

Precision Triaxial Inclinometer and Accelerometer with SPI

ADIS16210

FEATURES

Triaxial, digital inclinometer system

±180° measurement range, roll and pitch axes

±90° gravity axis

±0.1° relative accuracy

Triaxial, digital accelerometer, high accuracy

±1.7 g measurement range

±0.05° axis-to-axis alignment

Digital internal temperature measurements

Digital internal power supply measurements

Programmable user calibration options

Single command, frame alignment

Manual accelerometer bias correction

Programmable operation and control

Sample rate/filtering

Alarm conditions and indicator output

Input/output: data ready, alarm, general-purpose

Power management functions

SPI-compatible serial interface

Serial number and device ID

Single-supply operation: 3.0 V to 3.6 V

Calibrated temperature range: -40°C to +85°C

15 mm × 24 mm × 15 mm package with flexible connector

APPLICATIONS

Platform control, stabilization, and alignment Tilt sensing, inclinometers, and leveling Motion/position measurement Monitor/alarm devices (security, medical, safety) Navigation

GENERAL DESCRIPTION

The ADIS16210 *i*Sensor* is a digital inclinometer system that provides precise measurements for both pitch and roll angles over a full orientation range of $\pm 180^\circ$. It combines a MEMS triaxial acceleration sensor with signal processing, addressable user registers for data collection/programming, and a SPI-compatible serial interface. In addition, the production process includes unit specific calibration for optimal accuracy performance. It also offers digital temperature sensor and power supply measurements together with configuration controls for in-system calibration, sample rate, filtering, alarms, I/O configuration, and power management.

The MEMS sensor elements are bound to an aluminum core for tight platform coupling and excellent mechanical stability. An internal clock drives the data sampling system, which eliminates the need for an external clock source. The SPI and data buffer structure provide convenient access to accurate sensor data and configuration controls.

The ADIS16210 is available in a 15 mm \times 24 mm \times 15 mm module that provides mounting tabs with M2-sized mounting holes and a flexible, edge terminated connector interface. It has an extended operating temperature range of -40°C to +125°C.

FUNCTIONAL BLOCK DIAGRAM

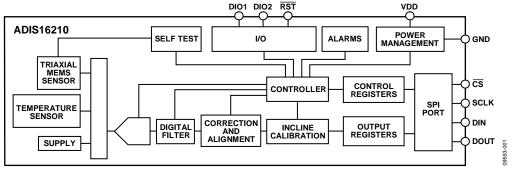


Figure 1.

Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features
Applications
General Description
Functional Block Diagram 1
Revision History
Specifications
Timing Specifications
Absolute Maximum Ratings 5
ESD Caution
Pin Configuration and Function Descriptions6
Basic Operation
Reading Sensor Data
Device Configuration
User Register Map
Sensor Data9
Output Data Registers9
Signal Processing, Bias Correction, and Alignment12
DEVICION LICTORY

System 10018	14
Global Commands	14
Input/Output Functions	14
Device Identification	15
Status/Error Flags	15
Flash Memory Management	15
Alarms	16
System Alarm	16
Static Alarms	16
Dynamic Alarms	16
Alarm Reporting	16
Applications Information	17
Interface Board	17
Mating Connector	17
Outline Dimensions	18
0.1	10

REVISION HISTORY

6/11—Rev. 0 to Rev. A	
Changes to Table 1	3
Changes to Table 23	12
Changes to Figure 24 and Figure 25	17

4/11—Revision 0: Initial Version

SPECIFICATIONS

 $T_A = -40$ °C to +85°C, VDD = 3.0 V to 3.6 V, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
INCLINOMETERS					
Measurement Range		-180		+180	Degrees
Relative Accuracy	$\pm 30^{\circ}$, AVG_CNT ≥ 0 x0009, $\mu \pm 3 \sigma$		±0.1		Degrees
	$\pm 60^{\circ}$, AVG_CNT ≥ 0 x0009, $\mu \pm 1 \sigma$		±0.1		Degrees
	$\pm 60^{\circ}$, AVG_CNT ≥ 0 x0009, $\mu \pm 3 \sigma$		±0.15		Degrees
	$\pm 180^{\circ}$, AVG_CNT ≥ 0 x0009, $\mu \pm 1 \sigma$		±0.14		Degrees
	$\pm 180^{\circ}$, AVG_CNT ≥ 0 x0009, $\mu \pm 3 \sigma$		±0.21		Degrees
Noise Density	$T_A = 25$ °C, AVG_CNT = 0x0000		±0.011		°/√Hz
ACCELEROMETERS					
Measurement Range		±1.7			g
Offset Error	μ±1σ		±1		m <i>g</i>
Sensitivity Error	μ±1σ		±0.0244		%
Nonlinearity	±1 g, μ ± 1 σ		±1	±2	m <i>g</i>
Misalignment	Axis to axis, deviation from 90°, $\mu \pm 1 \sigma$		±0.05		Degrees
Noise Density	$T_A = 25$ °C, AVG_CNT = 0x0000		190		μ <i>g/√</i> Hz
Bandwidth	-3 dB decrease in dc sensitivity, T _A = 25°C		50		Hz
Sensor Resonant Frequency	T _A = 25°C		5.5		kHz
LOGIC INPUTS ¹					
Input High Voltage, V _{INH}		2.0			V
Input Low Voltage, V _{INL}				0.8	V
Logic 1 Input Current, IINH	V _{IH} = 3.3 V		±0.2	±1	μΑ
Logic 0 Input Current, IINL	$V_{IL} = 0 V$				
All Except RST			-40	-60	μΑ
RST			-1		mA
Input Capacitance, C _{IN}			10		pF
DIGITAL OUTPUTS ¹					12.
Output High Voltage, V _{он}	I _{SOURCE} = 1.6 mA	2.4			V
Output Low Voltage, Vol	I _{SINK} = 1.6 mA			0.4	V
FLASH MEMORY					-
Endurance ²		10,000			Cycles
Data Retention ³	T _J = 85°C	20			Years
START-UP TIME ⁴	, , , , , ,				
Initial Startup			156		ms
Reset Recovery ⁵	RST pulse low or Register GLOB_CMD[7] = 1		33.8		ms
Sleep Mode Recovery	After CS assertion from high to low		22.3		ms
CONVERSION RATE	Register AVG_CNT = 0x0000				
	Register AVG_CNT = UXUUUU		512		SPS
Clock Accuracy	0 1: 1: 1/00	120	3	2.6	% V
POWER SUPPLY	Operating voltage range, VDD	3.0	3.3	3.6	-
Power Supply Current	Normal mode, T _A = 25°C		18		mA
	Sleep mode, $T_A = 25^{\circ}C$		230		μΑ

 $^{^{\}rm 1}$ The digital I/O signals are 5 V tolerant.

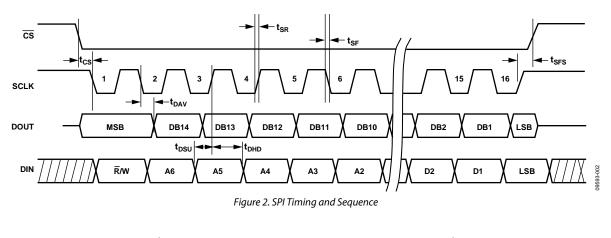
² Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at -40°C, +25°C, +85°C, and +125°C.

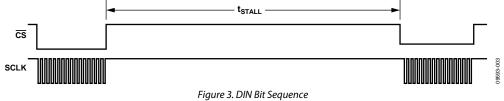
³ Retention lifetime equivalent at junction temperature (T₂) = 85°C as per JEDEC Standard 22, Method A117. Retention lifetime decreases with junction temperature. See Figure 22.

⁴ The <u>star</u>t-up times presented do not include the data capture time, which is dependent on the AVG_CNT register settings.

 $^{^{5}}$ The $\overline{\text{RST}}$ pin must be held low for at least 15 ns.

TIMING SPECIFICATIONS


 $T_A = 25$ °C, VDD = 3.3 V, unless otherwise noted.


Table 2.

Parameter	Description	Min ¹	Тур	Max	Unit
f _{SCLK}	SCLK frequency	10		830	kHz
t _{STALL}	Stall period between data, between 16th and 17th SCLK	40			μs
tcs	Chip select to SCLK edge	48.8			ns
t_{DAV}	DOUT valid after SCLK edge			100	ns
t _{DSU}	DIN setup time before SCLK rising edge	24.4			ns
t _{DHD}	DIN hold time after SCLK rising edge	48.8			ns
t _{SR}	SCLK rise time			12.5	ns
t _{SF}	SCLK fall time			12.5	ns
t _{DF} , t _{DR}	DOUT rise/fall times, not shown in Timing Diagrams section.		5	12.5	ns
tsfs	CS high after SCLK edge	5			ns

¹ Guaranteed by design, not tested.

Timing Diagrams

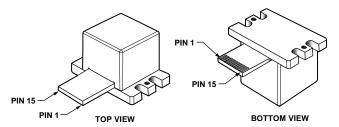
ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Acceleration	
Any Axis, Unpowered	3500 <i>g</i>
Any Axis, Powered	3500 <i>g</i>
VDD to GND	-0.3 V to +6.0 V
Digital Input Voltage to GND	-0.3 V to +5.3 V
Digital Output Voltage to GND	-0.3 V to VDD + 0.3 V
Analog Inputs to GND	-0.3 V to +3.6 V
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	−65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Package Characteristics


Package Type	θ_{JA}	θ _{JC}	Device Weight
15-Lead Module	31°C/W	11°C/W	7.2 grams

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

- NOTES
 1. LEADS ARE EXPOSED COPPER PADS LOCATED ON THE BOTTOM SIDE OF THE FLEXIBLE INTERFACE CABLE.
- 2. PACKAGE IS NOT SUITABLE FOR SOLDER REFLOW ASSEMBLY PROCESSES.
- 3. EXAMPLE MATING CONNECTOR: AVX CORPORATION FLAT FLEXIBLE CONNECTOR (FFC) P/N: 04-6288-015-000-846.

Figure 4. Pin Configuration

Table 5. Pin Function Descriptions

Table 3. Fill I	runction Description	3	
Pin No.	Mnemonic	Type ¹	Description
1, 2	VDD	S	Power Supply, 3.3 V.
3, 4, 5, 8	GND	S	Ground.
6, 9	DNC	1	Do Not Connect. Do not connect to these pins.
7	DIO2	I/O	Digital Input/Output Line 2.
10	RST	1	Reset, Active Low.
11	DIN	1	SPI, Data Input.
12	DOUT	0	SPI, Data Output. DOUT is an output when \overline{CS} is low. When \overline{CS} is high, DOUT is in a
			three-state, high impedance mode.
13	SCLK	1	SPI, Serial Clock.
14	<u>cs</u>	1	SPI, Chip Select.
15	DIO1	I/O	Digital Input/Output Line 1.

 $^{^{\}rm 1}\,{\rm S}$ is supply, O is output, I is input, and I/O is input/output.

BASIC OPERATION

The ADIS16210 is an autonomous system that requires no user initialization. Upon receiving a valid power supply, it initializes itself and starts sampling, processing, and loading data into the output registers. When using the factory default configuration, DIO1 provides a data ready signal. The SPI interface enables simple integration with many embedded processor platforms, as shown in Figure 5 (electrical connection) and Table 6 (processor pin descriptions).

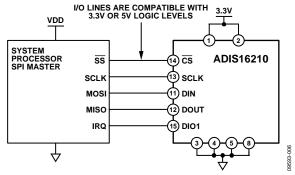


Figure 5. Electrical Connection Diagram

Table 6. Generic Master Processor Pin Names and Functions

Pin Name	Function
SS	Slave select
IRQ	Interrupt request, optional
MOSI	Master output, slave input
MISO	Master input, slave output
SCLK	Serial clock

The ADIS16210 SPI interface supports full duplex serial communication (simultaneous transmit and receive) and uses the bit sequence shown in Figure 9. Table 7 provides a list of the most common settings that initialize the serial port of a processor for the ADIS16210 SPI interface.

Table 7. Generic Master Processor SPI Settings

Processor Setting	Description
Master	ADIS16210 operates as a slave
SCLK Rate ≤ 830 kHz	Maximum serial clock rate
SPI Mode 3	CPOL = 1 (polarity), CPHA = 1 (phase)
MSB-First Mode	Bit sequence
16-Bit Mode	Shift register/data length

READING SENSOR DATA

A single register read requires two 16-bit SPI cycles. The first cycle requests the contents of a register using the bit assignments in Figure 9. The register contents then follow on DOUT, during the second sequence.

Figure 6 includes three single register reads in succession. In this example, the process starts with DIN = 0x0400 to request the contents of the XACCL_OUT register, followed by 0x0600 to request the contents of the YACCL_OUT register, and then 0x0800 to request the contents of the ZACCL_OUT register. Full duplex operation enables processors to use the same 16-bit SPI cycle to read data from DOUT while requesting the next set of data on DIN.

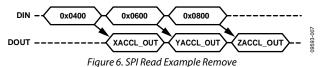
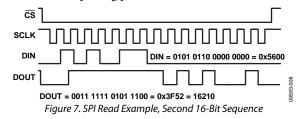



Figure 7 provides an example of four SPI signals when reading PROD_ID in a repeating pattern.

DEVICE CONFIGURATION

The user register map (Table 8) provides a variety of control registers, which enable optimization for specific applications. The SPI provides access to these registers, one byte at a time, using the bit assignments shown in Figure 9. Each register has 16 bits, where Bits[7:0] represent the lower address and Bits[15:8] represent the upper address. Figure 8 displays the SPI signal pattern for writing 0x07 to Address 0x38, which sets the number of averages to 128 and the sample rate to 4 SPS.

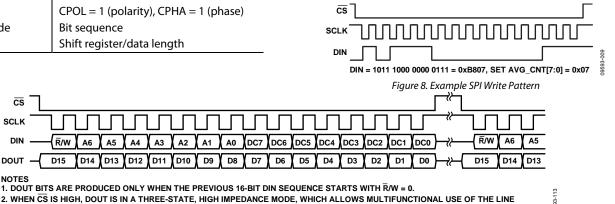


Figure 9. SPI Communication Bit Sequence

cs SCLK

DOUT NOTES

FOR OTHER DEVICES.

USER REGISTER MAP

Figure 10 provides a diagram of the dual memory structure used to manage operation and store user settings. Writing configuration data to a control register updates its SRAM contents, which are volatile.

Most of the user registers have mirror locations in flash memory (see Table 8, for "yes" in the Flash Backup column). Use the manual flash backup command in GLOB_CMD[6] (DIN = 0xBE40) to save these settings into the nonvolatile flash memory. The flash backup process requires a valid power supply level and zero SPI communication for the entire 28 ms process time.

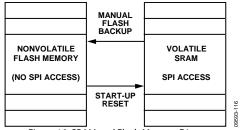


Figure 10. SRAM and Flash Memory Diagram

Table 8. User Register Memory Map¹

Name	R/W	Flash Backup	Address	Size (Bytes)	Function	Reference
FLASH_CNT	R	Yes	0x00	2	Diagnostics, flash write counter (16-bit binary)	Table 37
SUPPLY_OUT	R	No	0x02	2	Output, power supply	Table 20
XACCL_OUT	R	No	0x04	2	Output, x-axis acceleration	Table 9
YACCL_OUT	R	No	0x06	2	Output, y-axis acceleration	Table 10
ZACCL_OUT	R	No	0x08	2	Output, z-axis acceleration	Table 11
TEMP_OUT	R	No	0x0A	2	Output, internal temperature	Table 18
XINCL_OUT	R	No	0x0C	2	Output, ±180° x-axis inclination	Table 13
YINCL_OUT	R	No	0x0E	2	Output, ±180° y-axis inclination	Table 14
ZINCL_OUT	R	No	0x10	2	Output, ±180° z-axis inclination	Table 15
XACCL_NULL	R/W	Yes	0x12	2	Calibration, x-axis acceleration offset null	Table 24
YACCL_NULL	R/W	Yes	0x14	2	Calibration, y-axis acceleration offset null	Table 25
ZACCL_NULL	R/W	Yes	0x16	2	Calibration, z-axis acceleration offset null	Table 26
			0x18 to 0x1F	8	Reserved, do not write to these locations	
ALM_MAG_X	R/W	Yes	0x20	2	Alarm, x-axis amplitude threshold	Table 39
ALM_MAG_Y	R/W	Yes	0x22	2	Alarm, y-axis amplitude threshold	Table 40
ALM_MAG_Z	R/W	Yes	0x24	2	Alarm, z-axis amplitude threshold	Table 41
ALM_MAG_S	R/W	Yes	0x26	2	Alarm, system alarm threshold	Table 42
ALM_SMPL_X	R/W	Yes	0x28	2	Alarm, x-axis sample period	Table 43
ALM_SMPL_Y	R/W	Yes	0x2A	2	Alarm, y-axis sample period	Table 44
ALM_SMPL_Z	R/W	Yes	0x2C	2	Alarm, z-axis sample period	Table 45
ALM_CTRL	R/W	Yes	0x2E	2	Operation, alarm control	Table 38
			0x30	2	Reserved	
GPIO_CTRL	R/W	Yes	0x32	2	Operation, general I/O configuration and data	Table 31
MSC_CTRL	R/W	Yes	0x34	2	Operation, orientation mode	Table 27
DIO_CTRL	R/W	Yes	0x36	2	Operation, digital I/O configuration and data	Table 30
AVG_CNT	R/W	Yes	0x38	2	Operation, decimation filter configuration	Table 22
SLP_CNT	R/W	Yes	0x3A	2	Operation, sleep count	Table 29
DIAG_STAT	R	No	0x3C	2	Diagnostics, system status register	Table 36
GLOB_CMD	W	No	0x3E	2	Operation, system command register	Table 28
			0x40 to 0x51	16	Reserved	
LOT_ID1	R	N/A	0x52	2	Lot identification, Code 1	Table 32
LOT_ID2	R	N/A	0x54	2	Lot identification, Code 2	Table 33
PROD_ID	R	N/A	0x56	2	Production identification number	Table 34
SERIAL_NUM	R	N/A	0x58	2	Serial number	Table 35

¹ N/A means not applicable.

SENSOR DATA

OUTPUT DATA REGISTERS

The ADIS16210 provides a set of output registers for three orthogonal axes of acceleration: incline angles, internal temperature, and power supply.

Accelerometers

The accelerometers respond to both static (gravity) and dynamic acceleration using the polarity shown in Figure 11. XACCL_OUT (Table 9), YACCL_OUT (Table 10), and ZACCL_OUT (Table 11) provide user access to digital calibrated accelerometer data for each axis. For example, use DIN = 0x0400 to request the x-axis data (XACCL_OUT). After reading the contents of one of these registers, convert the 16-bit, twos complement number into a decimal equivalent, and then divide that number by 16,384 to convert the measurement into units of gravity (g). Table 12 provides several examples of this data format.

Table 9. $XACCL_OUT$ (Base Address = 0x04), Read Only

Bits	Description
[15:0]	X-axis accelerometer output data, twos complement, $1 \text{ LSB} = 1 g \div 16,384 = ~61 \mu g/\text{LSB}, 0 g = 0x0000$

Table 10. YACCL_OUT (Base Address = 0x06), Read Only

Bits	Description
[15:0]	Y-axis accelerometer output data, twos complement, $1 LSB = 1 g \div 16,384 = \sim 61 \mu g/LSB, 0 g = 0x0000$

Table 11. ZACCL_OUT (Base Address = 0x08), Read Only

Bits	Description
[15:0]	Z-axis accelerometer output data, twos complement, $1 \text{ LSB} = 1 q \div 16,384 = \sim 61 \mu g/\text{LSB}, 0 q = 0x0000$
	$1 \text{ L3D} - 19 \div 10,304 - ~01 \mu g/\text{L3D}, 09 = 000000$

Table 12. Accelerometer Data Format Examples

Orientation (g)	Decimal	Hex	Binary
+1.7	+27,853	0x6CCD	0110 1100 1100 1101
+1	+16,384	0x4000	0100 0000 0000 0000
+2/16,384	+2	0x0002	0000 0000 0000 0010
+1/16,384	+1	0x0001	0000 0000 0000 0001
0	0	0x0000	0000 0000 0000 0000
-1/16,384	- 1	0xFFFF	1111 1111 1111 1111
-2/16,384	-2	0xFFFE	1111 1111 1111 1110
-1	-16,384	0xC000	1100 0000 0000 0000
-1.7	-27,853	0x9333	1001 0011 0011 0011

Inclinometers

Registers XINCL_OUT (Table 13), YINCL_OUT (Table 14), and ZINCL_OUT (Table 15) provide access to incline angle data for each axis. For example, set DIN = 0x0E00 to request y-axis data (YINCL_OUT). Use the following process to translate the contents of these registers into degrees (°):

- Convert the 16-bit, twos complement number into a decimal equivalent.
- 2. Multiply the decimal equivalent by 180.
- 3. Divide the result of Step 2 by 32,768.

Table 16 provides several examples of this data format.

Table 13. XINCL_OUT (Base Address = 0x0C), Read Only

Bits	Description
[15:0]	X-axis inclinometer output data, binary,
	$0^{\circ} = 0 \times 0000$, $1 \text{ LSB} = 180^{\circ}/32,768 = \sim 0.0055^{\circ}/\text{LSB}$

Table 14. YINCL_OUT (Base Address = 0x0E), Read Only

Bits	Description
[15:0]	Y-axis inclinometer output data, binary,
	$0^{\circ} = 0 \times 0000$, $1 \text{ LSB} = 180^{\circ}/32,768 = \sim 0.055^{\circ}/\text{LSB}$

Table 15. ZINCL_OUT (Base Address = 0x10), Read Only

Bits	Description
	Z-axis inclinometer output data, binary, $0^{\circ} = 0x0000$, 1 LSB = 180°/32,768 = ~0.0055°/LSB

Table 16. Incline Angle Data Format Examples

Orientation	Decimal	Hex	Binary
+179.9945°	+32,767	0x7FFF	0111 1111 1111 1111
+0.011°	+2	0x0002	0000 0000 0000 0010
+0.0055°	+1	0x0001	0000 0000 0000 0001
0°	0	0x0000	0000 0000 0000 0000
-0.0055°	-1	0xFFFF	1111 1111 1111 1111
-0.011°	-2	0xFFFE	1111 1111 1111 1110
-180°	-32,768	0x8000	1000 0000 0000 0000

Figure 11 through Figure 16 provide orientation examples and the associated output values for each accelerometer and inclinometer register. These examples assume the factory default configuration for the gravity vector (z-axis, pointed up). See the MSC_CTRL (Table 27) for additional options for gravity vector definitions.

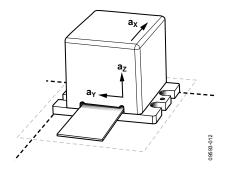


Figure 11. Inclinometer Output Example, 0° Tilt

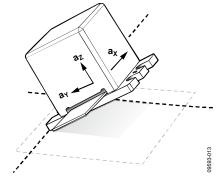


Figure 12. Inclinometer Output Example, -30° Y-Axis Tilt

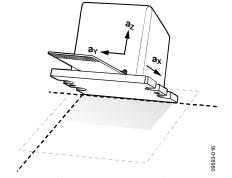


Figure 13. Inclinometer Output Exampls, -30° X-Axis Tilt

Figure 14. Inclinometer Output Example, +30° Y-Axis Tilt

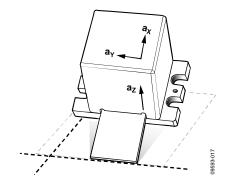


Figure 15. Inclinometer Output Example, +30° X-Axis Tilt

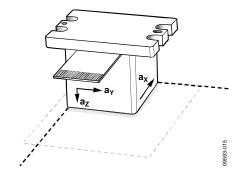


Figure 16. Inclinometer Output Example, 180° Tilt

Table 17. Orientation/Output Examples for Z-Axis Gravity Orientation¹

Register	Figure 11	Figure 12	Figure 13	Figure 14	Figure 15	Figure 16
XACCL_OUT	0	0	-8192	0	+8192	0
YACCL_OUT	0	-8192	0	+8192	0	0
ZACCL_OUT	+16,384	+14,189	+14,189	+14,189	+14,189	-16,384
XINCL_OUT	0	0	-5462	0	+5462	-32,768
YINCL_OUT	0	-5462	0	+5462	0	-32,768
ZINCL_OUT	+16,384	+10,922	+10,922	+10,922	+10,922	-16,384

 $^{^{1}}$ Register setting for Z-axis gravity orientation is MSC_CTRL[7:0] = xxxx xx10.

Internal Temperature

The TEMP_OUT register (Table 18) provides access to an internal temperature measurement. Set DIN = 0x0A00 to request the contents of this register. Use the following process to translate the contents of TEMP_OUT into Celsius (°C):

- Convert the 12-bit binary number into a decimal equivalent.
- 2. Subtract 1278 from the decimal equivalent.
- 3. Multiply the result of Step 2 by -0.47.
- 4. Add 25 to the result of Step 3.

Table 19 provides several examples of this data format. Note that this internal temperature measurement provides an indicator of condition changes, not an absolute measurement of conditions outside of the package.

Table 18. TEMP_OUT (Base Address = 0x0A), Read Only

Bits	Description
[15:0]	Internal temperature data, binary format,
	sensitivity = -0.47° /LSB, $+25^{\circ}$ C = 1278 LSB = 0x04FE

Table 19. Internal Temperature Data Format Examples

Temperature (°C)	LSB	Hex	Binary
+125	1065	0x0429	0000 0100 0010 1001
25 + 0.47	1277	0x04FD	0000 0100 1111 1101
+25	1278	0x04FE	0000 0100 1111 1110
25 – 0.047	1279	0x04FF	0000 0100 1111 1111
0	1331	0x0533	0000 0101 0011 0011
-40	1416	0x0588	0000 0101 1000 1000

Power Supply

The SUPPLY_OUT register (Table 20) provides a digital measurement for the supply voltage on the VDD pins (see Table 5). Set DIN = 0x0200 to request the contents of this register. Use the following process to translate the contents of SUPPLY_OUT into volts (V):

- 1. Convert the 16-bit binary number into a decimal equivalent.
- 2. Multiply the decimal equivalent by 5.
- 3. Divide the result of Step 2 by 32,768.

Table 21 provides several examples of this data format.

Table 20. SUPPLY_OUT (Base Address = 0x02), Read Only

Bits	Description			
	Power supply measurement data, binary format, $1 \text{ LSB} = 5 \div 32,768 = \sim 152.6 \ \mu\text{V}, 0 \ \text{V} = 0\text{x}0000$			

Table 21. Power Supply Data Format Examples

Supply Level (V)	LSB	Hex	Binary
3.6	23,593	0x5C29	0101 1100 0010 1001
$3.3 + (5 \div 32,768)$	21,628	0x547C	0101 0100 0111 1100
3.3	21,627	0x547B	0101 0100 0111 1011
$3.3 - (5 \div 32,768)$	21,626	0x547A	0101 0100 0111 1010
3.0	19,661	0x4CCD	0100 1100 1100 1101

SIGNAL PROCESSING, BIAS CORRECTION, AND ALIGNMENT

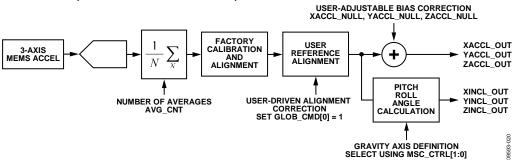


Figure 17. Sensor Signal Processing Diagram (Each Axis)

The ADIS16210 provides user controls for digital filtering, accelerometer bias correction, gravity vector axis definition, and the measurement mode.

Digital Filtering

The digital filter uses an averaging/decimating architecture to produce a low-pass response. The AVG_CNT register (Table 22) provides access to the average factor, m, which determines the number of averages (N) in the filtering stage. Table 23 provides the resulting cut-off frequency (f_c) and output register update rate (f_s) associated with each setting in AVG_CNT.

Table 22. AVG_CNT (Base Address = 0x38), Read/Write

	_ ,
Bits	Description (Default = 0x0009)
[15:4]	Not used
[3:0]	Average factor, m, binary format
	Number of averages, N = 2 ^m

Table 23. AVG_CNT Sample Rate, Bandwidth

			fs	fc	Noise
AVG_CNT[7:0]	m	N	(Output)	(-3 dB)	(p-p)
0x0000	0	1	512	48.2	±0.32
0x0001	1	2	256	44.6	±0.30
0x0002	2	4	128	36.1	±0.27
0x0003	3	8	64	23.9	±0.22
0x0004	4	16	32	13.5	±0.17
0x0005	5	32	16	7.0	±0.12
0x0006	6	64	8	3.5	±0.09
0x0007	7	128	4	1.8	±0.06
0x0008	8	256	2	0.89	±0.04
0x0009	9	512	1	0.44	±0.03
0x000A	10	1024	0.5	0.22	±0.02
0x000B	11	2048	0.25	0.11	±0.02

Accelerometer Bias Correction

The XACCL_NULL (Table 24), YACCL_NULL (Table 25), and ZACCL_NULL (Table 26) registers add to the accelerometer outputs to provide a bias adjustment function. They use the same format as each accelerometer output register. For example, set XACCL_NULL = 0x00F (DIN = 0x9300, 0x920F) to increase the x-axis bias by 15 LSB, or 915.5 μg (15 ÷ 16,384).

Table 24. XACCL_NULL (Base Address = 0x12), Read/Write

Bits	Description (Default = 0x0000)
[15:0]	Same format as XACCL_OUT, see Table 9

Table 25. YACCL_NULL (Base Address = 0x14), Read/Write

Bits	Description (Default = 0x0000)
[15:0]	Same format as YACCL_OUT, see Table 10

Table 26. ZACCL_NULL (Base Address = 0x16), Read/Write

Bits	Description (Default = 0x0000)	
[15:0]	Same format as ZACCL_OUT, see Table 11	

Gravity Vector Axis Definition

The ADIS16210 uses the following equations to translate calibrated, triaxial accelerometer data into incline angles:

$$\theta = \operatorname{atan} 2 \left(\frac{a_P}{K_{GP} \sqrt{a_R^2 + a_G^2}} \right)$$

$$\phi = \operatorname{atan} 2 \left(\frac{a_R}{K_{GP} \sqrt{a_P^2 + a_G^2}} \right)$$

$$\psi = \operatorname{atan} 2 \left(\frac{a_G}{W \sqrt{a_P^2 + a_G^2}} \right)$$

The pitch (θ) and roll (ϕ) axes provide $\pm 180^{\circ}$ of measurement range, whereas the gravity (ψ) axis provides $\pm 90^{\circ}$ of measurement range. The MSC_CTRL register (see Table 27) provides three control bits that set the orientation of the device, which assigns each accelerometer to an angle axis (pitch, roll, gravity).

Table 27. MSC_CTRL (Base Address = 0x34), Read/Write

Bits	Value	Description (Default = 0x0002)
[15:10]		Not used
[9:8]		Measurement mode
	0	Inclinometer
	1	Accelerometer
[7:3]		Not used
[2]		Gravity vector polarity, K _{GP}
	1	Negative, pointing down (–)
	0	Positive, pointing up (+)
[1:0]		Gravity vector orientation
	00	X = gravity vector
		$Y = pitch axis (\theta, a_P)$
		$Z = \text{roll axis } (\phi, a_R)$
	01	Y = gravity vector
		$X = pitch axis (\theta, a_P)$
		$Z = \text{roll axis } (\phi, a_R)$
	10	Z = gravity vector
		$X = pitch axis (\theta, a_P)$
		$Y = \text{roll axis } (\varphi, a_R)$
	11	Reserved

For best use of the available range and accuracy, use Bits[2:0] in the MSC_CTRL register to establish the accelerometer that best aligns with gravity when the device is oriented at its reference point. For example, Figure 11 provides a reference point orientation, where the z-axis accelerometer aligns with gravity, for which the factory default setting for MSC_CTRL (0x0002) is optimal.

Bits[1:0] provide a control for setting the axis that is most closely aligned with the gravity vector and assigns the pitch and roll axes. Bit 2 provides a control for the direction/polarity of this. Thus, when using the factory default setting for MSC_CTRL, read XINCL_OUT for the pitch angle and YINCL_OUT for the roll angle measurements. Figure 18, Figure 19, and Figure 20 provide several examples for these settings, which are different from the factory programmed settings.

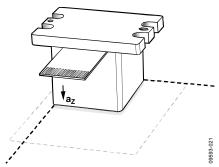


Figure 18. Z-Axis Gravity Vector, Negative Polarity Set MSC_CTRL = 0x0006 (DIN = 0xB406)

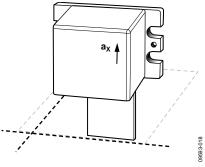


Figure 19. X-Axis Gravity Vector, Positive Polarity Set MSC CTRL = 0x0000 (DIN = 0xB400)

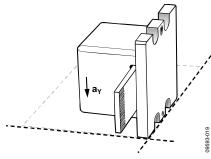


Figure 20. Y-Axis Gravity Vector, Negative Polarity Set MSC_CTRL = 0x0005 (DIN = 0xB405)

Measurement Mode

MSC_CTRL[8] establishes the primary measurement function. Setting MSC_CTRL[8] = 1 (DIN = 0xB501) disables signal processing on the accelerometer data, which is specific to producing incline angle measurements.

SYSTEM TOOLS

The ADIS16210 provides control registers for the following system level functions: global commands (including self test), input/output functions, device identification, status/error flags, and flash memory management.

GLOBAL COMMANDS

The GLOB_CMD register (Table 28) provides an array of single write commands. Set the assigned bit to 1 to activate each function. Proper execution of each command depends on the power supply being within normal limits and no SPI communication, during the process times listed in Table 28.

Table 28. GLOB_CMD (Base Address = 0x3E), Write Only

Bits	Description	Process Time ¹
[15:8]	Not used	N/A ²
[7]	Software reset	33.7 ms
[6]	User register save to flash memory	28.0 ms
[5]	Flash memory test	31.3 ms
[4]	Clear DIAG_STAT register	93 μs
[3]	Restore factory default configuration	68.6 ms
[2]	Self test	53.7 ms
[1]	Power-down	N/A ²
[0]	Not used	N/A ²

¹ This indicates the typical duration of time between the command write and the device returning to normal operation.

Software Reset

Set GLOB_CMD[7] = 1 (DIN = 0xBE80) to execute an internal reset, which flushes all data and restores the register values to the values that are stored in nonvolatile flash memory.

User Register Save to Flash Memory

Set $GLOB_CMD[6] = 1$ (DIN = 0xBE40) to back up all of the current register settings into nonvolatile flash memory.

Flash Memory Test

Set $GLOB_CMD[5] = 1$ (DIN = 0xBE20) to execute the internal flash memory test routine, which computes a check sum verification of all flash memory locations that are not configurable through user commands.

Self Test

Set GLOB_CMD[2] = 1 (DIN = 0xBE04) to execute an internal test routine that exercises the sensors and signal processing circuit, then writes the pass/fail result to Bit 5 of the DIAG_STAT register.

Power-Down

Set GLOB_CMD[1] = 1 (DIN = 0xBE02) to put the device into sleep mode. Use the SLP_CNT register to establish the duration of the sleep period. For example, set SLP_CNT[7:0] = 0x64 (DIN = 0xBA64) to set the sleep period to 50 seconds. Set SLP_CNT[7:0] = 0x00 (DIN = 0xBA00) to establish the sleep period as indefinite. Indefinite sleep mode requires one of the three actions to wake up: negative assertion of the $\overline{\text{CS}}$ line (22.3 ms

wake-up time), a negative assertion of the \overline{RST} line (33.8 ms recovery time), or a power cycle (156 ms start-up time).

Table 29. SLP_CNT (Base Address = 0x3A), Read/Write

Bits	Description (Default = 0x0000)
[15:8]	Not used
[7:0]	Binary, sleep time, 0.5 seconds/LSB
	0x00 = indefinite sleep mode

INPUT/OUTPUT FUNCTIONS

The DIO_CTRL register (Table 30) provides configuration control options for the two digital I/O lines. Bits[5:4] and Bit 1 assign the function and active polarity for DIO2. Bits[3:2] and Bit 0 assigned the function and polarity for DIO1.

Table 30. DIO_CTRL (Base Address = 0x36), Read/Write

Bits	Value	Description (Default = 0x0007)
[15:6]		Not used
[5:4]		DIO2 function selection
	00	General-purpose
	01	Data ready
	10	Alarm indicator
	11	Busy signal
[3:2]		DIO1 function selection
	00	General-purpose
	01	Data ready
	10	Alarm indicator
	11	Busy signal
[1]		DIO2 polarity
	1	Active high
	0	Active low
[0]		DIO1 polarity
	1	active high
	0	active low

Data Ready Indicator

The data ready signal pulses to its inactive state when loading fresh data into the output registers, then back to its active state when the register update process completes, as shown in Figure 21, which shows the factory default operation. Set DIO_CTRL[7:0] = 0x13 (DIN = 0xB613) to change the data ready assignment to DIO2 with a positive polarity.

Figure 21. Data Ready Operation, DIO_CTRL[7:0] = 0x05

Alarm Indicator

Set DIO_CTRL[7:0] = 0x27 (DIN = 0xB627) to configure DIO2 as an alarm indicator with an active high polarity. The alarm indicator transitions to its active state when the acceleration or system data exceeds the threshold settings in the ALM_MAG_x registers. Set GLOB_CMD[4] = 1 (DIN = 0xBF10) to clear the DIAG_STAT error flags and restore the alarm indicator to its inactive state.

² N/A means not applicable.

General-Purpose Input/Output

If DIO_CTRL configures either DIO1 or DIO2 as a general-purpose digital line, use the GPIO_CTRL register (Table 31) to configure its input/output direction, set the output level when configured as an output, and monitor the status of an input. For example, set DIO_CTRL[3:0] = 0x00 (DIN = 0xB600) to establish DIO1 as a general-purpose line, set GPIO_CTRL[0] = 1 (DIN = 0xB201) to establish DIO1 as an output, and set GPIO_CTRL[8] = 1 (DIN = 0xB301) to set DIO1 high.

Table 31. GPIO_CTRL (Base Address = 0x32), Read/Write

Bits	Description (Default = 0x0000)
[15:10]	Not used
[9]	DIO2 output level, 1 = high, 0 = low
[8]	DIO1 output level, 1 = high, 0 = low
[7:2] Reserved	
[1]	DIO2 direction control, 1 = output, 0 = input
[0]	DIO1 direction control, 1 = output, 0 = input

DEVICE IDENTIFICATION

Table 32. LOT_ID1 (Base Address = 0x52), Read Only

Table 3.	2. LOI_IDI (Dase Address = 0x32), Read Offiy	
Bits	Description	
[15:0]	Lot identification code	
Table 3	3. LOT_ID2 (Base Address = 0x54), Read Only	
Bits	Description	
[15:0]	Lot identification code	
Table 3	4. PROD_ID (Base Address = 0x56), Read Only	
Bits	Description (Default = 0x3F52)	
[15:0]	0x3F52 = 16,210	
Table 3	Table 35. SERIAL_NUM (Base Address = 0x58), Read Only	
Bits	Description	
[15:0]	Serial number, lot specific	

STATUS/ERROR FLAGS

The DIAG_STAT register, in Table 36, provides a number of status/error flags that reflect the conditions observed during a capture, during SPI communication and diagnostic tests. A 1 indicates an error condition and all of the error flags are sticky, which means that they remain until they are reset by setting GLOB_CMD[4] = 1 (DIN = 0xBE10). The flag in Bit 3 of the DIAG_STAT register indicates that the total number of SCLK clocks is not a multiple of 16. Set DIN = 0x3C00 to read this register.

Table 36. DIAG_STAT (Base Address = 0x3C), Read Only

Bits	Description (Default = 0x0000)
[15:12]	Not used
[11]	Alarm S flag
[10]	Alarm Z flag
[9]	Alarm Y flag
[8]	Alarm X flag
[7]	Data ready
[6]	Flash test
[5]	Self test
[4]	Not used
[3]	SPI failure
[2]	Flash update failure
[1]	VDD > 3.625
[0]	VDD < 2.975

FLASH MEMORY MANAGEMENT

Set GLOB_CMD[5] = 1 (DIN = 0xBE20) to run an internal checksum test on the flash memory, which reports a pass/fail result to DIAG_STAT[6]. The FLASH_CNT register (Table 37) provides a running count of flash memory write cycles. This is a tool for managing the endurance of the flash memory. Figure 22 quantifies the relationship between data retention and junction temperature.

Table 37. FLASH_CNT (Base Address = 0x00), Read Only

Bits	Description
[15:0]	Binary counter for writing to flash memory

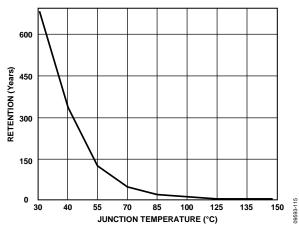


Figure 22. Flash/EE Memory Data Retention

ALARMS

There are four independent alarms, which provide trigger level and polarity controls. The ALM_CTRL register (Table 38) provides individual settings for data source selection (Bits[7:4]), static and dynamic comparison (Bits[14:12]), trigger direction/polarity (Bits[11:8]), and alarm enable (Bits[3:0]).

Table 38. ALM_CTRL (Base Address = 0x2E), Read/Write

Bits	Description (Default = 0x0000)
[15]	Not used
[14]	Alarm Z, dynamic control
	1 = dynamic, 0 = static
[13]	Alarm Y, dynamic control
	1 = dynamic, 0 = static
[12]	Alarm X, dynamic control
	1 = dynamic, 0 = static
[11]	Alarm S, comparison polarity
	1 = SUPPLY_OUT/TEMP_OUT > ALM_MAG_S
	0 = SUPPLY_OUT/TEMP_OUT < ALM_MAG_S
[10]	Alarm Z, comparison polarity
	1 = ZACCL_OUT/ZINCL_OUT > ALM_MAG_Z
	0 = ZACCL_OUT/ZINCL_OUT < ALM_MAG_Z
[9]	Alarm Y, comparison polarity
	1 = YACCL_OUT/YINCL_OUT > ALM_MAG_Y
	0 = YACCL_OUT/YINCL_OUT < ALM_MAG_Y
[8]	Alarm X, comparison polarity
	1 = XACCL_OUT/XINCL_OUT > ALM_MAG_X
	0 = XACCL_OUT/XINCL_OUT < ALM_MAG_X
[7]	Alarm S, source selection
	1 = SUPPLY_OUT, 0 = TEMP_OUT
[6]	Alarm Z, source selection
[[]	1 = ZINCL_OUT, 0 = ZACCL_OUT
[5]	Alarm Y, source selection
[4]	1 = YINCL_OUT, 0 = YACCL_OUT Alarm X, source selection
[4]	1 = XINCL_OUT, 0 = XACCL_OUT
[3]	Alarm S, enable
[2]	1 = enabled, 0 = disabled
[2]	Alarm Z, enable
[2]	1 = enabled, 0 = disabled
[1]	Alarm Y, enable
ניו	1 = enabled, 0 = disabled
[0]	Alarm X, enable
رما	1 = enabled, 0 = disabled
	i chasica, v = albasica

SYSTEM ALARM

The system alarm monitors either power supply or internal temperature, according to the user selections in ALM_CTRL[11], ALM_CTRL[7], ALM_CTRL[3], and the ALM_MAG_S register in Table 42. For example, set ALM_CTRL = 0x0008 (DIN = 0xA900, 0xA808) and ALM_MAG_S = 0x533 (DIN = 0xA705, 0xA633) to disable all three inertial alarms and configure the system alarm active when TEMP_OUT < 0°C.

STATIC ALARMS

The static alarm setting enables the ADIS16210 to compare the data source (ALM_CTRL[6:4]) with the corresponding values

in the ALM_MAG_x registers (Table 39, Table 40, and Table 41) using the trigger direction/polarity settings in ALM_CTRL[10:8]. For example, if ALM_CTRL[10] = 0, ALM_CTRL[6] = 1, and ALM_MAG_Z = 0x2000, then Alarm Z becomes active when ZINCL_OUT is less than 0x2000, or 45°.

DYNAMIC ALARMS

The dynamic alarm setting monitors the data selection for a rate-of-change comparison. The rate-of-change comparison is represented by the magnitude in the ALM_MAG_x registers (Table 39, Table 40, and Table 41), divided by the time in the ALM_SMPL_x registers (Table 43, Table 44, Table 45).

For example, if ALM_CTRL[9] = 1, ALM_CTRL[5] = 0, ALM_MAG_Y = 0x4000, and ALM_SMPL_Y = 0x0064, then Alarm Y (DIAG_STAT[9]) becomes active when YACCL_OUT changes by more than +1 *g* over 100 samples. The AVG_CNT register (Table 22) establishes the time for each sample.

Table 39	9. ALM_MAG_X (Base Address = 0x20), Read/Write				
Bits	Description (Default = 0x0000)				
[15:0]	Same data format as ZACCL_OUT or ZINCL_OUT, according to the setting in ALM_CTRL[4]				
Table 40	0. ALM_MAG_Y (Base Address = 0x22), Read/Write				
Bits	Description (Default = 0x0000)				
[15:0]	Same data format as ZACCL_OUT or ZINCL_OUT, according to the setting in ALM_CTRL[5]				
Table 4	Table 41. ALM_MAG_Z (Base Address = 0x24), Read/Write				
Bits	Description (Default = 0x0000)				
[15:0]	Same data format as ZACCL_OUT or ZINCL_OUT, according to the setting in ALM_CTRL[6]				
Table 42	2. ALM_MAG_S (Base Address =0x26), Read/Write				
Bits	Description (Default = 0x0000)				
[15:0]	Same data format as SUPPLY_OUT or TEMP_OUT, according to the setting in ALM_CTRL[7]				
Table 43	3. ALM_SMPL_X (Base Address = 0x28), Read/Write				
Bits	Description (Default = 0x0001)				
[15:8]	Not used				
[7:0]	Binary, number of samples				
Table 44	1. ALM_SMPL_Y (Base Address = 0x2A), Read/Write				
Bits	Description (Default = 0x0001)				
[15:8]	Not used				
[7:0]	Binary, number of samples				
Table 45. ALM_SMPL_Z (Base Address = 0x2C), Read/Write					
Bits	Description (Default = 0x0001)				
[15:8]	Not used				
[7:0]	Binary, number of samples				

ALARM REPORTING

See DIAG_STAT[11:8] (Table 36) for alarm flags, which equal 1 when an alarm condition is detected. DIO_CTRL (Table 30) offers settings that configure DIO1 or DIO2 as an alarm indicator signal.

APPLICATIONS INFORMATION

INTERFACE BOARD

The ADIS16210/PCBZ provides the ADIS16210CMLZ on a small printed circuit board (PCB) that simplifies the connection to an existing processor system. This PCB provides a silkscreen for proper placement and four mounting holes, which have threads for M2 \times 0.4 mm machine screws. The second set of mounting holes on the interface boards are in the four corners of the PCB and provide clearance for 4-40 machine screws. The third set of mounting holes provides a pattern that matches the ADISUSBZ evaluation system, using M2 \times 0.4mm \times 4 mm machine screws. These boards are made of IS410 material and are 0.063 inches thick.

J1 is a 16-pin connector, in a dual row, 2 mm geometry, which enables simple connection to a 1 mm ribbon cable system. For example, use Molex P/N 87568-1663 for the mating connector and 3M P/N 3625/16 for the ribbon cable. The LEDs (D1 and D2) are not populated, but the pads are available to install to provide a visual representation of the DIO1 and DIO2 signals. The pads accommodate Chicago Miniature Lighting Part No. CMD28-21VRC/TR8/T1, which works well when R1 and R2 are approximately $400~\Omega$ (0603 pad sizes).

MATING CONNECTOR

The mating connector for the ADIS16210, J2, is AVX P/N 04-6288-015-000-846. Figure 25 provides a close-up view of this connector, which clamps down on the flex to press its metal pads onto the metal pads inside of the mating connector.

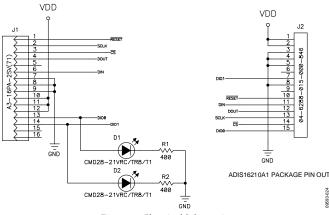


Figure 23. Electrical Schematic

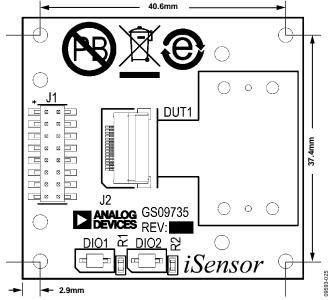


Figure 24. PCB Assembly View and Dimensions

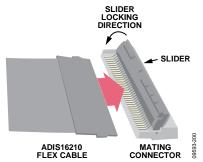


Figure 25. Mating Connector Detail

OUTLINE DIMENSIONS

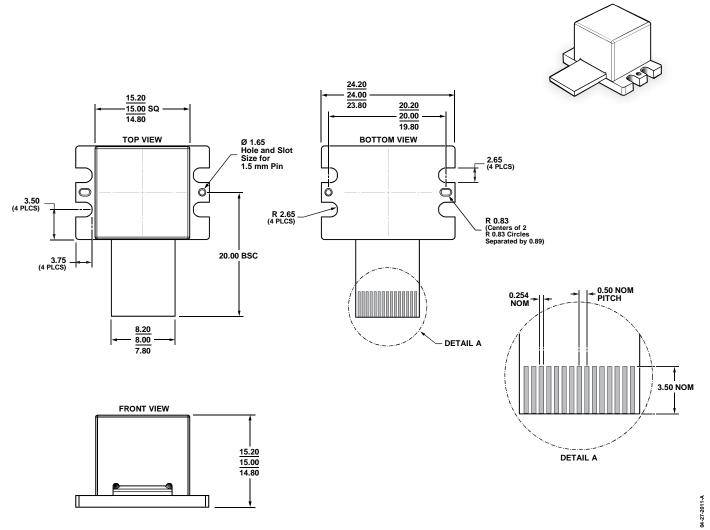


Figure 26. 15-Lead Module with Connector Interface (ML-15-1) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADIS16210CMLZ	-40°C to +125°C	15-Lead Module with Connector Interface	ML-15-1
ADIS16210/PCBZ		Evaluation Board	

 $^{^{1}}$ Z = RoHS Compliant Part.

NOTES

۸n	IC1	621	l N
Hυ	IJ	UZI	U

NOTES