buttons to generate a makefile and make common
targets.

• makefile variable editing functionality.

• An output text area for viewing the generated makefile and the
output of the make process.

Processor Selection – The Make Utility configures the makefile to build
with the appropriate tools for the selected processor.

Make Variables Selection List – A listing of make variables is generated
and saved in the ZSPIDE <project>.pjt file. To view and edit each of
the variables, select it from the list.

Make Variable Editing Area – The variable definition is displayed below
the Make Variables Selection List for editing.

Text Output Area – View the makefile after generation and the output of
the make process in the text output area.

When the Make Utility is invoked, the list of files in the ZSPIDE project
are imported. New files may be added to the project and the Make Utility
detects and adds them to the makefile variables. C source files are
added to the CSRS variable. Assembly source files, .s, are added to the
ASRCS1 variable and assembly source files, .S, are added to the
ASRCS2 variable. These three source file lists are required for the Make

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-32 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Utility to function and should not be deleted. Additional source file lists
may be created so that alternate procedures may be performed on the
additional lists. To add a source file list to the make configuration, right-
click on the makefile variable list and select Add from the popup menu
shown in Figure 11.32.

Figure 11.32 Makefile Variable Popup Menu

The Add Variable to dialog box shown in Figure 11.33 is displayed.

Figure 11.33 Add Variable to Dialog Box

Select Source File List in the Variable Type selection list and edit the
variable name in the Variable Name entry box. Files may be added by
right-clicking on the variable editing area and selecting Add. This invokes
a file selection dialog box from which new files may be selected. Of
course you may also manage the makefile variables by editing the
project file with a text editor. Make sure that spied is not using the project
file though, as zspide may overwrite the project file at any time.

Generate - When the Generate button in the Make Utility is selected, the
the makefile is generated and displayed in the text area. This is not an
editing area; changes made directly to the makefile view are not saved.
If you need to make custom changes, copy the makefile to a new file for
editing. You may invoke zdmake on the new filename by specifying -f
<filename> on the zdmake command line.

Make - When the Make button in the Make Utility is selected, the Make
Utility invokes zdmake to build the makefile project.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-33
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Clean - Select the Clean button in the Make Utility to delete the object
files to force rebuilding all objects on a subsequent invocation of zdmake.

Note: While it is possible to create suffix rules for suffixes other
than the supported .c, .s, .S, .obj, and .o extensions,
such usage is not recommended.

11.5.4 Toolbar

The Toolbar, shown in Figure 11.34, provides easy access to commonly
used functions of ZSP IDE.

Note: The icons shown here are the standard or default icons for
the tools. The View Toolbar section on page 11-22
describes how to customize the icon assignments.

Figure 11.34 ZSP IDE Toolbar

The following functions are available through the toolbar.

New File

Select the New File toolbar button to create a new text file in the IDE
editor window. The new file is not automatically included in the current
working project. If you want the new file to be a project component, use
the Add File option either from the Main menu’s Project menu or from
the Project Tree popup menu over the selected project.

Open File

Select the Open File toolbar button to open an existing text file in the IDE
editor window. The opened file is not automatically included in the current
working project. If you want the opened file to be a project component,
use the Add File option either from the Main menu’s Project menu or
from the Project Tree popup menu over the selected project.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-34 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Close

Select the Close File toolbar button to close the text file that is being
edited in the IDE edit window.

Close All

Select the Close All toolbar button to close all of the text files that are
being edited in the IDE edit window.

Save

Select the Save toolbar button to save the file that is currently being
edited in the editor window.

Save All

Select the Save All toolbar button to save all of the files that are present
in the editor window and that have been modified.

Cut

Select the Cut toolbar button to cut selected (highlighted) text from the
editor window.

Copy

Select the Copy toolbar button to copy the selected text from the editor
window into the clipboard buffer.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP IDE Detailed Description 11-35
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Paste

Select the Paste toolbar button to paste the contents of the clipboard at
the insertion point in the text file in the edit window.

Find

Select the Find toolbar button to display the Find dialog box, which
allows searching the current source file for the desired text.

Settings

Select the Settings toolbar button to display the Settings window for the
currently selected project or workspace.

Build

Select the Build toolbar button to display the build tools using the settings
from the currently selected project.

Compile

Select the Compile toolbar button to compile the currently selected
source file.

Debug

Select the Debug toolbar button to invoke the GUI debugger for the
currently selected project.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-36 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

11.6 Parallel Debug Manager

The Parallel Debug Manager is invoked by selecting Debug -> Invoke
PDM in the Main menu. When PDM starts, the Debug Manager dialog
box, shown in Figure 11.35, is displayed in which you may select the
projects from within your workspace that you want to debug. Click in the
check boxes to select projects.

Figure 11.35 Debug Manager Dialog Box

Select Run from the Debug menu to start debugging. The Debug
Manager dialog box changes to debugging mode, as shown in
Figure 11.36, and ZSP IDE Debuggers are launched for each of the
projects selected. Each debugger may be controlled independently using
its own controls, or all debuggers may execute the same commands as
directed by the PDM Control Window.

PDM controls include command buttons from the Debug Execute menus
and a command prompt and output window. Commands that are typed
into the command prompt have output displayed in the PDM output
window for each of the projects being debugged.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Help Menu 11-37
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 11.36 Debug Manager Control Window

11.7 Help Menu

The Help menu, shown in Figure 11.37, provides three choices:

• About ZSPIDE displays the About dialog box. It contains system
information including version numbers for various components of the
SDK tools.

• ZSPIDE Help displays the online help for ZSPIDE.

• Tutorial runs the tutorial demonstration.

Figure 11.37 Help Menu

11.8 Editor

The ZSP IDE Editor is a window where you can write your code. It allows
basic editing functionality.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

11-38 ZSP Integrated Development Environment
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide 12-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Chapter 12
ZSP IDE Debugger

This chapter describes how to use the ZSP IDE Debugger, a graphical
debugging environment for developers using the ZSP family of Digital
Signal Processor Cores.

ZSP IDE Debugger is a menu-driven user interface to the ZSP
Command-Line Debugger. It provides a user-friendly graphical interface
that allows navigation through application code while showing program
and processor information for debugging purposes. The ZSP IDE
Debugger allows setting breakpoints, examining registers and variables,
watching source level variables, and examining memory. Commands
may be entered to be executed by the Command Line Debugger. The
capability to automatically save your current debug settings and restore
them at startup allows quick setup for each debugging session.

The ZSP IDE Debugger is an integral component of the ZSP IDE
executable (zspide.exe). The Debugger is configured and invoked from
the IDE Debug Menu to operate on the IDE Current Project.

12.1 Features of ZSP IDE Debugger
• Processor Support - ZSP G2 Architecture, ZSP400 Architecture, and

G1/G2 (to use ZSP400 source code for processors based on ZSP
G2 architecture.)

• Compatibility - Backwards-compatible with projects created with
previous versions of SDK Tools.

• Windows and UNIX Debugger platforms

• Support for multiple targets

• Processor Register Windows - Operand, Control, Address Registers
(G2)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-2 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• Displays cycle-accurate simulator information, code statistics, code
profile, instruction grouping rules, core pipeline.

• Concurrent Source and Disassembly level debugging

• 40-bit register display

• Multiple sessions may run concurrently

• Command-Line Debugger interface

Underlying Command Line Tools – Behind the ZSP IDE Debugger is
a command line interface to the GNU Debugger (sdbug400, zdbug,
zdxbug) for the ZSP processor.

Target Interfaces –

Table 12.1 Command Line Debugger Executables

Target Command Line Debugger

ZSP400 sdbug400.exe

G2 zdbug.exe

G1G2 zdxbug.exe

Table 12.2 Debugger Targets

Simulator targets

Cycle accurate simulator (zsim for ZSP400 and G2)

Instruction level simulator (zisim) for ZSP400 and G2

Hardware Targets

Corelis PCMCIA based JTAG for ZSP400 and G2

Corelis PCI based JTAG for ZSP400 and G2

Greenhills Slingshot JTAG for ZSP400

FS2 JTAG for ZSP G2

UART (Serial Port) for ZSP400

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

GUI Debugger Overview 12-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

ZSP IDE Debugger supports JTAG hardware targets, UART (Serial Port)
hardware target, ZISIM instruction-accurate simulators, and ZSIM cycle-
accurate simulators.

12.2 GUI Debugger Overview

12.2.1 Main Window

The Main Window comprises a Title Bar, Menu Bar, Tool Bar(s), Status
Area, and Debugging Window area in which Debugging Windows may
be displayed.

12.2.2 Title Bar - Project File Name Display

When a project is loaded, the name of the project file is displayed in the
Main Window Title Bar.

12.2.3 Window Area

Debugging Windows are displayed in the window area in the center of
the Main Window. The Main Window configuration adds new Debugging
Windows by splitting the available window size into panes that are
resized by adjusting the handle on the separator between the windows.
Alternatively, Debugging Windows may each be separated from the Main
Window (see Section 12.2.7.3, “Top Level Window Presentation,”
page 12-8).

12.2.4 Status Area

The Status Area at the bottom of the Main Window shows general
information throughout the debugging session, such as the target
processor, debug target, executable file name, and debugging status.

12.2.5 Main Menu

The Main Menu provides access to major functions of the debugger such
as controlling breakpoints, executing navigation commands, and
displaying Debugging Windows.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-4 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

12.2.5.1 Operating the Main Menu

Main menu items may be selected either by left-clicking with the mouse
or by typing a menu accelerator key (underlined character in the menu
name). To invoke the menus from the keyboard, depress the ALT key
and the accelerator key for the Main Menu item concurrently. This
displays the pull-down subitem menu from which you can make further
selections without using the ALT key. You may also use the Up, Down,
Left, and Right arrow keys to navigate through the menus, terminating
your choice with either the Enter key to confirm or the Escape key to
cancel your selection.

12.2.5.2 Controlling Debugging Windows through the Main Menu

Debugging Windows display program and/or debugging target
information. Debugging Windows may be selected for viewing through
the Main Menu checkbutton menu items.

Debugging Window Menu Checkmarks – When a Debugging Window
is displayed, the corresponding Main Menu item displays a checkmark in
front of the menu text field.

Figure 12.1 Menu Checkmarks For Debugging Windows

12.2.6 Main Toolbars

Toolbars are available as menu shortcuts to provide access to commonly
used debugging features.

12.2.6.1 Available Toolbars

Toolbars exist for the following areas:

• Program navigation (Execute Menu shortcuts)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

GUI Debugger Overview 12-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• Breakpoint management (Breakpoint Menu shortcuts)

• Data windows (Debugging Window menu shortcuts)

12.2.6.2 Invoking Toolbars

Select Toolbars from the Tools Menu and select the desired toolbar by
name to toggle the display of the toolbar below the menu in the Main
Window.

Figure 12.2 Tools Menu - Invoke Toolbars

12.2.6.3 Modifying Toolbar Appearance

Toolbar Buttons may be viewed with text or icon annotation. To view the
button annotation as text, select Preferences from the Tools Menu to
display the Preferences Window, shown in Figure 12.3, then deselect the
“use images” checkbutton.

Figure 12.3 Preferences - Use Images For Toolbar Buttons

Figure 12.4 and Figure 12.5 show the appearance of the toolbar for each
of these annotation modes. Each Toolbar Button has a text description
that appears when the mouse cursor is moved over the button.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-6 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.4 Toolbar Buttons with Text Annotation

Figure 12.5 Toolbar Buttons with Image Annotation

12.2.7 Debugging Windows (General)

Debugging Windows comprise the following types (described in detail in
later sections):

• C/Assembly Program Windows

– Source Code

– Breakpoint List

– Debugging Symbols

– Call Stack

– Local Variables

– Global Variables

– Expression

– Watch

– ZSIM Statistics

– ZSIM Profile

• Target system windows

– Disassembly Code

– Control Registers

– Operand Registers

– Address Registers (G2)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

GUI Debugger Overview 12-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

– Memory

– ZSIM Grouping Rule

– ZSIM Pipeline

• Tools Preferences

• Command Line Interface

12.2.7.1 Debugging Window Operation

Debugging Windows are displayed by selecting the appropriate menu
item from the Main Menu or by selecting the appropriate button from the
Window Toolbar. To remove the window from the display, invoke the
menu item again to remove the checkmark, close the window by clicking
on the “X” icon, or deselect the associated Toolbar Button.

12.2.7.2 Debugging Windows Paned Window Presentation

Debugging Windows appear by default in a Paned Window view as child
windows within the Main Window. In this configuration, all windows
appear at the same level—i.e., no separate Debugging Windows. Each
Debugging Window may be separated from the Paned Window (see
Debugging Window Top Level Preference on page 12-9 and Changing
Debugging Window View Mode on page 12-10).

Figure 12.6 Debugger Paned Window

Paned Window Operation – Windows displayed in the Paned Window
may be resized by dragging the handles of the paned window controls
that separate the rows and columns of the Debugging Window area.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-8 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.7 Paned Window Handles

Resizing columns affects all windows in that column while resizing rows
only modifies one window plus its vertical neighbor.

Paned Window Configuration – The presentation of windows in the
Paned Window may be configured in 1-4 columns by selecting
Preferences from the Tools Menu and “Main Window Columns” from the
Preferences Window Display Tab. To change the number of columns
displayed during a session,

Step 1. Set the desired number of columns in the preferences panel

Step 2. Save the debugging session (File > Save > Session)

Step 3. Reload the debugging session (File > Load > Session)

Figure 12.8 Preferences - Set Main Window Columns

12.2.7.3 Top Level Window Presentation

Top Level presentation of a Debugging Window displays that window as
a separate Top Level window.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

GUI Debugger Overview 12-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.9 Top Level Debugging Window

Top Level Focus Control – Top Level Debugging Windows that are
obscured by other graphics on the screen may be brought into focus for
viewing by selecting the corresponding Window Button on the toolbar at
the bottom of the Paned Window.

Figure 12.10 Top Level Window Focus Control

Debugging Window Top Level Preference – New Debugging
Windows may be automatically configured for Top Level presentation by
selecting Preferences from the Tools Menu and then selecting the
checkbox labeled "Separate New Windows" in the Display Tab of the
Preferences Window.

Figure 12.11 Preferences - Separate New Window

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-10 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

12.2.7.4 Changing Debugging Window View Mode

Each of the Debugging Windows may be changed to and from Top Level
or Paned Windows or may be closed by selecting the appropriate
window icon at the upper right corner of that Debugging Window’s
submenu area.

Click the left mouse button on the Window icon to separate the window
into a Top Level Window. Click the left mouse button on the “X” icon to
close the window. To relocate the window within the main paned window,
depress and hold the left mouse button on the arrow window icon, drag
the mouse cursor to the desired new position and then release the left
mouse button.

Figure 12.12 Display Controls for Paned Window

Click the left mouse button on the window icon to join the Top Level
Window into the Paned Window. Click the left mouse button on the “X”
icon to close the window.

Figure 12.13 Display Controls for Top Level Window

12.2.7.5 Autoload Debugging Windows Preference

When restarting a debugging session, the windows displayed in the
previous session may be automatically displayed by selecting
Preferences from the Tools Menu then selecting the "Autoload/save
windows at entry/exit" checkbox from the Session Tab of the Preferences
Window.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

GUI Debugger Overview 12-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.14 Preferences - Autoload Windows

Display settings are saved as part of the project data when Autoload is
selected. This includes all of the window preferences selections and all
of the debugging windows that are open when the debugger is closed.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-12 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

12.3 Detailed Descriptions

12.3.1 Main Menu

12.3.1.1 File Menu

File operations available through the File Menu include:

• Loading and saving debugging sessions

• Loading an executable for debugging

• Loading and saving memory images

• Script recording and playback

12.3.1.2 Breakpoint Menu

Breakpoints allow program execution to stop at specified code locations
so that processor and program information may be examined during
debugging. Each line of source or disassembly code may be specified
as a Breakpoint. When a Breakpoint is enabled, program execution is
stopped when the line of code is scheduled as the next instruction. When
a Breakpoint is disabled, program execution is not stopped at the line but
continues past the breakpoint. Breakpoint Operations available through
the Breakpoint Menu include:

• Toggling breakpoints at the currently selected source line

• Enabling and disabling a breakpoint at the currently selected source
line.

• Disabling or deleting breakpoints at all except the currently selected
line

• Deleting, enabling, or disabling all breakpoints

• Toggling display of the breakpoint listing window

Breakpoints are indicated in the Source and Disassembly Windows in the
left-most column of the window. An Enabled Breakpoint is indicated by a
red highlight in this area of the line. A Disabled Breakpoint is indicated
by a gray highlight.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.15 Breakpoint Menu

Current Selection Line – When setting a breakpoint from the
breakpoint menu, the breakpoint is set at the Current Selection Line.

At the completion of each program navigation step (e.g. breakpoint
reached, single step executed, etc.) the Current Selection Line is the
highlighted program line.

The Current Selection Line for Breakpoint Operations may be set in
either the Source Window or Disassembly Window. Left-click the mouse
pointer over the desired line, and that line will become the Current
Selection Line. Alternatively, you may use the up and down arrow keys
to select the previous or next line of code as the Current Selection Line.

When the Current Selection Line is selected with the mouse or keyboard,
the address of the Current Selection Line is displayed in the status bar
at the bottom of the Paned Window, the appropriate line/lines is/are
highlighted in both the Source Code and Disassembly Windows, and
subsequent Breakpoint Operations are applied to that line.

Figure 12.16 Source Code Window Current Selection Line

Breakpoint Toolbar (Menu alternative) – Each of the breakpoint
functions except the listing is available from a toolbar that is displayed in
the Main Window. To display the Breakpoint Toolbar select Toolbars from

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-14 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

the Tools Menu and then select Breakpoint Management from the
Toolbars cascade menu.

Toolbar settings are saved and restored for each debugging session
when “auto load/save windows at entry/exit” is selected in Debugging
Preferences.

Breakpoint Menu Functions –

Toggle Set
When ‘Toggle Set’ is selected from the breakpoint menu, the debugger
checks for the existence of a breakpoint at the current line. If a
breakpoint exists, it is deleted. If a breakpoint does not exist, one is
created at the current line.

Alternatives to Breakpoint Menu 'Toggle Set':

• Source and Disassembly Window Popup Menus "Toggle Breakpoint"

• Source and Disassembly Window Breakpoint Area (left-most column
of the window) left-click

• Keyboard Shortcut "T or t"

Figure 12.17 shows an example of Source Code Window breakpoint
controls and displays:

Figure 12.17 Source Code Window Breakpoints

Toggle Enable
When a breakpoint is 'Toggle Enabled' by the "Toggle Enable" menu
choice, the debugger checks for the existence of a breakpoint at the
current line. If a breakpoint does not exist, one is created at the current
line and enabled. If a breakpoint exists, the debugger checks for the
enabled state of the breakpoint. If it is enabled, the breakpoint is set to
disabled, and vice-versa.

Alternatives to Breakpoint Menu 'Toggle Enable':

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-15
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• Source and Disassembly Window Popup menus "Toggle Breakpoint"

• Keyboard Shortcut "E or e"

Delete Except
Selecting "Delete Except" from the Breakpoint Menu causes all
breakpoints to be deleted except at the current line. If no breakpoint
exists at the current line, a breakpoint at the current line is created.

Disable Except
Selecting "Disable Except" from the Breakpoint Menu causes all
breakpoints to be disabled except at the current line. If no breakpoint
exists at the current line, a breakpoint at the current line is created.

Delete All
Selecting "Delete All" from the Breakpoint Menu causes all breakpoints
to be deleted.

Enable All
Selecting "Enable All" from the Breakpoint Menu causes all existing
breakpoints to be enabled.

Disable All
Selecting "Disable All" from the Breakpoint Menu causes all existing
breakpoints to be disabled.

Hardware Breakpoints –

The JTAG hardware targets for ZSP400 and ZSP G2 allow hardware
breakpoints to be maintained within the device emulation unit (DEU) of
the processor.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-16 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.18 ZSP400 Hardware Breakpoints Window

The ZSP400 hardware breakpoint window provides the capability to
break on either of the following conditions:

• Instruction Fetch - Select Instruction Fetch to cause a breakpoint
when the core fetches the instruction at the address specified in the
Address entry box.

• Data Store - Select Data Store to cause a breakpoint when the core
executes a store instruction.

Select “Store Address” to cause a breakpoint when any data is stored to
the address specified in the Address entry box.

Select “Store Data” to cause a breakpoint when a the data specified in
the Data entry box is stored to any address.

Select “Store Address AND Data” to cause a breakpoint when both
address and data conditions are met within a single store instruction.

Select “Store Address OR Data” to cause a breakpoint when either
address or data condition is met within a single store instruction.

“Mode After Break” determines the behavior of the GUI Debugger after
the breakpoint is encountered. When the hardware breakpoint is
encountered, the core clock is stopped and the only debugging
information available to the debugger through a scan operation is the
register contents. Select “Update All” to restart the core clock and
perform a software debugging refresh operation after the hardware
breakpoint is encountered. Select “Update Registers Only” to leave the
debugger in hardware break mode. Register contents will be updated but

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-17
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

other windows will not. When in hardware break mode, single stepping
is allowed by selecting “Step 1 clock cycle”. After each single step
operation, the register contents only will be refreshed. To return to normal
software debugging, select “Exit HW Mode”. This sends the hw
return_to_sw_dbg command to the command line debugger.

Figure 12.19 ZSP G2 Hardware Breakpoint Window

ZSP G2 Hardware breakpoints are used to stop the clocks to the G2 core
at a designated execution point. In order to resume execution, the
debugger sends a DEU RESTART command to the DEU.

Instruction Address Breakpoints
The ZSP500 DEU provides four 24-bit instruction address breakpoints.
Each instruction address breakpoint comprises an address, enable, and
16-bit counter. The breakpoint activates when the counter is zero. The
counter (when non-zero) decrements each time the breakpoint address
is encountered until it reaches zero. The breakpoint counter register

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-18 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

within the DEU is write-only, so the value displayed in the GUI panel is
always the initial value.

Data Address Breakpoint
A single data address breakpoint enables you to stop the core clock
when the data address is issued to load data from memory or store data
to memory. The data address breakpoint comprises an address value,
enable, mask, counter, and false mode directive. The 24-bit address
value is compared against the load address and the store address for
both the load/store parts of the core. The counter for the data address
breakpoint behaves the same way as the instruction address breakpoint
counter. The 24-bit mask register causes the comparison logic within the
DEU to ignore certain bits in the address. When a bit is set in the data
address mask register, the corresponding bit in the data address
comparison is ignored. The false mode is used to stop the core clock
when the condition indicated by the address and mask fields are false.

Data Value Breakpoint
A single data value breakpoint enables you to stop the core clock when
a specified data value is loaded from memory or stored to memory.
When loads or stores that have a size greater than 16 bits are issued,
the 16-bit data value is compared against every valid 16-bit portion of the
load / store value. The data value breakpoint comprises a data value,
enable, mask, counter, and false mode directive that behave in the same
manner as the corresponding elements of the Data Address Breakpoint.

External Breakpoints
Four external pins are provided that can cause breakpoints. These
controls allow enabling each of the breakpoints based on the input at
these pins.

Combination Breakpoint
The logical combination breakpoint is a logical AND or OR of other
breakpoints. The logical combinations are

• Store Address Value AND Store Data Value

• Store Address Value OR Store Data Value

• Load Address Value AND Load Data Value

• Load Address Value OR Load Data Value

• Store Address Value AND Store Data Value AND External BP0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-19
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• (Store Address Value OR Store Data Value) AND External BP0

• Load Address Value AND Load Data Value AND External BP0

• (Load Address Value OR Load Data Value) AND External BP0

• Instruction Address 0 AND External BP0

• Instruction Address 1 AND External BP1

For each logical combination breakpoint, care must be taken. Each of the
terms in the logical combination may contain an individual breakpoint
counter. These counters must be set to 0 for the logical combination
breakpoint to operate. All breakpoints involved in the combination are
enabled by the debugger when the combination is enabled.The logical
combination breakpoint also contains a 16-bit counter. The breakpoint
can only activate when this counter reaches zero. The counter, when
non-zero, decrements every time that the logical combination is hit.

List
Selecting "List" from the Breakpoint Menu displays a Debugging Window
showing details of breakpoints that are currently set.

Note: For details about the Breakpoint List Window, see Break-
point List Window on page 12-27.

12.3.1.3 Execute Menu

The Execute Menu, shown in Figure 12.20, provides access to
commonly used navigation features for debugging.

• Run

• Continue

• Stop

• Source Step

• Source Next

• Source Until

• Source Finish

• Assembly Step

• Assembly Next

• Cycle Step

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-20 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• Multiple Cycle Step

Figure 12.20 Execute Menu

Alternative to execute menu for execute functions – Additional
means of navigation are:

• Program Navigation Toolbar

• Keyboard shortcut keys

• Popup menu on source and disassembly Debugging Windows

Program Navigation Toolbar
Each of the execute functions is available from a toolbar that is invoked
from the Tools Menu. To turn on the Program Navigation Toolbar, select
Program Navigation from the Toolbar submenu of the Tools Menu, as
shown in Figure 12.21.

Figure 12.21 Toolbar Submenu

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-21
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Keyboard Shortcut Keys
The keyboard shortcut keys listed in Table 12.3 allow single-keystroke
navigation through program execution.

Popup Execution Functions
Selecting a source or disassembly line and using the right-click popup
menu allows run or continue to that line.

Execute Menu Functions –

Run
Run causes the program to be run from the start.

Continue
Continue causes the program to be run from the current position.

Step
Step causes the program to advance from the current source position to
the next source line for which debugging information exists. If the source
file does not exist, the Disassembly Window is invoked for navigation
through the debug execution steps. If the current source is assembly

Table 12.3 Keyboard Shortcuts

Key Action

F2 R r Run

F3 C c Continue

F4 S s Step

F5 N n Next

F6 A a Assembly Step

F7 X x Assembly Next

I i Finish

U u Until

P p Stop

Y y Cycle-Step

M m Multiple Cycle-Step

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-22 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

code then Step advances by one assembly instruction, stepping into
function calls.

Next
Next causes the program to advance from the current source position to
the next source line. If the current source position is a function call then
the function is stepped over. Otherwise the behavior is the same as Step.
If the current source is assembly code then Next advances by one
assembly instruction, stepping over function calls.

Assembly Step
Assembly step advances program execution by an assembly-level
instruction. Assembly step follows calls to step into functions.

Assembly Next
Assembly next advances program execution by an assembly-level
instruction. Assembly next steps over calls and does not step into
functions.

Finish
Finish completes execution of a function and returns to the line following
the function call.

Until
Until continues running until a source line past the current line in the
current stack frame is reached.

Stop
Stop causes a dynamic breakpoint to be executed in a running program.
Program execution is halted and current state of the program and
processor is reflected in the Debugging Windows.

Cycle-Step
Cycle-step advances program execution by one processor clock cycle.
Cycle-step is available for the ZSIM simulator target only. Depending on
instruction grouping, more than one assembly instruction may be
executed in a Cycle-Step.

Multiple Cycle-Step
Multiple Cycle-step advances program execution by a user-selected
number of processor clock cycles. Multiple Cycle-step is available for the
ZSIM simulator target only.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-23
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

12.3.1.4 Program View Menu

The Program View Menu controls program-related windows. To display
a window, select it from the menu. When the window is displayed, a
checkmark is placed next to the window description. See
Section 12.3.2.1, “C/Assembly Program Windows,” page 12-24 for
detailed window information.

Figure 12.22 Program View Menu

12.3.1.5 Target View Menu

The Target View Menu controls target hardware-related windows. To
display a window, select it from the menu. When the window is displayed,
a checkmark is placed next to the window description. See
Section 12.3.2.2, “Target Windows,” page 12-33 for detailed window
information.

Figure 12.23 Target View Menu

12.3.1.6 Tools Menu

The Tools Menu provides customization of views for each project, access
to a Command Line Debugger Interface, display of target settings,

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-24 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

selection of toolbars to be displayed in the Main Window, and log file
display. See Section 12.3.2.3, “Tools Windows and Functions,”
page 12-40 for more information on the Tools Menu items.

Figure 12.24 Tools Menu

12.3.1.7 Help Menu

The Help Menu provides help.

12.3.2 Debugging Window Detailed Descriptions

12.3.2.1 C/Assembly Program Windows

Available from the Program View menu or from the Window Toolbar, the
Program Windows display data pertinent to execution of a program.
Available Program Windows include:

• Source Code Window

• Breakpoint List Window

• Debugging Symbols Window

• Call Stack Window

• Local Variables Window

• Global Variables Window

• Expression Window

• Watch Window

• ZSIM Profile Window

• ZSIM Statistics Window

• Standard Output Window

Source Code Window – The Source Code window displays the
program source files for debugging. The locations of the program source

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-25
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

files are obtained from the debugging information in the loaded
executable. Additional directories may be searched for source files by
using the Working Directories specification in the Project Settings dialog
of the IDE.

Accessing Source Code Window
The Source Code Window is accessible through the Program View Menu
by selecting “Source Code”.

Program Execution Tracking
Tracking of program execution is visible through the Source and
Disassembly Windows. The Current Line is highlighted as the next
instruction to be executed.

Source Code Window Display
The Source Code Window displays information reported from the
Command Line Debugger. When the Source Code Window is created,
all source files known to the Command Line Debugger are inserted into
the file selection pulldown box when the Source Code Window is
created. The content of the source files are read from their files and
displayed in the Source Code Window either when you select the file for
viewing from the file selection pulldown box or when program execution
enters that source code file.

Figure 12.25 Source Code Window

Source Code Window Syntax Highlighting
If the project preferences indicate that syntax highlighting is desired,
each file is highlighted at creation.

Source Code Window Progress Bar
While source file loading or highlighting is in progress, a progress bar is
displayed to inform the user of the status of the operation. If the source
file is a Top Level window, the progress bar is also displayed as a Top

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-26 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Level window. Otherwise, the progress bar is displayed in the Main
Window status area.

Figure 12.26 Progress Bar Window

Source Code Window Components
The Source Code Window contains columns for breakpoint information,
pipeline stage (ZSIM target only) line number, and source code text. The
window submenu contains a source file listing drop-down box in the
Source Code Window Menu. The source file drop-down box lists all of
the source files known to the Command Line Debugger.

Figure 12.27 Source Code Window (Shown with Disassembly
Window)

• Source Code Window Breakpoint Area
The breakpoint area shows enabled breakpoints in red and disabled
breakpoints in gray. The current line is indicated by an ASCII arrow.

• Source Code Window Line Highlighting
The Source Code Window has two important items highlighted for
user information: the Current Program Execution Line and the User-
Selected Line.

– Source Code Window Current Program Execution Line
This is indicated by a highlighted background on the code and
line number areas.

– Source Code Window User-Selection Line
This is indicated by a blue band over the line selected. The line
may be selected by clicking the left mouse button on the desired
line. The line may also be selected by using the keyboard up and

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-27
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

down arrow keys. The source code filename and instruction
address are displayed in the Main Window status bar when the
user selects a line. If the ’Target View > Disassembly’ Window is
displayed when the user selects a source code line, then the
associated disassembly lines are also marked with the same
color blue band and brought into view.

• Source Code Window Popup Menu
The popup menu for the source code or Disassembly Window is
invoked by right-clicking the mouse over the code area. The popup
menu allows you to toggle a breakpoint or breakpoint enable at the
selected line, run from start to the selected line, or continue from the
current execution point to the selected line. Run and continue to the
selected line is implemented by saving the breakpoints, setting a
break at the selected line and then executing run or continue as
specified.

Figure 12.28 Source Code Window Popup Menu

The source code window popup menu also allows a command-line
debugger query to be performed using the word beneath the mouse
pointer as the query expression. Figure 12.29 shows a sample query
result.

Figure 12.29 Example Source Code Popup Query Result

Breakpoint List Window – Selecting "Breakpoint -> List" from the Main
Window causes a Debugging Window window to be displayed showing
details of breakpoints currently set.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-28 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.30 Breakpoint List Window

For each existing breakpoint, the breakpoint list shows:

• Source code file name

• Source code file line number

• Instruction address

• Command line debugger’s breakpoint identification number

• Breakpoint enable state

Selecting a Breakpoint Line
Left-click on a line in the breakpoint list to select that breakpoint as the
current line for Breakpoint Operations.

Actions on Selecting a Breakpoint Line
When a breakpoint line is selected from the list, if the Source Code
and/or Disassembly Windows are shown, the breakpoint line is
highlighted and brought into focus in these windows.

Operations Available for a Selected Breakpoint Line
Right-click on a line in the breakpoint list to display a popup menu of
breakpoint operations that may be applied to the selected Breakpoint.

Saving Breakpoints
Breakpoints are saved and restored with the project session when
Autoload is selected from the Preferences Window.

Debugging Symbols Window – Debugging Symbols are available for
browsing using the Debugging Symbols Window. Two types of

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-29
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

information are presented, program data symbols and program
instruction symbols.

Figure 12.31 Debugging Symbols Window

• Program Data Symbols
The Symbols Window lists variables that are global, indicates the
source file in which they are defined, and lists the data type
associated with the variable.

• Program Instruction Symbols
The Symbols Window lists instruction labels for the program being
debugged and the associated addresses.

The Debugging Symbols Window is only populated when it is invoked,
since it does not change within the debugging session.

Call Stack Window – To display a program’s Call Stack, select Call
Stack from the Program View Menu.

Figure 12.32 Call Stack Window

Call Stack Code Viewing
To view the code associated with one of the stack levels displayed, select

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-30 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

that line in the Stack Window and select the Show Code button. The
Source and Disassembly Windows will display the associated code.

Call Stack Details Popup
The Show Detail on the Stack Window menu shows details in a popup
window so that information exceeding the display area may be easily
examined. The detailed information includes the Stack Level, Address,
Procedure (name and arguments), Source File name, Source File line
number.

Local Variables Window – To display local variables, select Local
Variables from the Program View Menu. The Local Variables Window
shows all variables that are in the local scope.

Figure 12.33 Local Variables Window

Global Variables Window – A view of global variables is available from
the Main Menu by selecting ’Program View > Globals’. The Global
Variables Window shows all variables that are global in scope.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-31
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.34 Global Variables Window

Expression Window – To have the debugger evaluate and display a
single expression at each display refresh, use the Evaluate Expression
Window. To invoke the Evaluate Expression Window, select Evaluate
Expression from the Program View Menu. Type the expression you want
to evaluate into the entry area and the expression will be evaluated and
displayed after each execution step

Figure 12.35 Expression Window

Watch Expression Window – To have the debugger evaluate and
display multiple expressions at each display refresh, use the Watch
Expression Window. To invoke the Watch Expression Window, select
Watch Expression from the Program View Menu. Add expressions to
watch using the Add Watch button in the Watch Expression Window.
Remove expressions from the Watch Expression Window by right-
clicking on the watch expression and selecting Remove from the popup
menu.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-32 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.36 Watch Expressions Window

ZSIM Target Windows – ZSIM Debugging windows are available when
ZSIM is selected as the target in the IDE Debug>Setup window.

• ZSIM Profile Window
A view of the code execution profile is available for the ZSIM target
by selecting Profile from the Program View Menu. The menubar of
the Profile Window includes a checkbutton to turn function profiling
off and on and a checkbutton to select incremental mode, which
shows only the functions executed since the last navigational step.
A reset button is provided on the profile view submenu to reset the
collection of profile information to the current execution point.

The Profile Window shows each function name that is available for
profiling, the histogram, cumulative and calls information reported by
ZSIM. A bargraph chart is displayed with data type selectable from
a drop-down selection box.

Figure 12.37 ZSIM Profile Window

• ZSIM Statistics Window
A view of code execution statistics is available for the ZSIM target
by selecting Statistics from the Program View Menu.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-33
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.38 ZSIM Statistics Window

Standard Output Window –

A view of the output produced by the program being debugged (by
invoking printf etc.) is available through the standard output window.

12.3.2.2 Target Windows

Available from the Target View Menu or from the Window Toolbar, the
Target Windows display data pertinent to the state of the processor after
each navigational step in the debug session. Available Target Windows
include

• Disassembly Window

• Control Registers Window

• Operand Registers Window

• Address Registers Window (G2 only)

• Memory Window

• ZSIM Grouping Rule Window

• ZSIM Pipeline Window

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-34 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Disassembly Window – The Disassembly Window shows
disassembled instructions from the target’s program memory. The
address range of the Disassembly Window includes all instructions in the
current scope. As execution proceeds, the Disassembly Window is
repopulated as necessary.

The Disassembly Window comprises, left to right, a Breakpoint column,
pipeline stage column (for ZSIM target only), address column, and
disassembled code. The next line to execute is indicated by an ASCII-
styled arrow in the breakpoint column.

Figure 12.39 Disassembly Window

Register Window General Description –

Three types of register windows—Control Register Window, Operand
Register Window, and Address Register Window (G2 only)—are
available to display and modify the processor registers. These windows
have similar functionality. Each item in a Register Window may be edited
by left-clicking in the item to set the input focus, typing in the desired
value followed by depressing the enter key. The new value is sent to the
Debugger when the enter key is pressed. The Register Window is then
refreshed to validate the entry. Each item in the Register Window may
be formatted independently of the other items by right-clicking on the
item to invoke the popup format menu.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-35
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.40 Register Element Popup Format Menu

Register Windows each contain a subwindow menu that includes the
following functions.

• Format
The Format Menu in a Register Window, shown in Figure 12.41,
allows reformatting of data for all of the visible registers in one of the
following formats:

– Fixed Point (for 16-, 32-, or 40-bit numbers)

– Hexadecimal

– Integer

– Unsigned Integer

– ASCII Character

Figure 12.41 Register Window Format Menu

• Columns
The Columns Menu in the Register Window allows arrangement of
the individual registers in the Window into 1-8 columns.

Figure 12.42 Register Window Columns Menu

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-36 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• Configure
The Configure Menu item in the Register Window allows selection of
individual registers to be displayed in the window by selecting them
from a list.

Figure 12.43 Register Window Configure Menu

Control Registers Window –

The Control Registers Window provides access to the target processor’s
control registers.

Figure 12.44 Control Register Window - Standard Mode

In addition to the common Register View submenu items, the Control
Register Window also provides examination and modification capabilities
for individual bit fields within each of the Control Registers. The individual
bit fields may be edited in the same manner as described in the general
Register Window description above.

• Bit Fields
The Bit Fields checkbox menu item in the Control Register Submenu
Window turns on the display of individual bitfields for the visible
control registers.

Each of the Control Register and Bit Field entries displayed in the Control
Register Window is labeled with a mnemonic abbreviations of the

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-37
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

register name. The full name and bit position(s), if appropriate, are
displayed in a popup text box when you move the mouse pointer over
the entry or label.

Figure 12.45 Control Register Bitfield Entry Annotation

Figure 12.46 Control Register Window - Bitfield Mode

Operand Registers Window – The Operand Registers window
provides access to the target processor’s operand registers. Menu items
in the operand register Window include Format, Columns, and Configure
functionality described above in the general Register Window
description.

Figure 12.47 Operand Register Window

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-38 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Address Registers Window (G2) – The Address Registers window
provides access to the target processor’s address and index registers.
Menu items in the operand register Window include Format, Columns,
and Configure functionality described above in the general Register
Window description.

Figure 12.48 Address Registers Window

Memory Window – The Memory Window provides access to the target
processor’s memory. Menu items in the memory Window include Format
and Columns functionality described above in the general Register
Window description. Memory may displayed in up to 16 columns.

Figure 12.49 Memory Window

Checkboxes for 32-Bit and Graph cause memory to be displayed in
those formats. Figure 12.50 shows a Graph display of the memory.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-39
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.50 Graph Display of Memory

The start address for the memory Window may be an address or
debugging symbol.

ZSIM Target Windows – ZSIM Debugging Windows are available
when ZSIM is the current debugging target.

• ZSIM Grouping Rule Window
The Grouping Rule Window displays ZSIM instruction grouping
information. The rule displayed applies to instructions currently in the
grouping stage in the pipeline.

Figure 12.51 ZSIM Grouping Rule Window

• ZSIM Pipeline Window
The ZSIM Pipeline Window displays ZSIM pipeline information.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-40 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.52 ZSIM Pipeline Window

12.3.2.3 Tools Windows and Functions

Preferences Window – The Preferences Window provides
customization of your project session preferences

Command Line Debugger Window – The Command Line Debugger
Window provides direct access to the Command Line Debugger.
Commands entered in the command entry box are passed to the
Command Line Debugger and the response from each command is
presented in the output window.

Figure 12.53 Command Line Window

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-41
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

12.3.2.4 Data Graphing

The LSI Debugger IDE has an integrated Data graphing (DG) module,
which can plot real time data. You can plot both "C" variables and
memory in one or more independent DG windows. You can generate
2-dimensional plots for "C’ and Memory variables and 3-dimensional
plots for memory vectors (a set of values from consecutive memory
locations).

The following section describes how to use a DG module for plotting.

Launching a DG Window –

2D Plotting
To plot a 2D graph, launch a new DG window by clicking on Tools >
DataGraph Plotter > 2-Dimensional Plot in the Debugger IDE. On doing
this:

• The Boundary Setting dialog box appears, as shown in Figure 12.54.
This is where you enter the minimum and maximum values to be
plotted on the X and Y axes: Xmin, Xmax, Ymin, and Ymax,
respectively, and the scales to be used on x-axis (X scale) and y-axis
(Y scale).

• When all required information is entered, click on OK. A new DG
window (top level) is opened with the entered values and with the
respective scales on the X and Y axes.

• At this point, this DG window is ready for 2D plotting.

Figure 12.54 2D Boundary Setting Dialog Box

3D Plotting
To plot a 3D graph, launch a new DG window by clicking on Tools >
DataGraph Plotter > 3-Dimensional Plot in the Debugger IDE. On doing
this:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-42 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• The Boundary Setting dialog box appears, as shown in Figure 12.55.
This is where you enter the minimum and maximum values to be
plotted on the X, Y and Z axes: Xmin, Xmax, Ymin, Ymax, Zmin, and
Zmax, respectively.

• Additional values must be entered for Altitude and Azimuth (in
degrees) to set the viewing angles. The Altitude represents the
viewing angle above the XY plane.

• The Azimuth is defined so that when it is 0, the observer sees the XZ
plane face-on. As the angle is increased, the plot is rotated counter-
clockwise as viewed from above the XY plane.

• When all required information is entered, click on OK. A new DG
window for 3D (top level) is opened with the entered values of Xmin,
Xmax, Ymin, Ymax, Zmin, and Zmax.

• At this point, this DG window is ready for 3D plotting.

Figure 12.55 3D Boundary Setting Dialog Box

Setting up an Update Point –

An Update point is a marker in a source window. Whenever the
application control flow crosses this point, all the plots related to this
update point are updated. Here is the procedure for setting an Update
point:

• Left-click on the line number column in the "C" source window in the
Debugger IDE. The Plot Type dialog box appears, as shown in
Figure 12.56). In this dialog box, you can choose to plot a "C"
variable or a memory range.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-43
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.56 Plot Type Dialog Box

Plotting a Variable –

If you select Variable in the dialog box, the dialog box changes as shown
in Figure 12.57 to accept various configurable options:

Figure 12.57 Plot Type Dialog Box - Variable Option

Here is an explanation of the options in this dialog box:

• Target DG: This shows a list of all DG windows where 2D plotting
can be done. Select any one of these DG windows, where the
variable will be plotted.

• List of Variables: This shows a list of all local and global "C"
variables available in the current context for plotting. Select a
variable to plot from this list.

• Data Type: This shows the data type of the selected variables.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-44 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• Plot Name: Specify a name to be displayed as a plot label in the DG
window. The default name of the plot is the name of the C variable
chosen from the list of variables.

• Plot Color: From this list of available colors you can select a color
for plotting the graph.

The Plot Name set as above will also be shown with the same color as
that of Plot Color in the DG window.

Click the Apply button to save the current configuration. You can select
as many plots as you want. When you are finished configuring all the
plots, click the OK button to save the configuration and close the dialog
box. You can click Cancel to cancel the current selection and close the
dialog box. All previously configured plots will still be enabled.

Plotting Memory –

If you select Memory in the Plot Type dialog box, the dialog box changes
as shown in Figure 12.58.

Figure 12.58 Plot Type Dialog Box - Memory Range Option

Here is an explanation of the options in this dialog box:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-45
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

• 2D: When you select this option, a 2-dimensional graph will be
plotted. Selecting this option also sets the Length option to 1.

• 3D: When you select this option, a 3-dimensional graph will be
plotted.

• Target DG: This shows a list of all DG windows where plotting can
be done. If you select 2D, this list shows only the DG window names
where 2D plotting can be done. If you select 3D, the list shows only
the DG windows where 3D plotting can be done.

• Data Type: This shows a list of available data formats to represent
the values read from the memory. The following data formats are
supported:

– 16-bit integer

– 32-bit integer

– 32-bit floating

• Start Address: Specify the starting address in the memory from
where the values should be read.

• Length: Specify the number of values that should be read and
plotted from the Start Address.

• Plot name: Specify a name to be displayed as a plot label in the DG
window. The default name of the plot is the starting address you
have selected for plotting.

• Plot Color: From this list of available colors you can select a color
for plotting the graph.

The Plot Name set as above will also be shown with the same color as
that of Plot Color in the DG window.

The OK, Cancel, and Apply buttons have the same functionality as
described above.

Removing an Update Point –

You can remove the existing Update Point by clicking the left mouse
button over the Update Point.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-46 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Changing the Properties of an Update Point –

You can change the properties of an existing Update Point by clicking
the right mouse button on the Update Point and following the same steps
as described above.

When you run the debugger, whenever the application control crosses
the Update Point, all the requisite data is channeled to DG windows, and
the respective plots are updated.

DG Window Functionality –

The tables in this section describes the various menu options available
in a DG window.

Table 12.4 DG Window - File Menu

Option Functionality

Load Dataset Format … Opens the Open file dialog box, where user can
load a previously saved data set into DG Window.

Save Dataset Format … Opens the Save dialog box, where user can save
the plots of the current DG window data set format
for future viewing.

Save as … Opens a Save As dialog box to save the plots in
the image format selected in the Save Image
Format option.

Save Image Format Allows the user to set the image format in which
the plots are saved. Supported format options are
PostScript (default), JPEG, and GIF. This option
should be set before saving the plot in image
format.

Exit Closes the DG window.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-47
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Table 12.5 DG Window - Orient Menu

Option Functionality

0 Degrees The plot is shown as it is, with no rotation.

90 Degrees The plot is shown rotated by 90o counter-clockwise

180 Degrees The plot is shown rotated by 180o counter-clockwise

270 Degrees The plot is shown rotated by 270o counter-clockwise

Table 12.6 DG Window - Zoom Menu

Option Functionality

Select Enables the user to select any rectangular area in the DG
Window by clicking and dragging the mouse pointer. When
the mouse button is released, the selected area is zoomed
in.

Back Returns the DG window to the previous zoomed state.

Forward This option works as complementary to the Back option.

Reset Returns the DG Window to its original state.

Fit In Window Causes the graphs to fit in the visible window.

Table 12.7 DG Window - Options Menu

Option Functionality

Crosshairs Cause the mouse pointer to take the shape of a plus
(+). The user can see the coordinates on the x-axis and
y-axis with the help of plus (+) shaped mouse pointer.

Appearance… Opens the Appearance dialog box, shown in
Figure 12.59. This is used to change the background
color and axes color of the DG window.

Remove Plot… Opens the Remove Plot dialog box, shown in
Figure 12.60. This is used to remove plots related to
that DG window.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-48 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.59 Appearance... Dialog Box

Figure 12.60 Remove Plot Dialog Box

Here is an explanation of the options in the Remove Plot dialog box:

• List of Available Plots: This show a list of all the currently available
plots.

• Current List of Plots to remove: This shows a list of all the plots
selected for removal.

• Insert: To move a plot from "List of Available Plots" to "Current List
of Plots to remove", you select the plot and click the Insert button.

• Delete: To move a plot from "Current List of Plots to remove" back
to "List of Available Plots", you select the plot and click the Delete
button.

• Remove Plots: When you click this button, all selected plots in
"Current List of Plots to remove" are removed from the DG
window.

• Remove All: When you click this button, all plots currently drawn in
the DG window are removed.

• Done: Click this button to close the Remove Plot dialog box.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Detailed Descriptions 12-49
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Help
Select the Help menu option in the DG window to display the About
dialog box for the DG window.

12.3.2.5 Using Session Logging

The Session Logging functionality of the ZSP IDE debugger captures
communications with the underlying Command Line Debugger for
informational purposes. To configure Session Logging, open the
Preferences Window by Selecting “Preferences” from the Tools Menu.

Figure 12.61 Preferences Window - Logging

Session Log Types – The Session Log may be disabled by selecting
the radio button labeled “Disable logging” in the Preferences Window.
This setting is recommended for the best speed performance of the
debugging environment.

The Session Log may be directed to a window by selecting the radio
button labeled “Log to Window” in the Preferences Window. Logging to
a window provides continuous non-interactive update throughout the
debugging session. Logging to a window is faster than logging to a file.
There is no permanent Session Log record when logging to a window.

The Session Log may be directed to a file for a permanent Session Log
record by selecting the radio button labeled “Log to file” in the
Preferences Window. When Session Logging is recording to a file, the
Log File Name is appended to the Tools Menu (see Figure 12.62). To
view the Log File, select the Log File from the Tools Menu. If you want
to retain log files after your debugging session exits, select the
checkbutton labeled “Keep Log Files” in the Preferences Window.
Otherwise the logfile will be automatically deleted.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

12-50 ZSP IDE Debugger
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Figure 12.62 Tools Menu - Session Log File

The name of the log file is generated automatically and contains the
project file name and a number related to the logging start time.
Selecting the Log File name from the Tools Menu invokes the Session
Log Window, as shown in Figure 12.63.

Figure 12.63 Session Log Window

Here is an explanation of the options in the Log Window:

• Refresh - When logging to a file, the Refresh button reads the log
file into the Log Window text area.

• Clear - Clears the Log Window text area.

• Log Type Radio Buttons - The “Disable Logging”, “Log To Window”,
and “Log To File” radio buttons have the same functionality as their
counterparts in the Preferences Window. These radio buttons allow
logging to be easily reconfigured when in use.

• Purge Log File - Each time the logging mode changes to “Log to
File,” a new log file is created and the log file name is updated on
the Tools Menu. The “Purge Log Files” button deletes all log files
(that is, files with a .log extension) from your project directory.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide A-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Appendix A
Example Programs

This appendix contains three example programs, demo.c, hw_dbg.s, and
pie.exe, that are referred to in previous chapters of this document, and
a collection of files and scripts that demonstrate various aspects of the
tools in more depth. The first example is a program project that combines
C and assembly-language modules. The second example is a program
used in hardware-assisted debugging. The third demonstrates the use of
zdcc, zdas, zdopt, and zdar in producing an example executable that
shows how in-line assembly and intrinsic functions are coded. It also
shows how to relocate sections of an executable and how inter-section
calls are performed.

A.1 Example Program: demo.c

This example is a C program in the file demo.c. It calls another C
function, func2, in the file func2.c. It also calls two assembly functions,
func1 and func3, in the assembly file func1.s.

int func_1 (int *t);
void func_2 ();
int func_3 ();

int t=500;

main()
{
 char ch = ‘A’;
 int i,j = 100,k;

 for (i=0; i< 2; i++) {
 func_2();
 k = func_1 (&j);

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

A-2 Example Programs
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

 if (k) {
 j = func_3() + 100;
 }
 else {
 j = 100;
 }
 }

 while (i < 20) {
 k++;
 i++;
 }
}

Example Program: func2.c

int t1;
void func_2 ()
{
 int x=0,n=0;
 while(n < 20)
 {
 switch(n) {
 case 0:
 x += 5;
 n =1;
 break;
 case 1:
 x = x <<4;
 n = 4;
 break;
 case 17:
 x = x ^ 13;
 n = 20;
 break;
 default:
 x++;
 n++;
 break;
 }
 t1 = x;
 }

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Program: demo.c A-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Example Program: funcl.s

.segment “text”

.globl _func_1

.walign 2
_func_1:

/** PROLOGUE **/

mov r13, %rpc
stu r13, r12, -1

/** END PROLOGUE **/

mov r5, r4
ld r4, r5
mov r6, 500
cmp r4, r6 /* *t <= 500; */
bgt L2
ld r4, r5
mov r6, 100
add r4, r6 /* *t += 100; */
st r4, r5
mov r4, 1
br L1

L2:
mov r4, 0
br L1

L1:

/** EPILOGUE **/

bitc %imask, 15
nop
add r12, 1
ldu r13, r12, 1
mov %rpc, r13
add r12, -1
bits %imask, 15
ret

/** END EPILOGUE **/

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

A-4 Example Programs
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

.extern_t

.globl _func_3

.walign 2
_func_3:

/** PROLOGUE **/

mov r13, %rpc
stu r13, r12, -1

/** END PROLOGUE **/

mov r5, 300
lda r4, _t
ld r4, r4
shll r4, 1
add r4, r5 /** k = i + 2 * t **/
add r4, r5
lda r6, _t
ld r6, r6
add r4, r6
br L3

L3:

/** EPILOGUE **/

bitc %imask, 15
nop
add r12, 1
ldu r13, r12, 1
mov %rpc, r13
add r12, -1
bits %imask, 15
ret

/** END EPILOGUE **/

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Program hw_dbg.s A-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

A.2 Example Program hw_dbg.s

This example illustrates hardware-assisted debugging. It consists of one
assembly file, hw_dbg.s.

.section ".text"
 .global __start
__start:

bits %smode, 6
mov r0, 0xab00
mov r1, 0xab01
mov r2, 0xab02
mov r3, 0xab03
mov r4, 0xab04
mov r5, 0xab05
mov r14, 0
mov r15, 0
nop
nop
nop
nop
nop
add r14, 1
mov r13, 0x2000
mov r12, 0x2001
nop
nop
nop
nop
nop
add r14, 1
st r0, r13
nop
nop
nop
nop
nop
add r14, 1
st r1, r13
nop
nop
nop
nop
nop
add r14, 1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

A-6 Example Programs
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

st r2, r13
nop
nop
nop
nop
nop
add r14, 1
st r0, r13
nop
nop
nop
nop
nop
add r14, 1
st r1, r13
nop
nop
nop
nop
nop
add r14, 1
st r2, r13
nop
nop
nop
nop
nop
add r14, 1
st r0, r13
nop
nop
nop
nop
nop
add r14, 1
st r1, r13
nop
nop
nop
nop
nop
add r14, 1
st r2, r13
nop
nop
nop
nop
nop

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Program hw_dbg.s A-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

add r14, 1
st r0, r13
nop
nop
nop
nop
nop
add r14, 1
st r1, r13
nop
nop
nop
nop
nop
add r14, 1
st r2, r13
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
add r15, 1
st r0, r12
nop
nop
nop
nop
nop
add r15, 1
st r1, r12
nop
nop
nop
nop
nop
add r15, 1
st r2, r12
nop
nop
nop
nop
nop
add r15, 1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

A-8 Example Programs
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

st r0, r12
nop
nop
nop
nop
nop
add r15, 1
st r1, r12
nop
nop
nop
nop
nop
add r15, 1
st r2, r12
nop
nop
nop
nop
nop
add r15, 1
st r0, r12
nop
nop
nop
nop
nop
add r15, 1
st r1, r12
nop
nop
nop
nop
nop
add r15, 1
st r2, r12
nop
nop
nop
nop
nop
add r15, 1
st r0, r12
nop
nop
nop
nop
nop

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Program hw_dbg.s A-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

add r15, 1
st r1, r12
nop
nop
nop
nop
nop
add r15, 1
st r2, r12
nop
nop
nop
nop
nop
bitc %smode, 6
halt

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

A-10 Example Programs
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

A.3 Example Program pie.exe

This example illustrates compiling, assembling, and linking a program for
the G2 architecture using the command-line tools under Solaris. The
program itself performs two inter-section calls, shows how to use the
N_vv_mac intrinsic, then calculates and prints 100 digits of π using two
separate routines and calculates and prints 100 digits of e.

The files included are:

• build - A script that builds the pie.exe executable

• main.c - The entry function that calls the various demonstration
routines.

• N_Intrinsic.c - A C routine that demonstrates the use of the
N_vv_mac intrinsic.

• fast_e.c - The routine that calculates 100 digits of the constant e.

• fast_pi.c - A quick routine to calculate 100 digits of π.

• sections.s - An assembly routine that demonstrates how to call
between sections.

• slow_pi.s - A somewhat slower routine to calculate 100 digits of π.

To build the executable, execute the build script, shown below:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Program pie.exe A-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

#!/bin/csh -x

This build script demonstrates how to build the example program.
#
This example shows the following:
- How to use several compiler switches for zdcc
- How to call assembly from C
- How to re-locate sections of code
- How to build an archive library and link it with a program
- How to optimize assembly code using zdopt

-O3 turns on maximum optimizations. zdopt is run on the assembly
output from compilation to optimize for the G2 architecture.
-mlong_call is required since we are going to re-locate this func
very far from the main function. Also, look in the file at the
in-lined assembly directive changing the relative start of this
file within the text segment.
-mlarge_data is required since we are going to re-locate the data
and bss segments far from the text segment.
zdcc -O3 -mlong_call -mlarge_data -c fast_pi.c

Same as before, except no optimizations, no relocation in-line.
zdcc -c -mlong_call -mlarge_data fast_e.c N_Intrinsic.c

Optimize the slow pi calculation routine
zdopt -asm slow_pi.s > slow_opt_pi.s

Assemble the slow version of pi computation.
zdas -o slow_pi.o slow_opt_pi.s

Assemble ‘foo’ which calls between sections
zdas -o sections.o sections.s

Now, build an archive library containing the fast versions of the
objects used for computing pi and e. The library is fast.a.
zdar r fast.a fast_pi.o fast_e.o N_Intrinsic.o sections.o

Multiple steps are done here. main.c is compiled with long calls
and large data revferences and linked with the objects created
previously. The bss segment is relocated to address 0x03f000,
the data segment is relocated to address 0x07e700, and the text
segment (code) is relocated to 0x455. A map file is also
produced and printed on stdout.
The resulting executable, pie.exe, can be simulated with zisimg2
or zsimg2.
zdcc -mlong_call -mlarge_data -o pie.exe main.c fast.a slow_pi.o
-Tbss 0x03f000 -Tdata 0x07e700 -Ttext 0x455 -Wl,-M

When the resulting executable is executed using the command:

zisimg2 -exec pie.exe

the following output is produced:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

A-12 Example Programs
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

***(info) Starting address: 0x0455
.text : Loading to INT-INST memory... 0x0455 -> 0x1d5d0 (0x1d17c)
text2 : Loading to INT-INST memory... 0x1d5d2 -> 0x1d5d5 (0x0004)
text1 : Loading to INT-INST memory... 0x1d5d6 -> 0x1d5dd (0x0008)
.data : Loading to INT-DATA memory... 0x7e700 -> 0x7e7ac (0x00ad)
Loading "pie.exe" successfully.

 ZISIM 1.233 (4.2)
 ZSP500
 Instruction Set Simulator

 LSI Logic

Call across sections PASSED
N_Intrinsics PASSED
3.14159265358979323846264338327950288419716939937510582097494459230
7816406286208998628034825342117067
3.14159265358979323846264338327950288419716939937510582097494459230
7816406286208998628034825342117067
2.71828182845904523536028747135266249775724709369995957496696762772
40766303535475945713821785251664274
(SYSTEM HALT).................. Instructions=23328715 PC=0x00000475
 g0=0x00 r1=0xffd0 r0=0x0000 g1=0x00 r3=0x0000 r2=0x0000
 g2=0x00 r5=0x0000 r4=0x0065 g3=0x00 r7=0x0007 r6=0x0001
 g4=0x00 r9=0x0000 r8=0x0000 g5=0x00 r11=0x0000 r10=0x0000
 g6=0x00 r13=0x0480 r12=0x0000 g7=0x00 r15=0x0000 r14=0x0000
 a0=0x00000001 n0=0x0003 a1=0x0007e76b n1=0x0000
 a2=0x00000000 n2=0x0000 a3=0x00000000 n3=0x0000
 a4=0x00000000 n4=0x0000 a5=0x00000000 n5=0x0000
 a6=0x00000000 n6=0x0000 a7=0x00ffeffe n7=0x0000
 fmode=0x0000 hwflag=0x0068 shwflag=0x0000 imask=0x0000
 ip0=0x0000 ip1=0x0000 ireq=0x0000 dei=0x0000
 loop0=0xffff loop1=0x0000 loop2=0x0000 loop3=0x0000
 smode=0x8000 psmode=0x0000 amode=0x0000 tc=0x0000
 timer0=0x0000 timer1=0x0000 vitr=0x00000000 cb0_beg=0x00000000
 cb0_end=0x00000000 cb1_beg=0x00000000 cb1_end=0x00000000
cb2_beg=0x00000000
 cb2_end=0x00000000 cb3_beg=0x00000000 cb3_end=0x00000000
pc=0x00000475
 rpc=0x00000474 tpc=0x00000000 ded=0x00000000

The key demonstration point in N_Intrinsic.c is that the N_vv_mac
intrinsic ‘N_vv_mac(acc, a, 1, &b[9], -1, i);’ can be used in
place of the following loop:

for(j = 0; j < i; j++)
{

acc2 += a[j] * b[9-j];
}

The fast_pi.c file shows how to use assembler directives within a C
program and also how to write in-line assembly code. The line:

asm(“.org 0x8888”);

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Example Program pie.exe A-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

relocates the code within this module up by 0x8888 words. The in-line
assembly line:

asm(“iadd %0, %2”: “=r” (ndx): “0” (ndx), “r” (i));

is equivalent to the C statement ‘ndx += i;’.

The sections.s file is shown below.

.section “text1”, “ax”

.global _foo
_foo:

mov r13, %rpc
nop
call test_label_1
call test_label_2
mov %rpc, r13
ret

.section “text2”, “ax”

.global test_label_1

.global test_label_2

.walign 2
test_label_1:

add r4, 3
ret

.walign 2
test_label_2:

add r4, -2
ret

This file declares an external function entry point ‘_foo’ within the
‘text1’ section and two other function entry points ‘test_label_1’ and
‘test_label_2’ within the ‘text2’ section. Since the function ‘int
foo(void)’ is to be called from C, its name must be prefixed with an
underscore.

The slow_pi.s file was generated by the zdcc compiler without
optimizations from a C program. It shows the kind of assembly file
produced by the compiler and gives us the opportunity for demonstrating
the kinds of optimizations zdopt will do. The build script creates the
slow_opt_pi.s file, which is the optimized version of slow_pi.s.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

A-14 Example Programs
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide B-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Appendix B
ZSP400 Control
Registers

The ZSP400 control registers are listed in Table B.1.

Table B.1 ZSP400 Control Registers

Register
Reference
Number Control Register Register Description

0 %fmode Functional Mode Register

1 %tc Timer Control Register

2 %imask Interrupt Mask Register

3 %ip0 Interrupt Priority Register 0

4 %ip1 Interrupt Priority Register 1

5 %loop0 Loop 0 Register

6 %loop1 Loop 1 Register

7 %guard Guard Bits for {r1 r0} and {r3 r2}

8 %hwflag Condition Codes

9 %ireq Interrupt Request Register

10 reserved –

11 reserved –

12 %vitr Viterbi Traceback Register

13 reserved –

14 %amode Addressing Mode Register

15 %smode System Mode Register

16 %pc Program Counter

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

B-2 ZSP400 Control Registers
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

17 %rpc Return Program Counter

18 %tpc Trap Return Program Counter

19 %cb0_beg Circular Buffer 0 Begin Address

20 %cb1_beg Circular Buffer 1 Begin Address

21 %cb0_end Circular Buffer 0 End Address

22 %cb1_end Circular Buffer 1 End Address

23 %timer0 Timer0

24 %timer1 Timer1

25 %loop2 Loop 2 Register

26 %loop3 Loop 3 Register

27 reserved –

28 reserved –

29 reserved –

30 %dei Device Emulation Instruction Register

31 %ded Device Emulation Data Register

Table B.1 ZSP400 Control Registers (Cont.)

Register
Reference
Number Control Register Register Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide C-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Appendix C
ZSPG2 Control
Registers

The G2 control registers are listed in Table C.1.

Table C.1 G2 Control Registers

Register
Reference
Number Control Register Register Description

0 %fmode Functional Mode Register

1 %tc Timer Control Register

2 %imask Interrupt Mask Register

3 %ip0 Interrupt Priority Register 0

4 %ip1 Interrupt Priority Register 1

5 %loop0 Loop 0 Register

6 %loop1 Loop 1 Register

7 %psmode Previous System Mode Register

8 %hwflag Condition Codes

9 %ireq Interrupt Request Register

10 %cb2_beg Circular buffer 2 Begin Address

11 %cb2_end Circular buffer 2 Begin Address

12 %vitr Viterbi Traceback Register

13 %shwflag Sticky Condition Codes

14 %amode Address Mode Register

15 %smode System Mode Register

16 %pc Program Counter

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

C-2 ZSPG2 Control Registers
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

17 %rpc Return Program Counter

18 %tpc Trap Return Program Counter

19 %cb0_beg Circular Buffer 0 Begin Address

20 %cb1_beg Circular Buffer 1 Begin Address

21 %cb0_end Circular Buffer 0 End Address

22 %cb1_end Circular Buffer 1 End Address

23 %timer0 Timer0

24 %timer1 Timer1

25 %loop2 Loop 2Register

26 %loop3 Loop 3 Register

27 %cb3_beg Circular Buffer 3 Begin Address

28 %cb3_end Circular Buffer 3 End Address

29 reserved –

30 %dei Device Emulation Instruction Register

31 %ded Device Emulation Data Register

Table C.1 G2 Control Registers (Cont.)

Register
Reference
Number Control Register Register Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide D-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Appendix D
L-Intrinsic Functions

This appendix describes the Long Intrinsic functions (L-Intrinsics) that
were included in Version 1.0 of the SDK compiler and that are currently
supported for backward compatibility. The L-Intrinsics are no longer
implemented within the compiler itself, but rather with a header file,
dsp.h. Note that although the L-Intrinsics are supported, you should
develop new code using the N-Intrinsics, described in Chapter 3,
“C Cross Compiler,” Section 3.6, “N-Intrinsics,” page 3-19.

To use the L-Intrinsic functions, add the following line to all your C files:

#include <dsp.h>

The compiler implements the L-Intrinsic functions using the assembly
instructions shown in Table D.1.

The long argument for the L_maca, L_macb, L_macna, L_macnb, L_mac2a,
and L_mac2b intrinsic functions is copied to the appropriate accumulator
register, which is {r0,r1} for the .a versions and {r2, r3} for the
.b versions.

Table D.1 Long Intrinsic Functions

Intrinsic Function Underlying Instruction

L_mula mul.a

L_maca mac.a

L_macna macn.a

L_mac2a mac2.a

L_mulb mul.b

L_macb mac.b

L_macnb macn.b

L_mac2b mac2.b

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

D-2 L-Intrinsic Functions
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

The compiler generates code to copy the arguments to the proper
accumulator registers, if required. Eliminating the steps required in
copying the arguments minimizes execution time. Copying the
arguments is not required if:

• The long argument already exists in the appropriate accumulator (for
example, if you call L_maca with a variable declared as type
accum_a).

Execution time can also be minimized by not requiring the result to be
copied to its destination. Copying the result is not required if:

• The destination for the intrinsic function’s result is already the target
for the instruction used to implement the intrinsic function (for
example, if L_maca returns a value to a variable declared as type
accum_a)

For example, the following code is legal:

accum_b b;
int x,y;
...
b = L_maca(b,x,y);

However, it is more efficient to use:

b = L_macb(b,x,y);

In the first case (b = L_maca(b,x,y)), two copies are required—one to
move {r3 r2} to {r1 r0} for the argument, and another to move
{r3 r2} to {r1 r0} to the destination. The second case (b =
L_macb(b,x,y)) requires no extra copies.

Note that a call to an L_*a function clobbers any variable declared with
an accum_a, and a call to an L_*b function clobbers any variable
declared with an accum_b. In the following example, the value of variable
a is equivalent to b after the L_maca function call:

accum_a a;
accum_b b;
int x,y;
a = 0;
...
b = L_maca(b,x,y);

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

D-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Note: It is not guaranteed that a will have the same value as b in
future versions of the SDK compiler.

Long L_mula (int var1, int var2) This function returns a 32-bit result of the
multiplication of a 16-bit variable var1 with
a 16-bit variable var2, with one shift left.

Long L_mulb (int var1, int var2) This function returns a 32-bit result of the
multiplication of a 16-bit variable var1 with
a 16-bit variable var2, with one shift left.

Long L_maca (long var3, int
var1, int var2)

This function multiplies the 16-bit variable
var1 by the 16-bit variable var2 and shifts
the result left by 1. This 32-bit result is
added to the 32-bit variable var3 with sat-
uration and returns the 32-bit result.

Long L_macb (long var3, int
var1, int var2)

This function multiplies the 16-bit variable
var1 by the 16-bit variable var2 and shifts
the result left by 1. This 32-bit result is
added to the 32 bit variable var3 with sat-
uration and returns the 32-bit result.

Long L_macna (long var3, int
var1, int var2

This function multiplies the 16-bit variable
var1 by the 16-bit variable var2 and shifts
the result left by 1. This 32-bit result is sub-
tracted by the 32-bit variable var3 with
saturation and returns the 32-bit result.

Long L_macnb (long var3, int
var1, int var2)

This function multiplies the 16-bit variable
var1 by the 16-bit variable var2 and shifts
the result left by 1. This 32-bit result is sub-
tracted by the 32-bit variable var3 with
saturation and returns the 32-bit result.

Long L_mac2a (long var3, long
var1, long var2)

The lower 16 bits of the variable var1 is
multiplied with the lower 16 bits of the vari-
able var2. The higher 16 bits of the
variable var1 is multiplied with the higher
16 bits of variable var2, and the two 32-bit
results are added to the variable var3,
which is the return value.

Long L_mac2b (long var3,
long var1, long var2)

The lower 16 bits of the variable var1 is
multiplied with the lower 16 bits of the vari-
able var2. The higher 16 bits of the
variable var1 is multiplied with the higher
16 bits of variable var2, and the two 32-bit
results are added to the variable var3,
which is the return value.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

D-4 L-Intrinsic Functions
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Long norm_l (long var1) This function produces the number of left
shifts required to normalize a 32-bit vari-
able var1. The number is a 32-bit result.

int norm_s (int var1) This function produces the number of left
shifts required to normalize a 16-bit vari-
able var1. The number is a 16-bit result.

Long L_deposit_h (int var1) This function returns a 32-bit result, where
the high-order 16 bits is the input 16-bit
variable var1, and the low-order 16 bits
are zeroed.

int extract_h (long) This function returns a 16-bit result which
is the high-order 16 bits of the 32-bit input.

Long L_abs (long var1) This function returns a 32-bit result which
is the absolute value of the 32-bit variable
var1. Note that abs (0x8000) returns
0x7FFF.

int abs_s (int var1) This function returns a 16-bit result which
is the absolute value of the 16-bit variable
var1. Note that abs.s (0x8000) returns
0x7FFF.

int round (long) This function returns a 16-bit result. The
result is obtained by rounding the lower 16
bits of the 32-bit input number and storing
it in the higher 16 bits with saturation. This
value is then shifted right by 16 bits to
obtain the result.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide E-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Appendix E
Signal Processing
Library

The libraries, libalg_zsp500.a and libalg_zsp600.a, contain
some basic functionality commonly used in signal processing. They are
only available for the ZSPG2 architecture. The interface to libalg*.a
is contained in alg.h, which can be accessed with:

#include <alg.h>

To use either library, they must be linked in with either the -lalg_zsp500
or -lalg_zsp600 switch on the link line.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

E-2 Signal Processing Library
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.1 API Specification Auto-correlation Library Function on
G2

E.1.1 Auto-correlation
Synopsis

void lib_autocorr(*Struct_AUTOCOR)

Input

The input variables that are to be passed through the AUTOCOR
structure:

Return Value

None

Output

The output is returned as a field in the AUTOCOR structure

Description

This function implements the auto-correlation of the input data
(InputData) and stores the computed correlation lags in an array
(AutoCorrData). The number of correlation lags are specified by
NumberOfLags. As the number of lags are small, a direct sum-of-product
algorithm is used for computing the correlation values.

*Struct_AUTOCOR Pointer to the Auto-correlation Structure

short DataSize Length of the input data

short InputData Input data array of size Datasize*2

short NumberOfLags Number of auto-correlation lags needed

short Scale Factor to use in scaling the partial products

short AutoCorrData Array to hold the Auto-correlation values

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

API Specification for Convolutional Encoder Library Function on G2 E-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.2 API Specification for Convolutional Encoder Library
Function on G2

E.2.1 Convolutional Encoder

Synopsis

void lib_convEnc_k9r2(short *inpw, short *outpw, short
Nwords)

Input

Return

None

Output

Description

This function implements a Convolutional encoder with generating
polynomial,

G0 = 1 + D2 + D3 + D4 + D8 (octal 561)
G1 = 1 + D1 + D2 + D3 + D5 + D7 + D8 (octal 753)

and with a constraint length of K=9 and rate of R=1/2.

It employs Block-XOR technique, along with LUT-based sorting and
operates on packed words containing input data bits.

Dependencies/Assumptions

This encoder always starts from the zero state.

Assumes that the input data bits are packed into an array of 16-bit words,
in a "right-MSB" format, that is, in each word, the LSB has the oldest

Short *inpw Pointer to input data (packed, 16-bit array)

Short Nwords Size of input array

Short *outpw Pointer to output data (packed, 16-bit array)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

E-4 Signal Processing Library
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

data. In the final word, if there are fewer than 16 data bits, the MSB part
may be filled with zero bits but not essential.

The output encoded bits are available packed into 16-bit words in the
same "right-MSB" format. The output array size is twice that of the input
array, and any extra bits in the final output word may be ignored.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

API Specification for 16bit CRC Library Function on G2 E-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.3 API Specification for 16bit CRC Library Function on G2

E.3.1 CRC 16bit

Synopsis

short lib_crc16(short *inpw, short Nwords)

Input

Output

Description

This function implements CRC-16 bit checksum calculation, based on the
Generating Polynomial

P(D) = D(16) + D(12) + D(5) + 1 (decimal 69,665).

Dependencies/Assumptions

Assumes that the input bits are packed into an array of 16-bit words, in
a "right-MSB" format, that is, in each word, the LSB has the oldest data.
In the final input word, if there are fewer than 16 data bits, the MSB part
may be filled with zero bits but not essential.

The output encoded bits are available packed into one 16-bit word in the
same "right-MSB" format.

Short *inpw Pointer to input data (packed, 16-bit array)

Short Nwords Size of input for which CRC is needed

Short crc16 Computed checksum (16-bit scalar)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

E-6 Signal Processing Library
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.4 API Specification for 8bit CRC Library Function on G2

E.4.1 CRC 8bit

Synopsis

short lib_crc8(short *inpw, short Nwords)

Input

Output

Description

This function implements CRC-8 bit checksum calculation, based on the
Generating Polynomial

D(8) + D(7) +D(4) + D(3) + D + 1 (decimal 411).

Dependencies/Assumptions

Assumes that the input data bits are packed into an array of 16-bit words,
in a "right-MSB" format, that is, in each word, the LSB has the oldest
data. In the final input word, if there are fewer than 16 data bits, the MSB
part may be filled with zero bits but not essential.

The output encoded bits are available packed into one 16-bit word in the
same "right-MSB" format.

Short *inpw Pointer to input data (packed, 16-bit array)

Short Nwords Size of input for which CRC is needed

Short crc8 Computed checksum (16-bit scalar)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

API Specification for 32-bit Division Library Function on G2 E-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.5 API Specification for 32-bit Division Library Function on
G2

E.5.1 32-bit Division

Synopsis

Result32 lib_div32(Num32, Den32)

Input

Return

Description

Performs a 32-bit fractional division between two 32-bit positive integers

Result32 = Num32/Den32

The technique is a 32-bit implementation of the 16-bit divide step
instruction "diva".

Int Num32 32-bit positive integer

Int Den32 32-bit positive integer

Int Result32 Q31 Fractional number

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

E-8 Signal Processing Library
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.6 API Specification for IIR Library Function on G2

E.6.1 IIR

Synopsis

void lib_IIR(short *indata, short *coef, short *state, short N)

Input

Return

None

Output

Output is returned in the “indata” input data vector.

Description

This function implements an in-place Infinite Impulse Response (IIR)
filter.

Dependencies/Assumptions

The input data is assumed to be in Q1.15 format.

The number of taps in the filter “T” must be a multiple of 2.

Coefficients are stored as -a1/2, -a2/2, b1/2, b2/2, ..., b0/2.

Input data is stored 0, In(0), In(1), ..., In(N).

Short *indata Pointer to input data.

Short *coef Coefficient vector.

Short *state Intermediate state of the filter.

Short N Length of the input data vector.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

API Specification for IIR Biquad Library Function on G2 E-9
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.7 API Specification for IIR Biquad Library Function on G2

E.7.1 IIR Biquad

Synopsis

void lib_IIRBIQ(short *indata, short *coef, short *state, short N-1)

Input

Return

None

Output

Output is returned in the “indata” input data vector.

Description

This function implements an in-place Biquad Infinite Impulse Response
(IIR) filter.

Dependencies/Assumptions

The input data is assumed to be in Q1.15 format.

The number of taps in the filter “T” must be a multiple of 2.

Coefficients are stored as -a11/2, a21/2, b11/2, b21/2 -a21/2, a22/2,
b21/2, b22/2.

Input data is stored 0, In(0), In(1), ..., In(N).

Short *indata Pointer to input data.

Short *coef Coefficient vector.

Short *state Intermediate state of the filter.

Short N-1 Length of the input data vector.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

E-10 Signal Processing Library
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.8 API Specification for Inverse Square Root Library
Function on G2

E.8.1 Inverse Square Root

Synopsis

Xout lib_invsqrt(Xi)

Input

Short Xi Q14 number in the range 0x1000 (0.25) < Xi < 0x7fff
(1.99999)

Return

short Xout Q14 number in the range 0x1000 (0.25) < Xi < 0x7fff
(1.99999)

Description

Calculate the inverse square root of an input Xi.

Xout = 1/sqrt(Xi)

Technique employs a look up table to obtain a first approximation to
Xout.

The approximation Xout is then used by following recursive algorithm to
calculate a more precise value for Xout.

Xout = (3/2)*Xout - (Xi * Xout^3)/2

Three iterations of the above algorithm are performed

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

API Specification for Synthesis Lattice Filter Library Function on G2 E-11
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.9 API Specification for Synthesis Lattice Filter Library
Function on G2

E.9.1 Synthesis Lattice Filter

Synopsis

short lib_lattice(short *b, short n, short *k)

Input

Output

Description

This function implements a Lattice filter. The lattice is a synthesis filter
which calculates the following loop:

f -= b[n - 1] * k[n - 1];
for (i = n - 2; i >= 0; i--) {
f -= b[i] * k[i];
b[i + 1] = b[i] + (k[i] * f);

{

where “n” is the order for the filter, “k” and “b” are coefficients and “f” is
the “forward result”

The variables f, b[i],k[i] and k are in q15 format.

Short *b Array of filter coefficients

Short n Number of data samples

Short *k Array of filter coefficients

Short f Result of forward synthesis

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

E-12 Signal Processing Library
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.10 API Specification for Real Block FIR Library Function on
G2

E.10.1 Real Block FIR

Synopsis

void lib_realblockfir(*FIR)

Input

Output

Description

This function implements a real valued block FIR filter. The N samples
of input array (“x”) are filtered with T filter coefficients in array (“h”), and
the result is stored in array (“y”).

The input, output, and filter coefficients are 16-bits. The filter coefficients
must be stored in reverse order h(T-1) ... h(0).

A delay line is used to hold the history of input data and it is updated
each time to contain the latest T samples and point to the oldest of them.

*RBF_CFG_Type Pointer to a configuration type structure

int *x Address of input array, length>=N.

int *h Address of coefficients, length>=T.
Coefficients stored in reverse order h(T-1) ... h(0).

int N Number input samples in x to filter.
N must be multiple of 4.

int T Number of filter taps (length of h).
T must be multiple of 4 and T>=8.

int *y Address of output array, length>=N

int *delay_line Base address of delay line

int *delay_current Ptr to current addr in delay line (oldest sample)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

API Specification for Real Block FIR Library Function on G2 E-13
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Accumulations are 40 bits with bits 31-16 being the stored result, which
will be saturated if SAT is enabled.

Two taps for each of 4 output samples are computed every iteration of
the inner loop.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

E-14 Signal Processing Library
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

E.11 API Specification for 256 point FFT Library Function on
G2

E.11.1 256 point FFT

Synopsis

void lib_FFT256(short *in_data, short *out_data, *twiddles)
void lib_iFFT256(short *in_data, short *out_data, *twiddles)

Input

Return

None

Output

Description

This function implements a 256 point complex, Radix-2, decimation-in-
time Fast Fourier Transform (FFT) algorithm.

Dependencies/Assumptions

The input and output data are to be stored as Im,Re,Im,Re... and are in
natural order.

The input and output data is in Q.15 format.

Twiddle factors have to be recalculated and stored in memory.

Short *in_data Pointer to input data

Short *twiddles Array of Twiddle factors

Short *out_data Computed FFT or iFFT values

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide IX-1
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Index

Symbols

!EPILOGUE 3-31, 3-32
!PROLOGUE 3-31, 3-32
%guard register 3-6
.extdata_0 5-2
.exttext_0 5-2
.walign 4-5, 5-2
__FUNC_END_ 3-33
__FUNC_EXIT_ 3-33
__FUNC_EXIT_region_name 9-7
__FUNC_FRAME_SIZE_ 3-33
__FUNC_START_ 3-33
__FUNC_START_region_name 9-7
__heap_limit 5-3
__heap_start 5-3
__stack_size 5-3
__stack_start 5-3

A

abs_s 3-20
accum_a 3-5, 3-6
accum_b 3-6
acos 3-18
alg.h 2-19
ar 6-2
asin 3-18
asm 3-29
Assembler Special Cases 4-5
assert.h 2-7, 2-16, 2-19
atan 3-18
atan2 3-18

B

bitclear_creg 3-25
bitinvert_creg 3-25
bitset_creg 3-25

C

-c 3-33
C Cross Compiler 3-1

Accessing Control Registers 3-24
C Run Time Library Functions

filehandles 3-17
I/O functions 3-17
Inter-procedural control flow functions 3-17
Pseudo-random number generation functions 3-17
String functions 3-17

Circular Buffers 3-23
Data Type Conventions 3-5
Effect of Mode Bits on Compiler-Generated Code 3-8
ETSI Functions 3-21

abs_s 3-22
extract_h 3-22
L_abs 3-22
L_deposit_h 3-22
L_mac 3-22
L_macN 3-22
L_msu 3-22
L_msuN 3-22
L_mult 3-22
L_shl 3-22
mac_r 3-22
msu_r 3-22
mult 3-22
mult_r 3-23
norm_l 3-21, 3-23
norm_s 3-23
round 3-23

-g option 3-32
Inline Assembly 3-26

% sign 3-30
Argument Constraints 3-28
Explicitly Clobbered Registers 3-29
Optimization of Inline Assembly 3-30
Parameter Output Syntax 3-27
Parameterized Assembly 3-26
Syntax 3-26
Variables and Expressions 3-27

N-Intrinsics 3-19
N_abs_l 3-20, 3-22
N_abs_s 3-20, 3-22
N_deposit_h 3-20, 3-22
N_extract_h 3-20, 3-22
N_mac 3-20, 3-21, 3-22, 3-25
N_mac2 3-20, 3-25
N_macn 3-20, 3-21, 3-22, 3-25
N_mul 3-20, 3-22, 3-23, 3-25
N_muln 3-20
N_norm_l 3-20, 3-21, 3-22, 3-23
N_norm_s 3-20, 3-23
N_round_l 3-20, 3-23
N_shla_l 3-20, 3-22
N_shla_s 3-20

Options
-c 3-4
-E 3-4
-g 3-4
-m500 3-2
-m600 3-2

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

IX-2 Index
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

-mcheck_stack 3-2
-minfer_mac 3-2
-mlarge_data 3-2, 3-3
-mlong_call 3-2, 3-3
-mlong_cond_branch 3-2
-mlong_uncond_branch 3-2
-mno_sdopt 3-2, 3-3
-msmall_data 3-2
-o 3-4
-O0 3-4
-O1 3-4
-O2 3-4
-O3 3-4
-S 3-4
-save-temps 3-4

Parameter Passing Conventions 3-10
structure passing 3-10

Preprocessor
__ZSP__ 3-5
__ZSP_G2__ 3-5

Register Usage 3-7
Callee preserved registers 3-7
caller saved registers 3-7
Clobbered registers 3-7
mode registers 3-7
Parameter registers 3-7
Registers used by the compiler 3-7
Return registers 3-7
Scratch registers 3-7
sdcc 3-7
Stack pointer 3-7
zdxcc 3-7

Run Time Stack 3-11
Stack Frame 3-12
Timer Support 3-18

auto-reload timer mode 3-18
single-shot timer mode 3-18

Vector N-Intrinsics 3-21, 3-25
N_vc_mac 3-21
N_vc_macn 3-21
N_vv_mac 3-21
N_vv_macn 3-21

zdcc Register Usage 3-7
Callee preserved registers 3-8
mode registers 3-8
Parameter registers 3-8
Registers used by the compiler 3-7
Return registers 3-8
Stack pointer 3-7

cat.exe 2-11, 2-12
cbuf.h 2-7, 2-10, 2-16, 2-19, 3-7, 3-23, 3-24
ceil 3-18
char 3-5
circular buffers 3-23
cos 3-18
cosh 3-18
creg.h 2-7, 2-10, 2-16, 2-19, 3-24
crt0.o 2-16, 2-18, 2-19
crt0.obj 2-7, 2-10
ctype.h 2-7, 2-10, 2-16, 2-19

D

data cache 8-31
-dbg 4-2
Debugging 9-1

baud rate 9-7
Configuration Files 9-18
Dynamic Breakpoints 9-17
environments 9-3
Example Sessions 9-18
Hardware Assisted Debugging 9-10

Commands
disable_brk 9-11, 9-12
enable_ice 9-11
insn_addr_brk 9-11
resume 9-11
return_to_sw_dbg 9-11, 9-13
st_addr_and_data_brk 9-11, 9-12
st_addr_brk 9-11, 9-12
st_addr_or_data_brk 9-11, 9-12
st_data_brk 9-11, 9-12
step 9-11

JTAG Probe Connection 9-8
JTAG Target Commands

close 9-9
help 9-9
max_number_of_files 9-9
memory_download 9-9
memory_upload 9-9
set_clk 9-9

Loading a symbol table 9-2
Special Case Commands 9-13

Accessing Memory 9-15
Backtrace 9-13
Breakpoint 9-14
Cycle-step 9-15
Info Registers 9-14
Print 9-14
Set 9-14

UART Connection 9-7
UART Target Commands

close 9-8
help 9-8
max_number_of_files 9-8
memory_download 9-8
memory_upload 9-8

User-Specified Profiling 9-7
ZISIM target 9-3
ZISIM Target Commands 9-4

clear-stats 9-4
close 9-4
help 9-4
max_number_of_files 9-4
memory_download 9-4
memory_upload 9-4
print-opcode 9-4
print-stats 9-4
reg-off 9-4
reg-on 9-4
trace-off 9-4
trace-on 9-4

ZSIM Target Commands 9-5
clear-stats 9-5
close 9-5
help 9-5
max_number_of_files 9-5
memory_download 9-5
memory_upload 9-5
pf 9-6
pfdu-off 9-5
pfdu-on 9-5

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Index IX-3
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

pfiu-off 9-5
pfiu-on 9-5
pfpipe-off 9-5
pfpipe-on 9-5
pfresource-off 9-5
pfresource-on 9-5
pipe-off 9-5
pipe-on 9-5
print-dcache 9-5
print-icache 9-5
print-opcode 9-6
print-pipe 9-6
print-profile 9-6
print-rule 9-6
print-stats 9-6
print-stats-inc 9-6
profile-func 9-6
profile-off 9-6
profile-on 9-6
profile-reset 9-6
reg-off 9-6
reg-on 9-6
trace-off 9-6
trace-on 9-6

-defsym 5-4, 5-5
defsym 5-3
double 3-6
dsp.h 2-7, 2-10, 2-16, 2-19

E

-e 5-2
ELF 1-5, 4-1, 4-5, 5-5
enum 3-5
exp 3-18
extract_h 3-20

F

fabs 3-18
float 3-6
float.h 2-7, 2-10, 2-16, 2-19
floor 3-18
fmod 3-18
fmode register 3-25
-fno-inline 3-21
Free Software Foundation 1-2
frexp 3-18

G

-g 3-32, 3-33
GNU documentation 1-2
GUI 11-1

IDE Main Window 11-4
Overview 11-2
Project

.pjt extension 11-7
Working With Projects 11-7

Project Settings 11-9
Workspace

Working With Workspaces 11-5
guidebug_help 2-20
guidebug_help.exe 2-11

H

Hardware Assisted Debugging. See Debugging, Hardware
Assisted Debugging.

header files 2-7, 2-10, 2-16, 2-19
hpiin 8-40
hpiout 8-40

I

include 2-16, 2-19
input expression 3-27
Installation Directory 2-7, 2-10, 2-11, 2-20
installation prerequisites 2-2
Installation_Directory 2-10
int 3-5, 3-19
Integrated Development Environment (IDE). See GUI

J

JTAG 9-8
JTAG clock 9-9

L

-L 5-4
-l 5-4
L_abs 3-20
L_deposit_h 3-20
L_mac2a 3-20
L_mac2b 3-20
L_maca 3-20
L_macb 3-20
L_macna 3-20
L_macnb 3-20
L_mula 3-20
L_mulb 3-20
L_shla 3-20
Labels 4-2
LD_LIBRARY_PATH 2-14
ldexp 3-18
lib 2-16, 2-18, 2-19
libalg_zsp500.a 2-10, 2-18
libalg_zsp600.a 2-10, 2-18
libc.a 2-7, 2-10, 2-16, 2-18, 2-19
libcpig711.dll 2-8
libg.a 2-7, 2-10, 2-16, 2-18, 2-19, 3-17
liblongc.a 2-7, 2-16
libm.a 2-7, 2-10, 2-16, 2-18, 2-19
libraries 2-16, 2-18, 2-19
libsdsp.h 2-8, 2-11, 2-16, 2-19
libzidlmssg2.dll 2-8
libzisim400.dll 2-6
libzisimg2.dll 2-8
libzperiph.dll 2-6
libzsim400.dll 2-6
License Management 2-21

Obtaining a License File 2-21
Starting the License Manager 2-21

limits.h 2-8, 2-11, 2-16, 2-19
LM_LICENSE_FILE 2-22
lmdown 2-22
lmgrd 2-21
lmhostid 2-21
lmutil 2-21

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

IX-4 Index
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

load_int_cbuf 3-24
load_long_cbuf 3-24
log 3-18
log10 3-18
long 3-5, 3-19
longjmp 3-18

M

-M 5-4
mapfile 2-20
math.h 2-8, 2-11, 2-16, 2-19
MDI

Configuration File Basics 10-1
Comments 10-1
Fields 10-2
Section Headers 10-2

Device Configuration Files 10-1, 10-3
Device Information Section 10-4
Device Libs Section 10-4

Device Resource Files 10-1
Driver Configuration Files 10-5

ZSP400 JTAG 10-8
ZSP400 ZISIM 10-5
ZSP400 ZSIM 10-6
ZSP500/ZSP600 JTAG 10-11
ZSP500/ZSP600 ZISIM 10-9
ZSP500/ZSP600 ZSIM 10-10

-minfer_mac 3-9
modf 3-18

N

N_Intrinsic.h 2-8, 2-11, 2-16, 2-19, 3-19
nm 6-2
norm_l 3-20, 3-22
norm_s 3-20

O

-o 5-4
-O3 3-21, 3-34
objcopy 6-2
objdump 6-2
output variable 3-27

P

pipeline 8-34
pointer 3-5

Q

q15 3-5, 3-9, 3-25, 3-26
Q15 division 3-26
q15.h 2-8, 2-11, 2-16, 2-19

R

rand 3-17
ranlib 6-2
read_creg 3-24
readelf 1-4, 6-2, 6-14
readelf.exe 2-3, 2-4, 2-5, 2-6, 2-8
rls_semaphore.exe 2-11

round 3-20

S

-S 3-34
sdar 1-4, 2-15, 6-2, 6-3
sdar.exe 2-6
sdas 1-3, 2-15, 4-1, 4-3, 4-5

Assembler directives 4-2
Assembler Directives. See zdas, Assembler Directives
Assembler Options. See zdas, Assembler Options
Definition 4-1
locally resolved symbols 4-2

sdas.exe 2-6
sdbug400 1-3, 2-15, 9-2

-jtag_mapfile 9-2
-jtag_type 9-2
-mempcr 9-2
-no_mempcr 9-2

sdbug400.exe 2-6
sdcc 1-3, 1-4, 2-15, 3-1, 3-2, 3-3, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10,

3-11, 3-12, 3-14, 3-16, 3-19, 3-21, 3-23, 3-31, 3-32
sdcc.exe 2-6
sdcc1 2-15
sdcc1.exe 2-6
sdcpp 2-15
sdcpp.exe 2-6
sdelfread 2-15
sdelfread.exe 2-6
sdld 1-3, 2-15, 5-1, 5-2, 5-3, 5-5
sdld.exe 2-6
sdnm 1-4, 2-15, 6-2, 6-7
sdnm.exe 2-6
sdobjcopy 1-4, 2-15, 6-2, 6-12
sdobjcopy.exe 2-6
sdobjdump 1-4, 2-15, 6-2, 6-10
sdobjdump.exe 2-6
sdopt 1-2, 1-4, 2-15, 3-2, 3-3, 3-12, 3-31, 3-32
sdopt.exe 2-6
sdranlib 1-4, 2-15, 6-2, 6-6
sdranlib.exe 2-6
sdsize 1-4, 2-15, 6-2, 6-8
sdsize.exe 2-7
SDSP_HOME 1-2, 2-14
sdstrings 1-4, 2-15, 6-2, 6-9
sdstrings.exe 2-7
sdstrip 1-4, 2-15, 6-2, 6-5
sdstrip.exe 2-7
setjmp 3-18
setjmp.h 2-8, 2-11, 2-17, 2-20, 3-17
setup 2-3
shla 3-20
short int 3-5
simios.h 2-8, 2-11, 2-17, 2-20
sin 3-18
sinh 3-18
size 6-2
Solaris setup script 2-14
sp0in 8-40
sp0out 8-40
sp1in 8-40
sp1out 8-40
sqrt 3-18
stdarg.h 2-8, 2-11, 2-17, 2-20
stddef.h 2-8, 2-11, 2-17, 2-20
stdio.h 2-8, 2-11, 2-17, 2-20

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Index IX-5
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

stdlib.h 2-8, 2-11, 2-17, 2-20, 3-17
store_int_cbuf 3-24
store_long_cbuf 3-24
string.h 2-8, 2-11, 2-17, 2-20, 3-17
strings 6-2
strip 6-2

T

-T 3-33, 5-4
tan 3-18
tanh 3-18
-Tbss 5-4
-Tdata 5-4
timer_util.h 2-8, 2-17, 2-20, 3-18
tmp directory 2-20
-Ttext 5-4

U

UART Connection 9-7
unsigned char 3-5
unsigned long 3-5
unsigned short int 3-5
User-specified Profiling 9-7

V

volatile 3-31
vold 2-14

W

write_creg 3-25
www.gnu.org 1-2

Z

zdar 1-4, 2-17, 6-2
zdar.exe 2-9
zdas 1-3, 2-17, 4-1, 4-3, 4-5

Assembler Directives 4-4
.global 4-4
.section 4-4
.walign 4-4
.word 4-4
.wspace 4-4

Assembler directives 4-2
Assembler Options 4-3

-dbg 4-3
--defsym 4-3
-I 4-3
-o 4-3
-W 4-3

Definition 4-1
locally resolved symbols 4-2

zdas.exe 2-9
zdbug 1-3, 2-17, 9-2
zdbug.exe 2-9
zdcc 1-3, 1-4, 2-17, 3-1, 3-2, 3-3, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10,

3-11, 3-13, 3-16, 3-21, 3-23, 3-28, 3-32
zdcc.exe 2-9
zdcc1 2-17
zdcc1.exe 2-9
zdcpp 2-17

zdcpp.exe 2-9
zdelfread 2-17
zdelfread.exe 2-8
zdld 1-3, 2-17, 5-1, 5-3, 5-5
zdld.exe 2-9
zdmake.exe 2-12
zdnm 1-4, 2-17, 6-2
zdnm.exe 2-9
zdobjcopy 1-4, 2-17, 6-2
zdobjcopy.exe 2-9
zdobjdump 1-4, 2-17, 6-2
zdobjdump.exe 2-9
zdopt 1-2, 1-4, 2-17, 3-2, 3-3
zdopt.exe 2-9
zdranlib 1-4, 2-18, 6-2
zdranlib.exe 2-9
zdsize 1-4, 2-18, 6-2
zdsize.exe 2-9
zdstrings 1-4, 2-18, 6-2
zdstrings.exe 2-9
zdstrip 1-4, 2-18, 6-2
zdstrip.exe 2-9
zdxbug 1-2, 1-3, 2-18, 9-2
zdxbug.exe 2-9
zdxcc 1-2, 1-3, 1-4, 2-18, 3-1, 3-2, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10,

3-11, 3-12, 3-14, 3-16, 3-23
zdxcc.exe 2-9
zdxcc1.exe 2-9
zdxcpp 2-18
zdxcpp.exe 2-9
zdxopt 1-4, 2-18, 3-2
zdxopt.exe 2-9
ZISIM 7-1
ZISIM Command-line Options 7-3

-c 7-3
-cl 7-4
-h 7-3
-i 7-3
-ignore 7-3
-m 7-3
-v 7-4

ZISIM Commands 7-4
alias 7-4, 7-7
clear 7-4

break 7-4, 7-8
dmem 7-4, 7-8
imem 7-4, 7-8
stats 7-4, 7-9

disable 7-5
break 7-5, 7-9
trace 7-5, 7-9
warning 7-5

dump 7-5
dmem 7-5, 7-9
imem 7-5, 7-10

enable 7-5
break 7-5, 7-11
trace 7-5, 7-11
warning 7-5

exit 7-5, 7-12
fill 7-5

dmem 7-5, 7-12
imem 7-5, 7-12

help 7-5, 7-13
load 7-5

dmem 7-5, 7-13

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

IX-6 Index
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

exe 7-5, 7-14
imem 7-5, 7-14

reset 7-5, 7-15
run 7-5, 7-16
script 7-5, 7-16
set 7-6

args 7-6
attr 7-6, 7-17
break 7-6, 7-17
reg 7-6, 7-18

show 7-6
attr 7-6, 7-19
bits 7-6, 7-19
break 7-6, 7-20
dmem 7-6, 7-20
imem 7-6, 7-21
reg 7-6, 7-22
stats 7-6, 7-23
trace 7-6, 7-23

step 7-6, 7-24
unalias 7-6, 7-24
ZISIM400 Specific

set 7-7
size 7-18

show 7-7
size 7-22

ZISIMG2 Specific
set 7-7

size 7-19
show 7-7

size 7-23
zisim400 1-2, 2-15, 7-1, 7-2
zisim400.exe 2-7
zisimg2 1-2, 2-18, 7-1, 7-2
zisimg2.exe 2-9
ZSIM

batch mode 8-1
libzperiph.dll 8-40
libzperiph.so 8-40
peripheral library 8-40
script file 8-2

ZSIM Command-line Options 8-4
-c 8-4
-cl 8-4
-exec 8-4
-h 8-4
-i 8-4
-ignore 8-4
-m 8-4
-p 8-4
-pf 8-4
-pfiu 8-4
-pfpipe 8-4
-q 8-4
-radix 8-4
-reg 8-4
-s 8-4
-t 8-4
-v 8-4
ZSIM400 Specific

-mempcr 8-5
-noiboot 8-5
-nomempcr 8-5
-pfdu 8-5
-sid 8-5
-sii 8-5

-svtadd 8-5
-wed 8-5
-wei 8-5

ZSIMG2 Specific
-bimlib 8-5
-cpilib 8-5
-idealmss 8-5
-msslib 8-5
-pflsu 8-5
-tic 8-5

ZSIM Commands 8-6
alias 8-6, 8-11
clear 8-6

break 8-6, 8-11
dcache 8-6, 8-12
dmem 8-6, 8-12
icache 8-6, 8-12
imem 8-6, 8-13
pipe 8-6
stats 8-6, 8-13

disable 8-7
break 8-7, 8-13
profile 8-7, 8-14
trace 8-7, 8-14
warning 8-7

dump 8-7
dmem 8-7, 8-14
imem 8-7, 8-15

enable 8-8
break 8-8, 8-15
profile 8-8, 8-16
trace 8-8, 8-19
warning 8-8

exit 8-8, 8-21
fill 8-8

dmem 8-8, 8-21
imem 8-8, 8-21

help 8-8, 8-22
istep 8-8, 8-22
load 8-8

dmem 8-8, 8-23
exe 8-8, 8-24
imem 8-8, 8-24

reset 8-8, 8-25
hard 8-8

run 8-9, 8-25
script 8-9, 8-26
set 8-9

args 8-9
attr 8-9, 8-26
break 8-9, 8-27
delay 8-9
latency 8-9
reg 8-9, 8-29
size 8-9

show 8-10
attr 8-10, 8-30
bits 8-10, 8-30
break 8-10, 8-31
dcache 8-10, 8-31
dmem 8-10, 8-32
icache 8-10, 8-33
imem 8-10, 8-33
operand 8-10
pipe 8-34
pred 8-10

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Index IX-7
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

profile 8-10, 8-36
reg 8-10, 8-36
rule 8-10, 8-37
size 8-10, 8-37
stats 8-10, 8-38
trace 8-10, 8-38

step 8-11, 8-39
unalias 8-11, 8-39
ZSIM400 Specific

set
delay 8-28
size 8-29

ZSIMG2 Specific
set

latency 8-28
size 8-29

ZSIM PFU state machine 8-17
ZSIM400

serial I/O 8-39
terminal I/O 8-39
user-specified I/O ports 8-40

zsim400 1-2, 2-15, 8-3
zsim400.exe 2-7
zsimg2 1-2, 2-18, 8-3
ZSP IDE. See GUI.
zspide.exe 2-12, 2-20
zspide_help.exe 2-12, 2-20
zspld 2-21

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

IX-8 Index
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

ZSP Software Development Kit User’s Guide
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Customer Feedback

We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

Customer Feedback
Copyright © 1999-2003 by LSI Logic Corporation. All rights reserved.

Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: ZSP Software Development
Kit User’s Guide. Place a check mark in the appropriate blank for each
category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____

Technical content ____ ____ ____ ____ ____
Usefulness of examples and

illustrations
____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/5654708/SDKZSPF.html

