

Current Transducer HAC 100..800-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Accuracy - Dynamic performance data

$I_{PN} = 100 ... 800 A$

Electrical data					
current rms measur		Primary current measuring range	Туре		S since code
	_N (A) 100 200 300 400 500 600 800	I _{PM} (A) ± 300 ± 600 ± 900 ± 1200 ± 1500 ± 1800 ± 1800	HAC 100-S HAC 200-S HAC 300-S HAC 400-S HAC 500-S HAC 600-S HAC 800-S	46 46 46 47 46	256 2220 284 2242 143 186
V _C I _C R _{IS} V _{OUT} R _{OUT} R _L	$ m V_{C}$ Supply voltage (± 5 %) $^{1)}$ Current consumption HAC 100300-S HAC 400800-S R _{IS} Isolation resistance @ 500 VDC Output voltage (Analog)@ ± $\rm I_{PN}$, $\rm R_{L}$ = 10kΩ, $\rm T_{A}$ = 25°C Output internal resistance		± 15 < ± 18 < ± 25 > 1000 ± 4 100 > 10	V mA mA MΩ V Ω kΩ	

X	Accuracy @ I _{PN} , T _A = 25°C (excluding offset)	< ± 1	% of I _{PN}
\mathcal{E}_{L}	Linearity error (0 ± I _{PN})	< ± 1	% of I _{PN}
V _{OE}	Electrical offset voltage, T _A = 25°C	< ± 30	mV
V _{OH}	Hysteresis offset voltage @ I _p = 0;		
=	after an excursion of 1 x I _{PN}	$< \pm 35$	mV
TCV	Temperature coefficient of V _{OF}	< ± 1	mV/K
	Temperature coefficient of V _{OUT} (% of reading)	< ± 0.1	%/K
t,	Response time to 90% of I _{PN} step	< 7	μS
BW	Frequency bandwidth (- 3 dB) 2)	DC 50	kHz

G	General data			
T _A T _S	Ambient operating temperature Ambient storage temperature Mass	- 10 + 80 - 15 + 85 70	°C °C g	

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500 V
- Low power consumption
- Extended measuring range (3 x I_{PN})

Advantages

- Easy installation
- · Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Notes: 1) Operating at $\pm 12V \le Vc \le \pm 15V$ will reduce the measuring range.

²⁾Derating is needed to avoid excessive core heating at high frequency.

Page 1/3

Current Transducer HAC 100..800-S

Isolation characteristics			
V _d	Rms voltage for AC isolation test, 50 Hz, 1 min	2.5 ³⁾	kV
dCp	Creepage distance	> 5.5	mm
dCl	Clearance distance	> 5.5	mm
CTI	Comparative Tracking Index (group IIIa)	> 220	

Applications examples

According to EN 50178 and CEI 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	CEI 61010-1
dCp, dCl, $\hat{\mathbf{V}}_{w}$	Rated isolation voltage	Nominal voltage
Single isolation	500 V	Cat III 500 V rms
Reinforced isolation	150 V	Cat III 250 V rms

Note: 3) Between primary and secondary

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

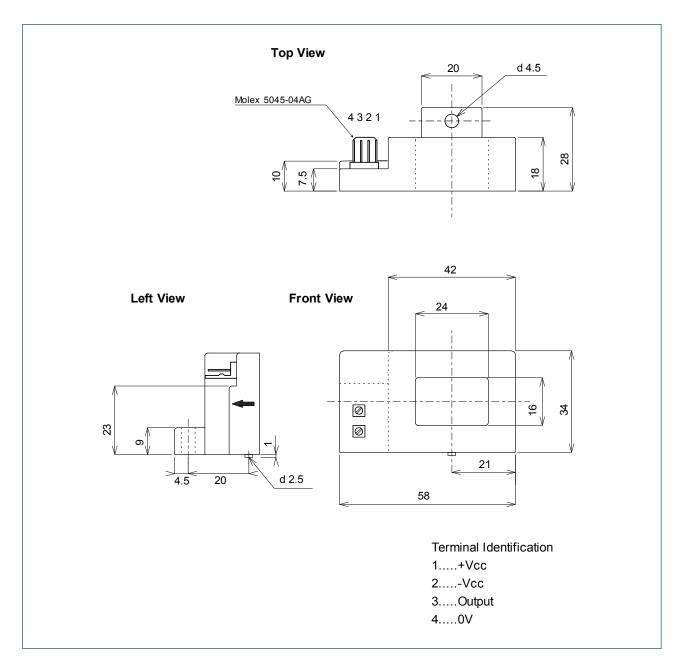
When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.


Page 2/3

081127/9

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice.

Dimensions HAC 100..800-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance ± 0.5 mm