

Current Transducer LTSR 25-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 25 \text{ At}$

Ele	ectrical data		
I _{PN}	Primary nominal r.m.s. current	25	At
I _P	Primary current, measuring range	$0 \pm 80^{1)}$	At
V _{OUT}	Analog output voltage @ I _P	$2.5 \pm (0.625)$	$(\mathbf{I}_{P}/\mathbf{I}_{PN})$ V
	$I_{P} = 0$	2.5 2)	V
${f V}_{\sf REF}$	Voltage reference (internal reference), refout mode	2.5 3)	V
	Voltage reference (external reference), refin mode	1.9 2.7 4)	V
N_s	Number of secondary turns (± 0.1 %)	2000	
R _L	Load resistance	≥ 2	kΩ
C	Max. capacitive loading	500	pF
$\mathbf{R}_{\scriptscriptstyle IM}^{\scriptscriptstyle T}$	Internal measuring resistance (± 0.5 %)	50	Ω
TCR	Thermal drift of R	< 50	ppm/K
V _C	Supply voltage (± 5 %)	5	V
I c	Current consumption @ $V_c = 5 \text{ V}$ Typ	28+ I _S ⁵⁾ +(V _{OU}	_T / R _L) mA

Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$		±0.2	%
		±0.7	%
Linearity error		< 0.1	%
		Max	
Thermal drift of $\mathbf{V}_{OUT}/\mathbf{V}_{REF} @ \mathbf{I}_{P} = 0$			
	- 40°C + 85°C	37.5	ppm/K
Thermal drift of the gain	- 40°C + 85°C	50 ⁶⁾	ppm/K
Residual voltage @ $I_p = 0$, after an o	overload of 3 x I _{PN}	± 0.5	mV
	5 x I _{PN}	± 2.0	mV
	10 x I _{PN}	± 2.0	mV
Thermal drift of internal $V_{REF} @ I_{P} =$: 0 - 10°C + 85°C	50	ppm/K
	- 40°C 10°C	100	ppm/K
Reaction time @ 10 % of I _{PN}		< 100	ns
Response time @ 90 % of I _{PN}		< 400	ns
di/dt accurately followed		> 60	A/µs
Frequency bandwidth (0 0.5 dB)	DC 100	kHz
(- 0.5 1 dB)	DC 200	kHz
neral data			
Ambient operating temperature		- 40 + 85	°C
		- 40 + 100	°C
Ambient storage temperature		4 0 1 100	U
Ambient storage temperature Mass		10	g
			g
	Accuracy with \mathbf{R}_{IM} @ \mathbf{I}_{PN} , $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Linearity error Thermal drift of $\mathbf{V}_{\mathrm{OUT}}/\mathbf{V}_{\mathrm{REF}}$ @ $\mathbf{I}_{\mathrm{P}} = 0$ Thermal drift of the gain Residual voltage @ $\mathbf{I}_{\mathrm{P}} = 0$, after an \mathbf{C} Thermal drift of internal $\mathbf{V}_{\mathrm{REF}}$ @ $\mathbf{I}_{\mathrm{P}} = 0$ Reaction time @ 10 % of \mathbf{I}_{PN} Response time @ 90 % of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth $(0 \dots - 0.5 \ \mathrm{dB})$ eneral data	Accuracy with \mathbf{R}_{IM} @ \mathbf{I}_{PN} , $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Linearity error Thermal drift of $\mathbf{V}_{\mathrm{OUT}}/\mathbf{V}_{\mathrm{REF}}$ @ $\mathbf{I}_{\mathrm{P}} = 0$ - $40^{\circ}\mathrm{C}$ + $85^{\circ}\mathrm{C}$ Thermal drift of the gain - $40^{\circ}\mathrm{C}$ + $85^{\circ}\mathrm{C}$ Residual voltage @ $\mathbf{I}_{\mathrm{P}} = 0$, after an overload of $3 \times \mathbf{I}_{\mathrm{PN}}$ $5 \times \mathbf{I}_{\mathrm{PN}}$ $10 \times \mathbf{I}_{\mathrm{PN}}$ Thermal drift of internal $\mathbf{V}_{\mathrm{REF}}$ @ $\mathbf{I}_{\mathrm{P}} = 0 - 10^{\circ}\mathrm{C}$ + $85^{\circ}\mathrm{C}$ - $40^{\circ}\mathrm{C}$ $10^{\circ}\mathrm{C}$ Reaction time @ 10 % of \mathbf{I}_{PN} Response time @ 90 % of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth $(0 \dots - 0.5 \text{ dB})$ (- $0.5 \dots 1 \text{ dB}$)	Accuracy with ${\bf R}_{\rm IM}$ @ ${\bf I}_{\rm PN}$, ${\bf T}_{\rm A}$ = 25°C ± 0.7 Linearity error <0.1 Max Thermal drift of ${\bf V}_{\rm OUT}/{\bf V}_{\rm REF}$ @ ${\bf I}_{\rm P}=0$ $-40^{\circ}{\rm C} \ldots + 85^{\circ}{\rm C}$ 37.5 Thermal drift of the gain $-40^{\circ}{\rm C} \ldots + 85^{\circ}{\rm C}$ 50 6) Residual voltage @ ${\bf I}_{\rm P}=0$, after an overload of $3 \times {\bf I}_{\rm PN}$ ± 2.0 $10 \times {\bf I}_{\rm PN}$ ± 2.0 $10 \times {\bf I}_{\rm PN}$ ± 2.0 Thermal drift of internal ${\bf V}_{\rm REF}$ @ ${\bf I}_{\rm P}=0$ - 10°C \ldots + 85°C 50 $-40^{\circ}{\rm C} \ldots$ - 10°C 100 Reaction time @ 10 % of ${\bf I}_{\rm PN}$ <100 Response time @ 90 % of ${\bf I}_{\rm PN}$ <400 di/dt accurately followed >60 Frequency bandwidth $(0 \ldots -0.5 \ {\rm dB})$ DC \ldots 100 eneral data

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Insulated plastic case recognized according to UL 94-V0
- Compact design for PCB mounting
- Incorporated measuring resistance
- Extended measuring range
- Access to the internal voltage reference
- Possibility to feed the transducer reference from external supply.

Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application Domain

• Industrial.

Copyright protected.

051123/6

Notes: see overleaf.

Current Transducer LTSR 25-NP

Isolation characteristics			
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn Impulse withstand voltage 1.2/50 µs	3 > 8	kV kV
V _e	R.m.s. voltage for partial discharge extinction @ 10pC	Min > 1.5	kV
		Min	
dCp	Creepage distance 7)	15.35	m m
dCl	Clearance distance 8)	6.2	m m
CTI	Comparative Tracking Index (Group III a)	175	

Application examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2

•	Non.	-unif∩rm	n field

Non-uniform field	EN 50178	IEC 61010-1	
dCp, dCl, $\hat{m{V}}_{_{ m w}}$	Rated isolation voltage	Nominal voltage	
Single isolation	600 V	600 V	
Reinforced isolation	300 V	300 V	

Notes

- 1) Only in refout mode or with external REF less than 2.525 V and greater than 2.475 V. For external REF out of these limits see leaflet.
- $^{2)}\,\boldsymbol{V}_{\text{OUT}}$ is linked to $\boldsymbol{V}_{\text{REF}},$ by conception the difference between these two nodes for $I_p = 0$ is maximum ± 25 mV, $2.475 \text{ V} < \mathbf{V}_{\text{OUT}} < 2.525 \text{ V}.$
- $^{3)}$ In Refout mode at \boldsymbol{T}_{A} = 25°C, 2.475 V < \boldsymbol{V}_{REF} < 2.525 V. The minimal impedance loading the ref pin should be $> 220 \text{ k}\Omega$. Internal impedance = 600Ω . For most applications you need to buffer this output to feed it into an ADC for example.
- $^{4)}$ To overdrive the REF (1.9 V .. 2.7 V) max. $\pm\,1$ mA is needed.
- ⁵⁾ Please see the operation principle on the other side.
- 6) Only due to TCR IM. 7)
- On housing. 8) On PCB with soldering pattern UTEC93-703.

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

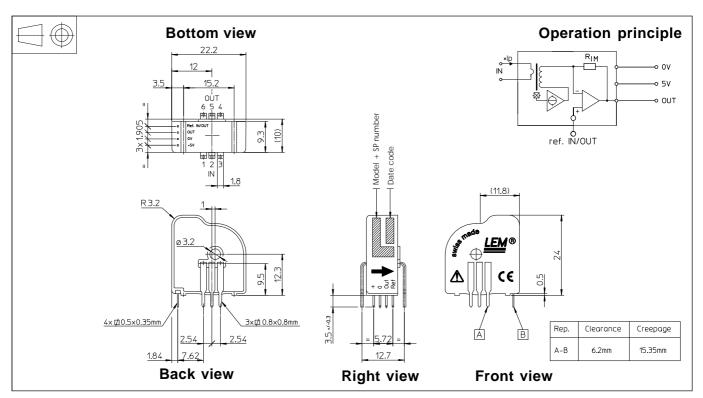
When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.


051123/6

Page 2/3

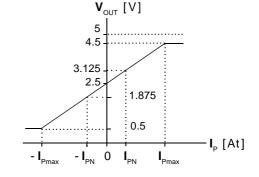
 $\textbf{LEM}\ reserves\ the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them, without\ previous\ notice$

Dimensions LTSR 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal ⁹⁾ output voltage V _{OUT} [V]	Primary resistance R _P [mΩ]	Primary insertion inductance L _P [µH]	Recommended connections
1	± 25	2.5 ± 0.625	0.18	0.013	6 5 4 OUT O O O O
2	± 12	2.5 ± 0.600	0.81	0.05	6 5 4 OUT O 0 0 1 1 1 2 3
3	± 8	2.5 ± 0.600	1.62	0.12	6 5 4 OUT 0 0 0 IN 1 2 3

Mechanical characteristics

General tolerance ±0.2 mm
 Fastening & connection of primary Recommended PCB hole ±0.2 mm
 6 pins 0.8 x 0.8 mm
 1.3 mm


Fastening & connection of secondary
 Recommended PCB hole
 4 pins 0.5 x 0.35 mm
 0.8 mm

• Additional primary through-hole Ø3.2mm

Remarks

- V_{OUT} is positive when I_p flows from terminals 1, 2, 3 to terminals 6, 5, 4.
- For the EMC, the acceptance criteria are available on request.
- Temperature of the primary jumper should not exceed 100 [°C].

Note: 9) Output voltage when LTSR 25-NP is used with internal reference.

Output Voltage - Primary Current

051123/6 Page 3/3

 $LEM\ reserves\ the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them,\ without\ previous\ notice$