CMOS Complete DDS

AD9831

FEATURES
3 V/5 V Power Supply
25 MHz Speed
On-Chip SINE Look-Up Table
On-Chip 10-Bit DAC
Parallel Loading
Powerdown Option
72 dB SFDR
125 mW (5 V) Power Consumption
40 mW (3 V) Power Consumption
48-Pin TQFP
APPLICATIONS
DDS Tuning
Digital Demodulation

GENERAL DESCRIPTION

This DDS device is a numerically controlled oscillator employing a phase accumulator, a sine look-up table and a 10-bit D/A converter integrated on a single CM OS chip. M odulation capabilities are provided for phase modulation and frequency modulation.
Clock rates up to 25 M Hz are supported. F requency accuracy can be controlled to one part in 4 billion. M odulation is effected by loading registers through the parallel microprocessor interface.
A powerdown pin allows external control of a powerdown mode. The part is available in a 48-pin T QFP package.

REV. A
 REFOUT; $R_{\text {SET }}=3.9 \mathrm{k} \Omega ; \mathrm{R}_{\text {LOAD }}=300 \boldsymbol{\Omega}$ for IOUT unless otherwise noted)

Parameter	AD9831A	Units	Test Conditions/Comments
SIGNAL DAC SPECIFICATIONS Resolution U pdate Rate ($\mathrm{f}_{\text {MAX }}$) Iout Full Scale O utput C ompliance DC Accuracy Integral N onlinearity Differential N onlinearity	$\begin{aligned} & 10 \\ & 25 \\ & 4 \\ & 5 \\ & 1.5 \\ & \\ & \pm 1 \\ & \pm 0.5 \end{aligned}$	Bits M SPS nom mA nom mA max \checkmark max LSB typ LSB typ	
DDS SPECIFICATIONS ${ }^{2}$ D ynamic Specifications Signal to Noise Ratio Total Harmonic D istortion Spurious Free Dynamic Range (SFDR) ${ }^{3}$ Narrow Band ($\pm 50 \mathrm{kHz}$) Wide Band ($\pm 2 \mathrm{M} \mathrm{Hz}$) C lock F eedthrough Wake-Up Time ${ }^{4}$ Powerdown Option	$\begin{aligned} & 50 \\ & -53 \\ & -72 \\ & -70 \\ & -50 \\ & -60 \\ & 1 \\ & \text { Yes } \end{aligned}$	dB min dBc max dBc min dBc min dBc min dBc typ ms typ	$\begin{aligned} & \mathrm{f}_{\mathrm{MCLK}}=25 \mathrm{M} \mathrm{~Hz}, \mathrm{f}_{\text {OUT }}=1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{MCLK}}=25 \mathrm{M} \mathrm{~Hz}, \mathrm{f}_{\text {OUT }}=1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{MCLK}}=6.25 \mathrm{M} \mathrm{~Hz}, \mathrm{f}_{\text {OUT }}=2.11 \mathrm{M} \mathrm{~Hz} \\ & 5 \mathrm{~V} \text { Power Supply } \\ & 3 \mathrm{~V} \text { Power Supply } \end{aligned}$
VOLTAGE REFERENCE Internal Reference @ $+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$ REFIN Input Impedance R eference TC REFOUT Output Impedance	$\begin{aligned} & 1.21 \\ & 1.21 \pm 7 \% \\ & 10 \\ & 100 \\ & 300 \end{aligned}$	Volts typ Volts min/max M Ω typ ppm $/{ }^{\circ} \mathrm{C}$ typ Ω typ	
LOGIC IN PUTS $V_{\text {INH }}$, Input High Voltage $\mathrm{V}_{\text {INL }}$, Input Low Voltage $I_{\text {INH }}$, Input Current $\mathrm{C}_{\text {IN }}$, Input C apacitance	$\begin{aligned} & V_{D D}-0.9 \\ & 0.9 \\ & 10 \\ & 10 \end{aligned}$	V min V max $\mu \mathrm{A}$ max pF max	
POWER SUPPLIES AVDD DVDD I_{AA} ID $I_{A A}+I_{D D}{ }^{5}$ Low Power Sleep M ode ${ }^{6}$	$\begin{aligned} & 2.97 / 5.5 \\ & 2.97 / 5.5 \\ & 12 \\ & 2.5+0.33 / \mathrm{M} \mathrm{~Hz} \\ & 15 \\ & 24 \\ & 1 \end{aligned}$	V min/V max $V \min / V \max$ mA max mA typ mA max mA max mA max	5 V Power Supply 5 V Power Supply 3 V Power Supply 5 V Power Supply $1 \mathrm{M} \Omega$ Resistor T ied Between REFOUT and AGND

NOTES

${ }^{1}$ O perating temperature range is as follows: A Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2} 100 \%$ production tested.
${ }^{3} f_{\text {MCLK }}=6.25 \mathrm{M} \mathrm{Hz}$, Frequency Word $=5671 \mathrm{C} 71 \mathrm{CHEX}, \mathrm{f}_{\text {OUT }}=2.11 \mathrm{M} \mathrm{Hz}$.
${ }^{4}$ See Figure 11. To reduce the wake-up time at low power supplies and low temperature, the use of an external reference is suggested.
${ }^{5} \mathrm{M}$ easured with the digital inputs static and equal to 0 V or DVDD.
${ }^{6}$ The L ow Power Sleep M ode current is typically 2 mA when a $1 \mathrm{M} \Omega$ resistor is not tied between REFOUT and AGND.
The AD 9831 is tested with a capacitive load of 50 pF . The part can be operated with higher capacitive loads, but the magnitude of the analog output will be attenuated. For example, a 5 MHz output signal will be attenuated by 3 dB when the load capacitance equals 85 pF .
Specifications subject to change without notice.

Figure 1. Test Circuit with Which Specifications Are Tested

TIMING CHARACTERISTICS $\left(\mathrm{V}_{00}=+3.3 \mathrm{~V} \pm 10 \%,+5 \mathrm{~V} \pm 10 \% ; A G V D=D G N D=0 \mathrm{~V}\right.$, unless otherwise noted)

Parameter	Limit at $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (A Version)	Units	Test Conditions/Comments
t_{1}	40	ns min	M CLK Period
t_{2}	16	$n \mathrm{nmin}$	M CLK High Duration
t_{3}	16	$n \mathrm{nmin}$	M CLK Low Duration
t_{4} *	8	$n s$ min	WR R ising Edge to M CLK Rising Edge
$\mathrm{t}_{4 \mathrm{~A}}$ *	8	$n s$ min	$\overline{\text { WR }}$ R ising Edge After M CLK Rising Edge
t_{5}	8	ns min	WR Pulse Width
t_{6}	t_{1}	ns min	Duration between Consecutive $\overline{\mathrm{WR}}$ Pulses
t_{7}	5	$n s$ min	D ata/Address Setup Time
t_{8}	3	$n s$ min	D ata/Address H old T ime
$\mathrm{t}_{9}{ }^{*}$	8	$n \mathrm{mmin}$	FSELECT, PSEL0, PSEL 1 Setup T ime Before M CLK Rising Edge
$\mathrm{t}_{9 \text { A }}$ *	8	$n s \min$	FSELECT, PSEL0, PSEL 1 Setup Time After M CLK Rising Edge
t_{10}	t_{1}	ns min	RESET Pulse D uration

*See Pin D escription section.
Guaranteed by design but not production tested.

Figure 2. Clock Synchronization Timing

Figure 3. Parallel Timing

Figure 4. Control Timing

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
AVDD to AGND . -0.3 V to +7 V
DVDD to DGND -0.3 V to +7 V
AVDD to DVDD . -0.3 V to +0.3 V
AGND to DGND . -0.3 V to +0.3 V
Digital I/O Voltage to DGND -0.3 V to DVDD +0.3 V
Analog I/O Voltage to AGND - 0.3 V to AVDD +0.3 V
O perating T emperature Range
Industrial (A Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
M aximum Junction Temperature $+150^{\circ} \mathrm{C}$
TQFP θ_{JA} Thermal Impedance $75^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering
Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$
Infrared (15 sec) . $+220^{\circ} \mathrm{C}$
ESD Rating . >4500 V
*Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option*
AD 9831AST	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Pin T QF P	ST -48
EVAL-AD 9831E B	Evaluation Board		

[^0]
PIN CONFIGURATION

PIN DESCRIPTION

Mnemonic	Function
POWER SUPPLY	
AVDD	Positive power supply for the analog section. A $0.1 \mu \mathrm{~F}$ decoupling capacitor should be connected between AVD D and AGND. AVDD can have a value of $+5 \mathrm{~V} \pm 10 \%$ or $+3.3 \mathrm{~V} \pm 10 \%$.
AGND	Analog Ground.
DVDD	Positive power supply for the digital section. A $0.1 \mu \mathrm{~F}$ decoupling capacitor should be connected between DVDD and DGND. DVDD can have a value of $+5 \mathrm{~V} \pm 10 \%$ or $+3.3 \mathrm{~V} \pm 10 \%$.
DGND	Digital Ground.
ANALOG SIGNAL AND REFERENCE	
IOUT	Current Output. This is a high impedance current source. A load resistor should be connected between IOUT and AGND.
FS ADJUST	Full-Scale Adjust C ontrol. A resistor $\left(\mathrm{R}_{\text {SET }}\right)$ is connected between this pin and AGND. This determines the magnitude of the full-scale DAC current. The relationship between $\mathrm{R}_{\text {SET }}$ and the full-scale current is as follows: $\begin{gathered} 10 U T_{\text {FULL-SCALE }}=12.5 \times \mathrm{V}_{\text {REFIN }} / R_{\text {SET }} \\ \mathrm{V}_{\text {REFIN }}=1.21 \mathrm{~V} \text { nominal, } \mathrm{R}_{\text {SET }}=3.9 \mathrm{k} \Omega \text { typical } \end{gathered}$
REFIN	Voltage Reference Input. The AD 9831 can be used with either the on-board reference, which is available from pin REFOUT, or an external reference. The reference to be used is connected to the REFIN pin. The AD 9831 accepts a reference of 1.21 V nominal.
REFOUT	Voltage Reference 0 utput. The AD 9831 has an on-board reference of value 1.21 V nominal. The reference is made available on the REFOUT pin. This reference is used as the reference to the DAC by connecting REFOUT to REFIN. REFOUT should be decoupled with a 10 nF capacitor to AGND.
COMP	Compensation pin. This is a compensation pin for the internal reference amplifier. A 10 nF decoupling ceramic capacitor should be connected between COM P and AVDD.
DIGITAL INTERFACE AND CONTROL	
MCLK	Digital Clock Input. DDS output frequencies are expressed as a binary fraction of the frequency of MCLK. The output frequency accuracy and phase noise are determined by this clock.
FSELECT	Frequency Select Input. FSELECT controls which frequency register, FREQO or FREQ1, is used in the phase accumulator. FSELECT is sampled on the rising M CLK edge. FSELECT needs to be in steady state when an M CLK rising edge occurs. If FSELECT changes value when a rising edge occurs, there is an uncertainty of one M CLK cycle as to when control is transferred to the other frequency register. To avoid any uncertainty, a change on FSELECT should not coincide with an MCLK rising edge.
$\overline{\mathrm{WR}}$	Write, Edge-T riggered Digital Input. The $\overline{\mathrm{WR}}$ pin is used when writing data to the AD 9831. The data is loaded into the AD 9831 on the rising edge of the WR pulse. This data is then loaded into the destination register on the MCLK rising edge. The WR pulse rising edge should not coincide with the MCLK rising edge as there will be an uncertainty of one M CLK cycle regarding the loading of the destination register with the new data. The $\overline{\mathrm{WR}}$ rising edge should occur before an MCLK rising edge. The data will then be loaded into the destination register on the M CLK rising edge. Alternatively, the $\overline{\mathrm{WR}}$ rising edge can occur after the MCLK rising edge and the destination register will be loaded on the next M CLK rising edge.
D 0-D 15	D ata Bus, Digital Inputs for destination registers.
A0-A2	Address Digital Inputs. These address bits are used to select the destination register to which the digital data is to be written.
PSEL0, PSEL1	Phase Select Input. The AD 9831 has four phase registers. These registers can be used to alter the value being input to the SIN ROM. The contents of the phase register can be added to the phase accumulator output, the inputs PSELO and PSEL 1 selecting the phase register to be used. Like the FSELECT input, PSELO and PSEL1 are sampled on the rising M CLK edge. Therefore, these inputs need to be in steady state when an MCLK rising edge occurs or there is an uncertainty of one M CLK cycle as to when control is transferred to the selected phase register.
$\overline{\text { SLEEP }}$	Low Power C ontrol, active low digital input. $\overline{\text { SLEEP }}$ puts the AD 9831 into a low power mode. Internal clocks are disabled and the DAC's current sources and REFOUT are turned off. The AD 9831 is re-enabled by taking SLEEP high.
$\overline{\text { RESET }}$	Reset, active low digital input. $\overline{\text { RESET }}$ resets the phase accumulator to zero which corresponds to an analog output of midscale.

AD9831

TERMINOLOGY

Integral Nonlinearity

This is the maximum deviation of any code from a straight line passing through the endpoints of the transfer function. The endpoints of the transfer function are zero scale, a point 0.5 LSB below the first code transition (000 . . . 00 to $000 \ldots$. . 01) and full scale, a point 0.5 LSB above the last code transition (111 . . . 10 to 111 . . . 11). T he error is expressed in LSBs.

Differential Nonlinearity

This is the difference between the measured and ideal 1 LSB change between two adjacent codes in the DAC .

Signal to (Noise + Distortion)

Signal to (N oise + Distortion) is measured signal to noise at the output of the DAC. The signal is the rms magnitude of the fundamental. N oise is the rms sum of all the nonfundamental signals up to half the sampling frequency ($\mathrm{f}_{\mathrm{MCLK}} / 2$) but excluding the dc component. Signal to (N oise + D istortion) is dependent on the number of quantization levels used in the digitization process; the more levels, the smaller the quantization noise. The theoretical Signal to (N oise + Distortion) ratio for a sine wave input is given by

$$
\text { Signal to }(\mathrm{N} \text { oise }+ \text { Distortion })=(6.02 \mathrm{~N}+1.76) \mathrm{dB}
$$

where N is the number of bits. Thus, for an ideal 10-bit converter, Signal to $(\mathrm{N}$ oise +D istortion $)=61.96 \mathrm{~dB}$.

Total Harmonic Distortion

T otal Harmonic D istortion (THD) is the ratio of the rms sum of harmonics to the rms value of the fundamental. For the AD 9831, THD is defined as

$$
T H D=20 \log \frac{\sqrt{\left(\mathrm{~V}_{2}^{2}+\mathrm{V}_{3}^{2}+\mathrm{V}_{4}^{2}+\mathrm{V}_{5}^{2}+\mathrm{V}_{6}{ }^{2}\right.}}{\mathrm{V}_{1}}
$$

where V_{1} is the rms amplitude of the fundamental and $\mathrm{V}_{2}, \mathrm{~V}_{3}$, V_{4}, V_{5} and V_{6} are the rms amplitudes of the second through the sixth harmonic.

Output Compliance

The output compliance refers to the maximum voltage which can be generated at the output of the D AC to meet the specifications. When voltages greater than that specified for the output compliance are generated, the AD 9831 may not meet the specifications listed in the data sheet.

Spurious Free Dynamic Range

Along with the frequency of interest, harmonics of the fundamental frequency and images of the M CLK frequency are present at the output of a D D S device. The spurious free dynamic range (SF DR) refers to the largest spur or harmonic which is present in the band of interest. The wide band SF DR gives the magnitude of the largest harmonic or spur relative to the magnitude of the fundamental frequency in the bandwidth
$\pm 2 \mathrm{M} \mathrm{Hz}$ about the fundamental frequency. The narrow band SFDR gives the attenuation of the largest spur or harmonic in a bandwidth of $\pm 50 \mathrm{kHz}$ about the fundamental frequency.

Clock Feedthrough

T here will be feedthrough from the M CLK input to the analog output. C lock feedthrough refers to the magnitude of the M CLK signal relative to the fundamental frequency in the AD 9831's output spectrum.

Table I. Control Registers

Register	Size	Description
FREQ 0 REG	32 Bits	F requency Register 0. This defines the output frequency, when FSELECT $=0$, as a fraction of the MCLK frequency.
FREQ1 REG	32 Bits	Frequency Register 1. This defines the output frequency, when FSELECT $=1$, as a fraction of the MCLK frequency.
PHASE0 REG	12 Bits	Phase Offset Register 0. When PSELO $=$ PSEL $1=0$, the contents of this register are added to the output of the phase accumulator.
PHASE1 REG	12 Bits	Phase Offset Register 1. When PSEL $0=1$ and PSEL $1=0$, the contents of this register are added to the output of the phase accumulator.
PHASE2 REG	12 Bits	Phase Offset R egister 2. When PSEL $0=0$ and PSEL $1=1$, the contents of this register are added to the output of the phase accumulator.
PHASE3 REG	12 Bits	Phase Offset R egister 3. When PSEL $0=$ PSEL $1=1$, the contents of this register are added to the output of the phase accumulator.

Table II. Addressing the Control Registers

A2	A1	A0	Destination Register
0	0	0	FREQ0 REG 16 LSBs
0	0	1	FREQ0 REG 16 M SBs
0	1	0	FREQ1 REG 16 LSBs
0	1	1	FREQ1 REG 16 M SBs
1	0	0	PHASE0 REG
1	0	1	PHASE1 REG
1	1	0	PHASE2 REG
1	1	1	PHASE3 REG

Table III. Frequency Register Bits

D 15															D 0
M SB															LSB

Table IV. Phase Register Bits

D 15	D 14	D 13	D 12	D 11											D 0
X	X	X	X	M SB											L SB

Typical Performance Characteristics- AD9831

Figure 5. Typical Current Consumption vs. MCLK Frequency

Figure 6. Narrow Band SFDR vs. MCLK Frequency

Figure 7. Wide Band SFDR vs. MCLK Frequency

Figure 8. Wide Band SFDR vs. $f_{\text {OUT }} / f_{\text {MCLK }}$ for Various MCLK Frequencies

Figure 9. SNR vs. MCLK Frequency

Figure 10. SNR vs. $f_{\text {OUT }} / f_{M C L K}$ for Various MCLK Frequencies

AD9831- Typical Performance Characteristics

Figure 11. Wake-Up Time vs. Temperature

Figure 12. $f_{M C L K}=25 \mathrm{MHz}, f_{\text {OUt }}=1.1 \mathrm{MHz}$, Frequency Word $=$ B439581

Figure 13. $f_{M C L K}=25 \mathrm{MHz}, f_{\text {OUt }}=2.1 \mathrm{MHz}$, Frequency Word $=15810625$

Figure 14. $f_{M C L K}=25 \mathrm{MHz}, f_{\text {OUT }}=3.1 \mathrm{MHz}$, Frequency Word $=1$ FBE76C9

Figure 15. $f_{\text {MCLK }}=25 \mathrm{MHz}, f_{\text {OUT }}=4.1 \mathrm{MHz}$, Frequency Word $=29 F B E 76 D$

Figure 16. $f_{M C L K}=25 \mathrm{MHz}, f_{\text {OUT }}=5.1 \mathrm{MHz}$, Frequency Word $=34395810$

Figure 17. $f_{M C L K}=25 \mathrm{MHz}, f_{\text {OUT }}=6.1 \mathrm{MHz}$, Frequency Word $=3 E 76 C 8 B 4$

Figure 18. $f_{M C L K}=25 \mathrm{MHz}, f_{\text {OUT }}=7.1 \mathrm{MHz}$, Frequency Word $=48 B 43958$

Figure 19. $f_{M C L K}=25 \mathrm{MHz}, f_{\text {OUT }}=8.1 \mathrm{MHz}$, Frequency Word $=52 F 1 A 9 F C$

Figure 20. $f_{M C L K}=25 \mathrm{MHz}, f_{\text {OUT }}=9.1 \mathrm{MHz}$, Frequency Word $=5$ D2F1AAO

AD9831

CIRCUIT DESCRIPTION

The AD 9831 provides an exciting new level of integration for the RF /C ommunications system designer. The AD 9831 combines the N umerical Controlled Oscillator (NCO), SINE LookUp Table, Frequency and Phase M odulators, and a Digital-toAnalog Converter on a single integrated circuit.
The internal circuitry of the AD 9831 consists of three main sections. T hese are:

Numerical Controlled Oscillator (NCO) + Phase M odulator
SINE Look-Up Table
D igital-to-A nalog C onverter
The AD 9831 is a fully integrated D irect Digital Synthesis (DDS) chip. The chip requires one reference clock, one low precision resistor and eight decoupling capacitors to provide digitally created sine waves up to 12.5 M Hz . In addition to the generation of this RF signal, the chip is fully capable of a broad range of simple and complex modulation schemes. These modulation schemes are fully implemented in the digital domain allowing accurate and simple realization of complex modulation al gorithms using D SP techniques.

THEORY OF OPERATION

Sine waves are typically thought of in terms of their magnitude form $\mathrm{a}(\mathrm{t})=\sin (\omega \mathrm{t})$. H owever, these are nonlinear and not easy to generate except through piece wise construction. On the other hand, the angular information is linear in nature. That is, the phase angle rotates through a fixed angle for each unit of time. The angular rate depends on the frequency of the signal by the traditional rate of $\omega=2 \pi f$.
MAGNITUDE

PHASE

Figure 21. Sine Wave
K nowing that the phase of a sine wave is linear and given a reference interval (clock period), the phase rotation for that period can be determined.

$$
\Delta \text { Phase }=\omega \delta t
$$

Solving for ω

$$
\omega=\Delta \mathrm{Phase} / \delta \mathrm{t}=2 \pi \mathrm{f}
$$

Solving for f and substituting the reference clock frequency for the reference period $\left(1 / f_{\text {MCLK }}=\delta t\right)$

$$
f=\Delta \text { Phase } \times f_{\text {MCLK }} / 2 \pi
$$

The AD 9831 builds the output based on this simple equation. A simple DDS chip can implement this equation with three major subcircuits.

Numerical Controlled Oscillator + Phase Modulator

This consists of two frequency select registers, a phase accumulator and four phase offset registers. T he main component of the NCO is a 32-bit phase accumulator which assembles the phase component of the output signal. Continuous time signals have a phase range of 0 to 2π. O utside this range of numbers, the sinusoid functions repeat themselves in a periodic manner. The digital implementation is no different. The accumulator simply scales the range of phase numbers into a multibit digital word. The phase accumulator in the AD 9831 is implemented with 32 bits. Therefore, in the AD 9831, $2 \pi=2^{32}$. Likewise, the $\Delta \mathrm{P}$ hase term is scaled into this range of numbers $0<\Delta$ Phase $<2^{32}-1$. M aking these substitutions into the equation above

$$
f=\Delta \text { Phase } \times f_{\text {MCLK }} / 2^{32}
$$

where $0<\Delta$ Phase $<2^{32}$
With a clock signal of 25 M Hz and a phase word of 051EB852 hex

$$
\mathrm{f}=51 \mathrm{E} B 852 \times 25 \mathrm{M} \mathrm{~Hz} / 2^{32}=0.500000000465 \mathrm{M} \mathrm{~Hz}
$$

The input to the phase accumulator (i.e., the phase step) can be selected either from the FREQ0 Register or FREQ1 Register and this is controlled by the FSELECT pin. NCOs inherently generate continuous phase signals, thus avoiding any output discontinuity when switching between frequencies.
Following the N CO, a phase offset can be added to perform phase modulation using the 12-bit PH ASE Registers. T he contents of this register are added to the most significant bits of the NCO. The AD 9831 has four PHASE registers, the resolution of these registers being $2 \pi / 4096$.

Sine Look-Up Table (LUT)

T o make the output useful, the signal must be converted from phase information into a sinusoidal value. Since phase information maps directly into amplitude, a ROM LUT converts the phase information into amplitude. To do this, the digital phase information is used to address a sine ROM LUT. Although the NCO contains a 32-bit phase accumulator, the output of the NCO is truncated to 12 bits. U sing the full resolution of the phase accumulator is impractical and unnecessary as this would require a look-up table of 2^{32} entries.

It is necessary only to have sufficient phase resolution in the LUT s such that the dc error of the output waveform is dominated by the quantization error in the D AC. T his requires the look-up table to have two more bits of phase resolution than the 10-bit DAC.

Digital-to-Analog Converter

The AD 9831 includes a high impedance current source 10-bit DAC, capable of driving a wide range of loads at different speeds. Full-scale output current can be adjusted, for optimum power and external load requirements, through the use of a single external resistor ($\mathrm{R}_{\mathrm{SET}}$).
The DAC is configured for single ended operation. The load resistor can be any value required, as long as the full-scale voltage developed across it does not exceed the voltage compliance range. Since full-scale current is controlled by $\mathrm{R}_{\mathrm{SET}}$, adjustments to $\mathrm{R}_{\text {SET }}$ can balance changes made to the load resistor. H owever, if the D AC full-scale output current is significantly less than 4 mA , the DAC's linearity may degrade.

DSP and MPU Interfacing

T he AD 9831 has a parallel interface, with 16 bits of data being loaded during each write cycle.
The frequency or phase registers are loaded by asserting the $\overline{\mathrm{WR}}$ signal. The destination register for the 16 bit data is selected using the address inputs A0, A1 and A2. The phase registers are 12 bits wide so, only the 12 LSBs need to be valid-the 4 M SBs of the 16 bit word do not have to contain valid data. D ata is loaded into the AD 9831 by pulsing $\overline{\mathrm{WR}}$ low, the data being latched into the AD 9831 on the rising edge of $\overline{\mathrm{WR}}$. The values of inputs A0, A1 and A2 are also latched into the AD 9831 on the $\overline{\mathrm{WR}}$ rising edge. The appropriate destination register is updated on the next MCLK rising edge. If the $\overline{\mathrm{WR}}$ rising edge coincides with the M CLK rising edge, there is an uncertainty of one M CLK cycle regarding the loading of the destination register-the destination register may be loaded immediately or the destination register may be updated on the next M CLK rising edge. To avoid any uncertainty, the times listed in the specifications should be complied with.
FSELECT, PSEL 0 and PSEL 1 are sampled on the M CLK rising edge. Again, these inputs should be valid when an $\mathrm{M} C L K$ rising edge occurs as there will be an uncertainty of one

M CLK cycle introduced otherwise. When these inputs change value, there will be a pipeline delay before control is transferred to the selected register-there will be a pipeline delay before the analog output is controlled by the selected register. There is a similar delay when a new word is written to a register. PSEL0, PSEL 1, FSELECT and $\overline{\mathrm{WR}}$ have latencies of six M CLK cycles.

The flow chart in Figure 22 shows the operating routine for the AD 9831. When the AD 9831 is powered up, the part should be reset using $\overline{\mathrm{RESET}}$. This will reset the phase accumulator to zero so that the analog output is at midscale. $\overline{\text { RESET }}$ does not reset the phase and frequency registers. These registers will contain invalid data and, therefore, should be set to zero by the user.

The registers to be used should be loaded, the analog output being $f_{\text {MCLK }} / 2^{32} \times$ FREG where FREG is the value loaded into the selected frequency register. This signal will be phase shifted by the amount specified in the selected phase register ($2 \pi / 4096$ \times PHASEREG where PHASEREG is the value contained in the selected phase register). When FSELECT, PSEL 0 and PSEL 1 are programmed, there will be a pipeline delay of approximately 6 M CLK cycles before the analog output reacts to the change on these inputs.

Figure 22. Flow Chart for AD9831 Initialization and Operation

AD9831

APPLICATIONS

The AD 9831 contains functions which make it suitable for modulation applications. The part can be used to perform simple modulation such as FSK. M ore complex modulation schemes such as GM SK and QPSK can also be implemented using the AD 9831. In an FSK application, the two frequency registers of the AD 9831 are loaded with different values; one frequency will represent the space frequency while the other will represent the mark frequency. The digital data stream is fed to the FSELECT pin which will cause the AD 9831 to modulate the carrier frequency between the two values.
The AD 9831 has four phase registers; this enables the part to perform PSK. With phase shift keying, the carrier frequency is phase shifted, the phase being altered by an amount which is related to the bit stream being input to the modulator. The presence of four shift registers eases the interaction needed between the DSP and the AD 9831.
The frequency and phase registers can be written to continuously, if required. T he maximum update rate equals the frequency of the MCLK. H owever, if a selected register is loaded with a new word, there will be a delay of 6 M CLK cycles before the analog output will change accordingly.
The AD 9831 is also suitable for signal generator applications. With its low current consumption, the part is suitable for applications in which it can be used as a local oscillator. In addition, the part is fully specified for operation with a $+3.3 \mathrm{~V} \pm 10 \%$ power supply. Therefore, in portable applications where current consumption is an important issue, the AD 9831 is perfect.

Grounding and Layout

The printed circuit board that houses the AD 9831 should be designed so that the analog and digital sections are separated and confined to certain areas of the board. This facilitates the use of ground planes which can be separated easily. A minimum etch technique is generally best for ground planes as it gives the best shielding. Digital and analog ground planes should only be joined in one place. If the AD 9831 is the only
device requiring an $A G N D$ to $D G N D$ connection, then the ground planes should be connected at the AGND and DGND pins of the AD 9831. If the AD 9831 is in a system where multiple devices require AGND to DGND connections, the connection should be made at one point only, a star ground point that should be established as close as possible to the AD 9831.
Avoid running digital lines under the device as these will couple noise onto the die. The analog ground plane should be allowed to run under the AD 9831 to avoid noise coupling. The power supply lines to the AD 9831 should use as large a track as is possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching signals such as clocks should be shielded with digital ground to avoid radiating noise to other sections of the board. A void crossover of digital and analog signals. T races on opposite sides of the board should run at right angles to each other. This will reduce the effects of feedthrough through the board. A microstrip technique is by far the best but is not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground planes while signals are placed on the other side.
Good decoupling is important. The analog and digital supplies to the AD 9831 are independent and separately pinned out to minimize coupling between analog and digital sections of the device. All analog and digital supplies should be decoupled to AGND and DGND respectively with $0.1 \mu \mathrm{~F}$ ceramic capacitors in parallel with $10 \mu \mathrm{~F}$ tantalum capacitors. To achieve the best from the decoupling capacitors, they should be placed as close as possible to the device, ideally right up against the device. In systems where a common supply is used to drive both the AVDD and DVDD of the AD 9831, it is recommended that the system's AVD D supply be used. T his supply should have the recommended analog supply decoupling between the AVDD pins of the AD 9831 and AGND and the recommended digital supply decoupling capacitors between the DVDD pins and DGND.

AD9831 Evaluation Board

The AD 9831 Evaluation Board allows designers to evaluate the high performance AD 9831 DDS M odulator with a minimum of effort.
To prove that this device will meet the user's waveform synthesis requirements, the user only requires a 3.3 V or 5 V power supply, an IBM -compatible PC and a spectrum analyzer along with the evaluation board. The evaluation setup is shown below.
The DDS Evaluation kit includes a populated, tested AD 9831 printed circuit board along with the software which controls the AD 9831 in a Windows environment.

Figure 23. AD9831 Evaluation Board Setup

Using the AD 9831 E valuation B oard

The AD 9831 Evaluation kit is a test system designed to simplify the evaluation of the AD 9831. Provisions to control the AD 9831 from the printer port of an IBM -compatible PC are included along with the necessary software. An application note is also available with the evaluation board which gives information on operating the evaluation board.

Prototyping Area

An area is available on the evaluation board where the user can add additional circuits to the evaluation test set. U sers may want to build custom analog filters for the output or add buffers and operational amplifiers which are to be used in the final application.

XO vs. External Clock

The AD 9831 can operate with master clocks up to 25 M Hz . A 25 M Hz oscillator is included on the evaluation board. However, this oscillator can be removed and an external CM OS clock connected to the part, if required.

Power Supply

Power to the AD 9831 Evaluation Board must be provided externally through the pin connections. The power leads should be twisted to reduce ground loops.

Figure 24. AD9831 Evaluation Board Layout

COMPONENT LIST

Integrated Circuits

XTAL1
U2, U3
U4
Capacitors
C1-C 6
C7, C8
C9, C11, C13-C 15
C10, C 12

Resistors

R1-R3
R4
R5
R6

OSC XTAL 25 MHz
74H C574 Latches
AD 9831 (48-Pin TQFP)
$0.1 \mu \mathrm{~F}$ Ceramic Chip C apacitor
10 nF Ceramic Capacitor
$0.1 \mu \mathrm{~F}$ C eramic C apacitor
$10 \mu \mathrm{~F}$ T antalum C apacitor
$10 \mathrm{k} \Omega$ R esistor
50Ω Resistor
$3.9 \mathrm{k} \Omega$ Resistor

Links
LK 1-LK 4
LK 5
Switch
SW End Stackable Switch (SDC
D ouble Throw)

Sockets

MCLK, PSELO, PSEL1, FSELECT, IOUT, REFIN

Connectors

J1 36-Pin Edge C onnector
J2, J3

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

[^0]: *ST $=$ Thin Quad Flatpack (TQFP).

