Transmissive Optoschmitt Sensor

FEATURES

- · Direct TTL interface
- · Buffer or inverting logic available
- · Three device output options
- · Four mounting configurations
- Choice of detector aperture
- 0.125 in.(3.18 mm) slot width

DESCRIPTION

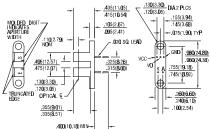
The HOA696X/697X series consists of an infrared emitting diode facing an Optoschmitt detector encased in a black thermoplastic housing. Detector switching takes place whenever an opaque object passes through the slot between emitter and detector. The photodetector consists of a photodiode, amplifier, voltage regulator, Schmitt trigger and various output configurations. The user can choose from available options: (1) detector aperture, (2) mounting tab configuration, (3) detector output configuration, and (4) housing material.

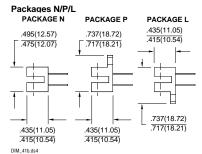
The HOA696X series utilizes an IR transmissive polysulfone housing which features smooth optical faces without external aperture openings; this feature is desirable when aperture blockage from airborne contaminants is a possibility.

The HOA697X series employs an opaque polysulfone housing with aperture openings for use in applications in which maximum rejection of ambient light is important, and situations in which maximum position resolution is desired. The HOA696X/697X series employs plastic molded components. For additional component information see SEP8506 and SDP8XX4.

Housing material is polysulfone. Housings are soluble in chlorinated hydrocarbons and ketones. Recommended cleaning agents are methanol and isopropanol.

Buffer - Output is LO when optical path is blocked. Inverter - Output is HI when optical path is blocked.


To specify the complete product characteristics, see PART NUMBER GUIDE.


OUTLINE DIMENSIONS in inches (mm)

Tolerance 3 plc decimals ±0.010(0.25) 2 plc decimals ±0.020(0.51)

Package T

DIM 066a.cdr

Honeywell

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Transmissive Optoschmitt Sensor Totem-Pole Output

ELECTRICAL CHARACTERISTICS (-40°C to +70°C unless otherwise noted)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IR EMITTER						
Forward Voltage	VF			1.6	V	I _F =20 mA, T _A =25°C
Reverse Leakage Current	IR			10	μA	V _B =3 V, T _A =25°C
DETECTOR	-11				par t	711 C 77 18 20 C
Operating Supply Voltage	Vcc	4.5		7.0	V	T _A =25°C
Low Level Supply Current	Iccl			15	mA	Vcc=5.25 V
High Level Supply Current	Іссн			15	mA	Vcc=5.25 V
Low Level Output Voltage	Vol				V	Vcc=4.75 V, loL=12.8 mA
HOA6960/6970				0.4		I _F =0 mA
HOA6962/6972				0.4		I _F =15 mA
High Level Output Voltage	Voн				V	Vcc=4.75 V, Iон=800 µA,
HOA6960/6970		2.4				I _F =15 mA
HOA6962/6972		2.4				I _F =0 mA
Short Circuit Output Current	los				mA	Vcc=5.25 V, Output=GND
HOA6960/6970		-20		-100		I _F =15 mA
HOA6962/6972		-20		-100		I _F =0 mA
Hysteresis (2)	HYST		50		%	
Propagation Delay, Low-High, High-Low	t _{PLH} , t _{PHL}		5		μs	Vcc=5 V, I _F =0 or 15 mA
						R _L =8 TTL Loads
Output Rise Time, Output Fall Time	t _r , t _f		70		ns	Vcc=5 V, I _F =0 or 15 mA
						R _L =8 TTL Loads
COUPLED CHARACTERISTICS						
IRED Trigger Current	IFT			15	mA	V _{cc} =5 V

- 1. It is recommended that a bypass capacitor, 0.1 μF typical, be added between V_{CC} and GND near the device in order to stabilize
- Hysteresis is defined as the difference between the operating and release threshold intensities, expressed as a percentage of the operate threshold intensity.

ABSOLUTE MAXIMUM RATINGS

(25°C Free-Air Temperature unless otherwise noted)

Operating Temperature Range -40°C to 70°C Storage Temperature Range -40°C to 85°C Soldering Temperature (5 sec) 240°C

IR EMITTER

100 mW (1) Power Dissipation 3 V Reverse Voltage Continuous Forward Current 50 mA

DETECTOR

Supply Voltage:

7 V (2) Totem-Pole Output All Others 12 V (2)

Duration of Output

Short to $V_{\text{CC}}\ \text{or}\ \text{Ground}$ 1.0 sec.

- 1. Derate linearly at 0.78 mW/°C above 25°C.
- 2. Derate linearly from 25°C to 5.5 V at 70°C.

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Transmissive Optoschmitt Sensor Open-Collector Output

ELECTRICAL CHARACTERISTICS (-40°C to +70°C unless otherwise noted)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IR EMITTER						
Forward Voltage	VF			1.6	V	I _F =20 mA, T _A =25°C
Reverse Leakage Current	l _R			10	μΑ	V _R =3 V, T _A =25°C
DETECTOR						
Operating Supply Voltage	Vcc	4.5		12	V	T _A =25°C
Low Level Supply Current	Iccl			15	mA	Vcc=5.25 V
High Level Supply Current	Іссн			15	mA	Vcc=5.25 V
Low Level Output Voltage	Vol				V	Vcc=4.75 V, IoL=12.8 mA
HOA6961/6971				0.4		I _F =0 mA
HOA6963/6973				0.4		I⊧=15 mA
High Level Output Current	Іон				μΑ	Vcc=4.75 V Vон=30 V
HOA6961/6971				100		I _F =15 mA
HOA6963/6973				100		I _F =0 mA
Hysteresis (2)	HYST		50		%	
Propagation Delay, Low-High, High-Low	t _{PLH} , t _{PHL}		5		μs	Vcc=5 V, I _F =0 or 15 mA
						R _L =390 Ω
Output Rise Time, Output Fall Time	t _r , t _f		70		ns	Vcc=5 V, I _F =0 or 15 mA
						R _L =390 Ω
COUPLED CHARACTERISTICS						
IRED Trigger Current	IFT			15	mA	Vcc=5 V

ABSOLUTE MAXIMUM RATINGS

(25°C Free-Air Temperature unless otherwise noted)

-40°C to 70°C Operating Temperature Range Storage Temperature Range -40°C to 70°C Soldering Temperature (5 sec) 240°C

IR EMITTER

Power Dissipation 100 mW (1) 3 V Reverse Voltage Continuous Forward Current 50 mA

DETECTOR

Supply Voltage:

7 V (2) Totem-Pole Output All Others 12 V (2)

Duration of Output

Short to V_{CC} or Ground 1.0 sec. Applied Output Voltage 35 V

Notes

- Derate linearly at 0.78 mW/°C above 25°C.
- 2. Derate linearly from 25°C to 5.5 V at 70°C.

Honeywell

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

^{1.} It is recommended that a bypass capacitor, 0.1 μ F typical, be added between V_{CC} and GND near the device in order to stabilize

power supply line.

2. Hysteresis is defined as the difference between the operating and release threshold intensities, expressed as a percentage of the operate threshold intensity.

Transmissive Optoschmitt Sensor 10 kOhm Pull-Up Output

ELECTRICAL CHARACTERISTICS (-40°C to +70°C unless otherwise noted)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IR EMITTER						
Forward Voltage	VF			1.6	V	I _F =20 mA, T _A =25°C
Reverse Leakage Current	I _R			10	μΑ	V _R =3 V, T _A =25°C
DETECTOR						
Operating Supply Voltage	Vcc	4.5		12	V	T _A =25°C
Low Level Supply Current	Iccl			15	mA	Vcc=5.25 V
High Level Supply Current	Іссн			15	mA	Vcc=5.25 V
Low Level Output Voltage	Vol				V	Vcc=4.75 V, loL=12.8 mA
HOA6964/6974				0.4		I _F =0 mA
HOA6965/6975				0.4		I _F =15 mA
High Level Output Voltage	Voн				V	Vcc=4.75 V, Iон=100 µA,
HOA6964/6974		2.4				I _F =15 mA
HOA6965/6975		2.4				I _F =0 mA
Hysteresis (2)	HYST		50		%	
Propagation Delay, Low-High, High-Low	t _{PLH} , t _{PHL}		5		μs	Vcc=5 V, I _F =0 or 15 mA
						$R_L=390 \Omega$
Output Rise Time, Output Fall Time	t _r , t _f		70		ns	Vcc=5 V, I₅=0 or 15 mA
						R _L =390 Ω
COUPLED CHARACTERISTICS						
IRED Trigger Current	IFT			15	mA	Vcc=5 V

ABSOLUTE MAXIMUM RATINGS

(25°C Free-Air Temperature unless otherwise noted)

Operating Temperature Range -40°C to 70°C Storage Temperature Range -40°C to 85°C Soldering Temperature (5 sec) 240°C

IR EMITTER

Power Dissipation 100 mW (1) Reverse Voltage 3 V Continuous Forward Current 50 mA

DETECTOR

Supply Voltage:

7 V (2) Totem-Pole Output All Others 12 V (2)

Duration of Output

Short to $V_{\text{CC}}\ \text{or}\ \text{Ground}$ 1.0 sec.

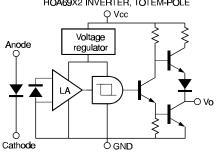
- 1. Derate linearly at 0.78 mW/°C above 25°C.
- 2. Derate linearly from 25°C to 5.5 V at 70°C.

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

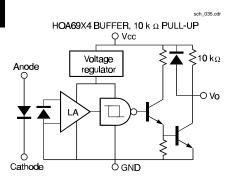
NULES

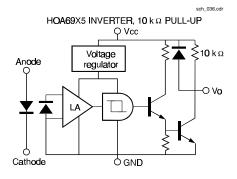
1. It is recommended that a bypass capacitor, 0.1 µF typical, be added between V_{CC} and GND near the device in order to stabilize power supply line.

2. Hysteresis is defined as the difference between the operating and release threshold intensities, expressed as a percentage of the operate threshold intensity.


Transmissive Optoschmitt Sensor

SCHEMATIC FOR HOA696X/697X


HOA69X0 BUFFER, TOTEM-POLE Voltage Anode regulator Cathode GND


HOA69X1 BUFFER, OPEN-COLLECTOR Voltage Anode regulator Cathode GND

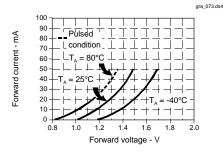
HOA69X2 INVERTER, TOTEM-POLE Q Vcc

HOA69X3 INVERTER, OPEN-COLLECTOR Q Vcc Voltage Anode regulator Cathode GND

Honeywell

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Transmissive Optoschmitt Sensor


Cir_013.cdf

SWITCHING WAVEFORM FOR BUFFERS

Fig. 1 IRED Forward Bias Characteristics

50%

%

SWITCHING WAVEFORM FOR

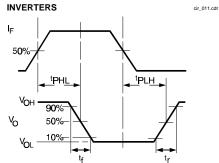
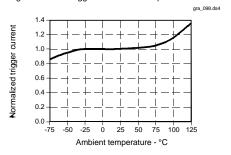



Fig. 2 IRED Trigger Current vs Temperature

All Performance Curves Show Typical Values

PART NUMBER GUIDE

HOA69XX-XXX Housing Material 6 = Polysulfone, IR transmissive 7 = Polysulfone, opaque Output Configuration 0 = Totem-pole, buffer 1 = Open-collector, buffer 2 = Totem-pole, inverter 3 = Open-collector, inverter

Aperture Width in Front Of Detector

1 **= 0.010 i**n. (**0.**25 mm)

5 = **0.0**50 **I**n. (1.27 mm)

Aperture length is 0.060 in. (1.52 mm)

Aperture Width In Front Of IRED

5 **= 0.0**50 **I**n. (1.27 mm)

Aperture length is 0.060 in. (1.52 mm)

Mounting Configuration

L = Single mounting tab, emitter side

N = No mounting tabs

P = Single mounting tab, detector side

T = Two mounting tabs

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

 $4 = 10 \text{ k} \Omega$ pull-up, buffer

 $5 = 10 \text{ k} \Omega$ pull-up, inverter

Honeywell

321