

SPECIFICATION

Part No. : PA.22A

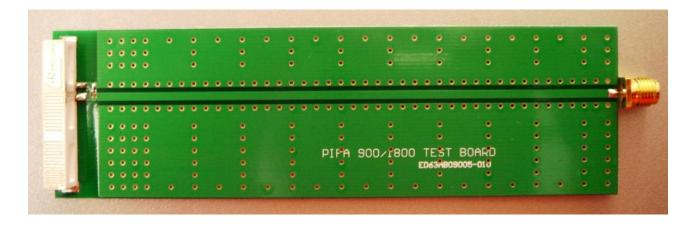
Product Name : **GSM Dielectric PIFA Antenna (DPA™)**

Description : Tri-band - 880~960 MHz, 1710~1990 MHz, 0dB Gain

Size: 29.8mm*6mm*5mm

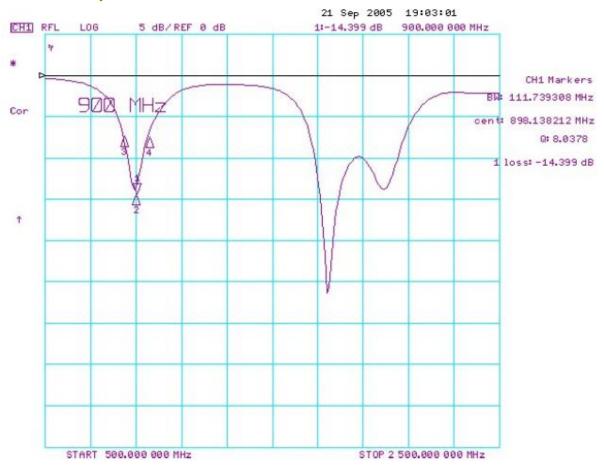
1.0 Scope

This specification is for a Tri-band GSM miniature PIFA (Dielectric Planar inverted-F Type Antenna) (DPA™) Antenna for internal SMT mounting.

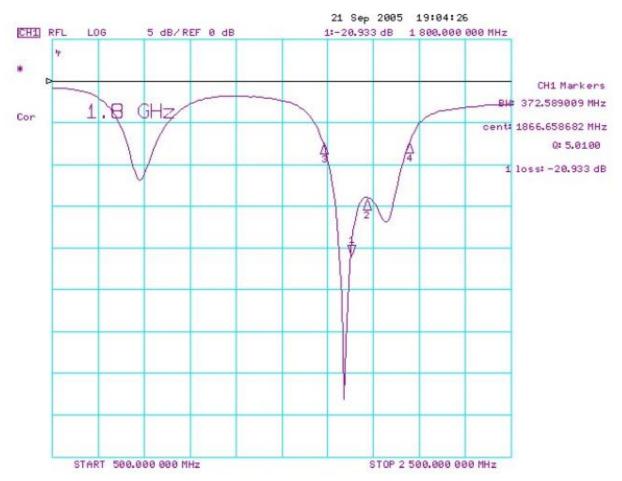

Note: The antenna also shows a response at 850MHz which means the antenna can also be defined on quad-band, depending on the target specification for the device itself.

2.0 Electrical Specifications

The antenna has the electrical characteristics given in Table 1 under the Taoglas standard installation conditions as shown in the Evaluation Board (Figure


No.	Parameter	Specification
1	Frequency	880~960 MHz , 1710~1990 MHz
2	Dimensions	29.8*6.0*5.0 mm
3	Impedance	50 Ω
4	VSWR	2.5 max (depends on environment)
5	Polarization	Linear
6	Operating Temperature	-40~105°C
7	Termination	Ag (Environmentally Friendly Lead- Free)

*Data is measured on Taoglas Evaluation Board (reference ground plane) pictured below



2.1 S11 Response Curve

Radiation patterns also available (measured in free space and on evaluation board) 2.2 Gain and Efficiency

GSM900

F	requency	Peak Gain	Efficiency
	(MHz)	(dBi)	(%)
тх	880.2	-3.65	21.09
	890.2	-2.73	26.25
	902.4	-2.28	31.23
	914.8	-2.04	35.24
RX	925.2	-1.96	37.02
	935.2	-2.54	33.33
	947.4	-2.96	31.17
	959.8	-3.16	29.47

GSM1800

F	requency (MHz)	Peak Gain (dBi)	Efficiency (%)
тх	1710.2	2.28	60.63
	1747.6	2.35	61.53
	1784.8	2.58	60.77
RX	1805.2	2.32	56.67
	1842.6	2.43	56.31
	1879.8	2.59	58.69

GSM1900

F	requency	Peak Gain	Efficiency
	(MHz)	(dBi)	(%)
TX	1850.2	2.48	56.95
	1880.0	2.60	58.75
	1909.8	2.12	52.79
RX	1930.2	2.01	52.02
	1960.0	1.31	47.26
	1989.8	0.30	38.62

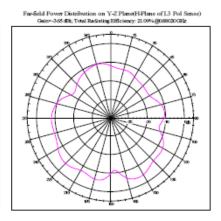
GSM900

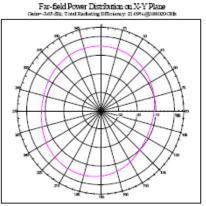
F	requency (GHz)	Plane	Average Gain (dBi)
	880.2	XY plane	-7.133
		YZ plane	-9.766
		XZ plane	-6.101
		XY plane	-5.968
	890.2	YZ plane	-8.845
TX		XZ plane	-5.126
1.		XY plane	-4.898
	902.4	YZ plane	-8.892
		XZ plane	-4.350
	914.8	XY plane	-4.077
		YZ plane	-7.477
		XZ plane	-3.865
	925.2	XY plane	-3.599
		YZ plane	-7.202
		XZ plane	-3.732
	935.2	XY plane	-3.802
		YZ plane	-7.648
RX		XZ plane	-4.290
	947.4	XY plane	-3.788
		YZ plane	-7.843
		XZ plane	-4.579
	959.8	XY plane	-3.801
		YZ plane	-7.913
		XZ plane	-5.187

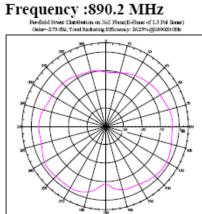
GSM1800

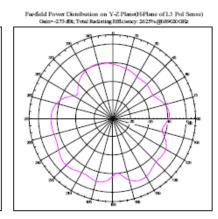
F	requency (GHz)	Plane	Average Gain (dBi)
	1710.2	XY plane	-2.648
		YZ plane	-4.661
		XZ plane	-1.687
	1747.6	XY plane	-2.529
TX		YZ plane	-4.696
		XZ plane	-1.207
		XY plane	-2.685
	1784.8	YZ plane	-4.687
		XZ plane	-0.888
	1805.2	XY plane	-3.193
		YZ plane	-4.911
		XZ plane	-1.105
	1842.6	XY plane	-3.468
RX		YZ plane	-4.753
		XZ plane	-1.145
	1879.8	XY plane	-3.745
		YZ plane	-4.131
		XZ plane	-1.430

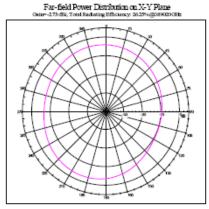
GSM1900

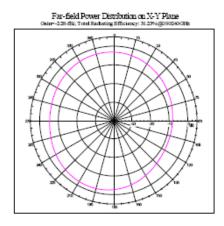

F	requency (GHz)	Plane	Average Gain (dBi)
TX		XY plane	-3.511
	1850.2	YZ plane	-4.649
		XZ plane	-1.147
		XY plane	-3.746
	1880.0	YZ plane	-4.124
		XZ plane	-1.435
		XY plane	-4.683
	1909.8	YZ plane	-4.228
		XZ plane	-2.525
RX	1930.2	XY plane	-5.539
		YZ plane	-4.270
		XZ plane	-3.257
		XY plane	-6.444
	1960.0	YZ plane	-4.441
		XZ plane	-4.126
		XY plane	-8.068
	1989.8	YZ plane	-5.359
		XZ plane	-5.477

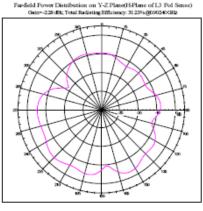


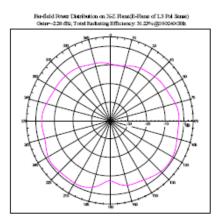

GSM900


Frequency:880.2 MHz

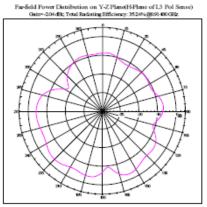

Far-field Power Distribution on X-Z Hame (E-Flane of L3 Pol Some) Ontre-3-65 dBi; Total Radiating Efficiency: 21.09% (§108020 GBs

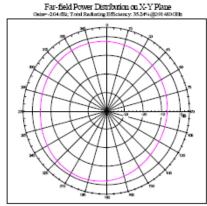


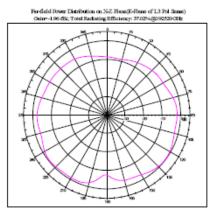


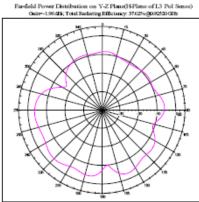


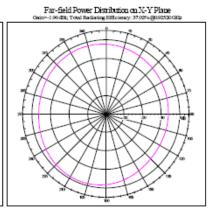
Frequency:902.4MHz

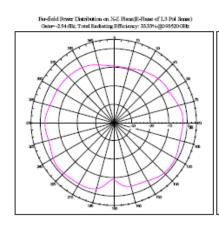


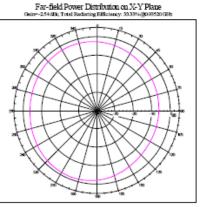


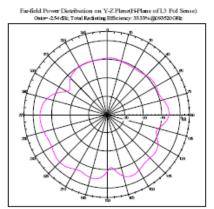

Frequency:914.8MHz


Far-field Power Distriction on Not Branc(E-Branc of L3 Ped Struck)
Getter-204-03t; Total Endozing Efficiency: M249-(4000) 400-03te

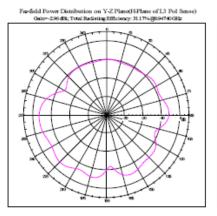


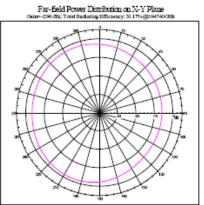

Frequency:925.2MHz

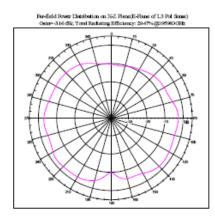


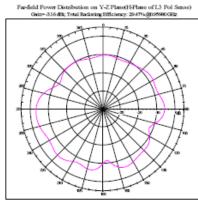


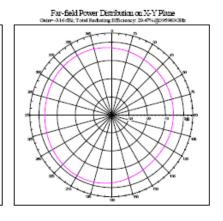
Frequency:935.2MHz

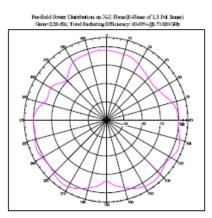


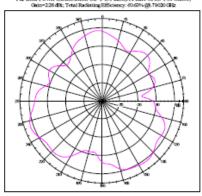


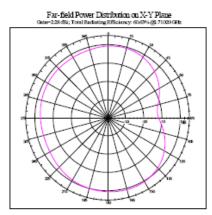



Frequency:947.4MHz

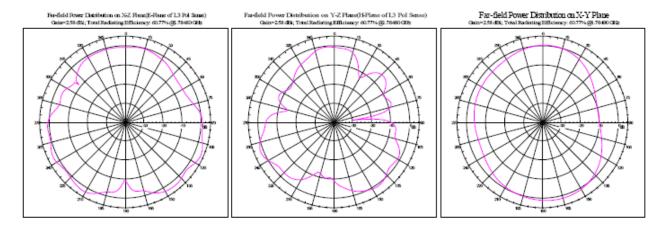



Frequency:959.8MHz

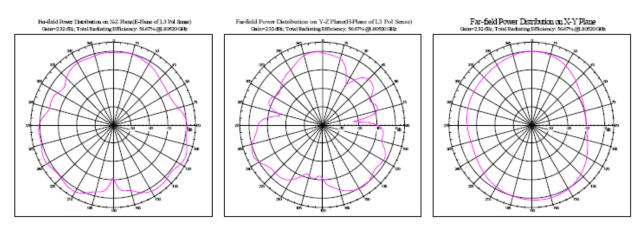




GSM1800 Frequency :1710.2 MHz

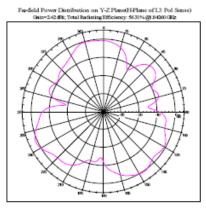


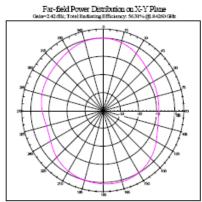
Frequency: 1747.6 MHz

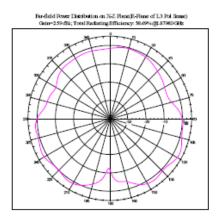

Facilid Power Distribution on N-Z Plane (E-Bune of L3 Pol Same)
Chim-235-GB; Total Radiating Efficiency of .57% (B) 5-070 GB;
Chim-235-GB; Total Radiating Efficiency of .57% (B) 5-070 GB;
Chim-235-GB; Total Radiating Efficiency of .57% (B) 5-070 GB;

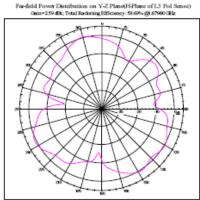
Total Radiating Efficiency of .57% (B) 5-070

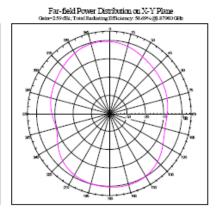
Frequency:1784.8 MHz


Frequency:1805.2 MHz

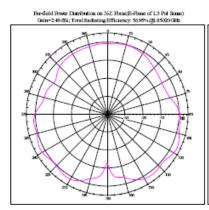


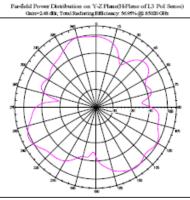

Frequency:1842.6 MHz

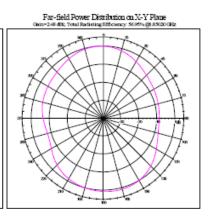

Bredidd Power Distribution on Not Reme(E-Brane of L3 Red Series)
Gain-2-4-58; Tool Studening Billionery SCIN-68; 8-600 ORk



Frequency:1879.8 MHz

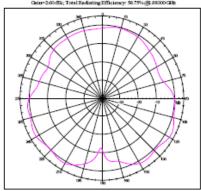


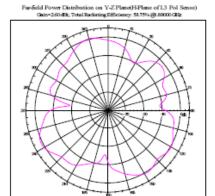


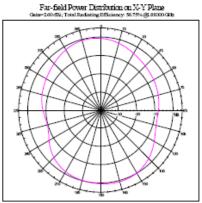


GSM1900

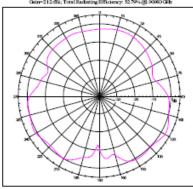
Frequency:1850.2 MHz

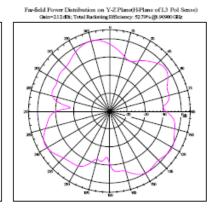


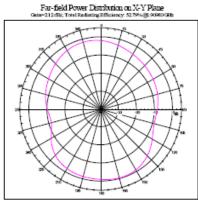




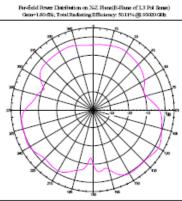
Frequency :1880.0 MHz For-field Power Distribution on NGE Brancille-Brance of LD Pol Strand Gain-200-081; Total Bankating Hillschap; 98.75% (ED 200-000)

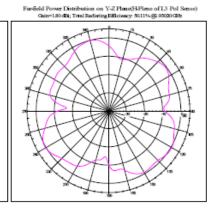


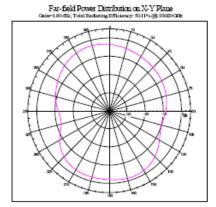




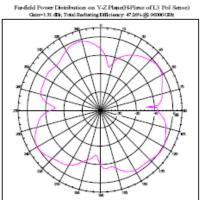
Frequency:1909.8 MHz

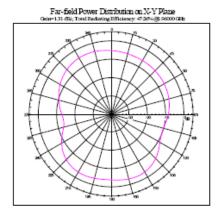

Far-field Power Distribution on X-Z Hans (E-Flane of L3 Pol Same) Gain=212-fbi; Total Radiating Efficiency: 52:79% (E-90910 Gb)

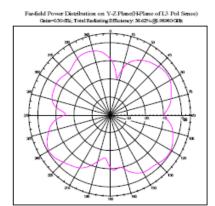


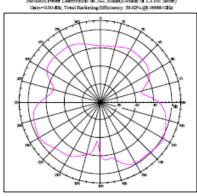


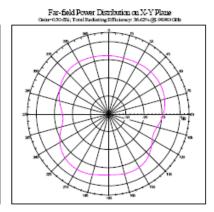
Frequency: 1930.2 MHz



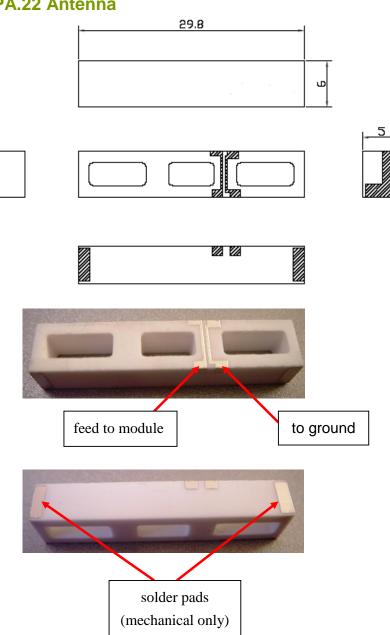


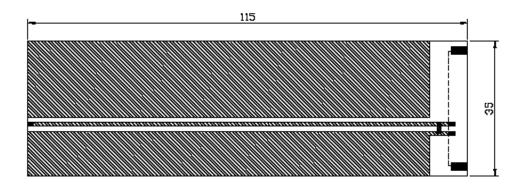

Frequency: 1960.0 MHz


Par-field fewer Distribution on Not. Reme(B-Rame of 1.3 Ped Sense)
Gene-1.31-GB; Total Endosting Efficiency of 20%-(8) 6000 GRb

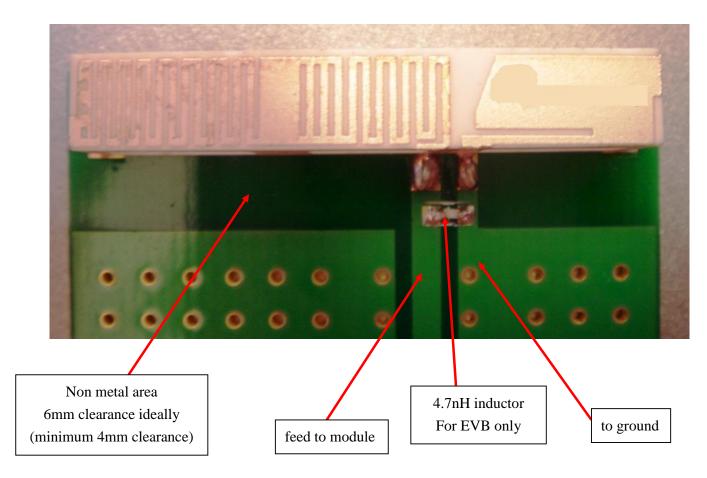


Frequency: 1989.8 MHz



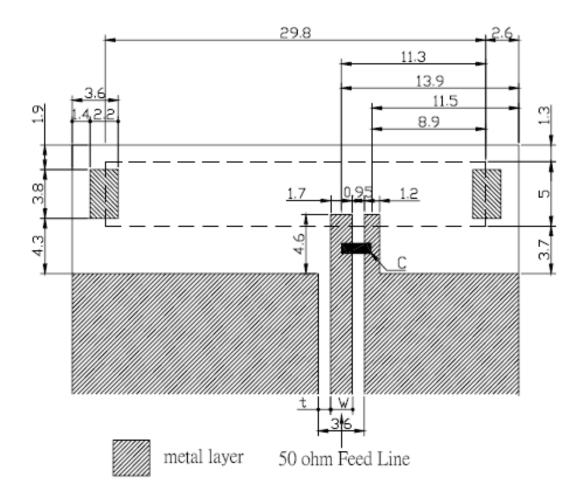

3.0 Mechanical Dimensions

3.1 PA.22 Antenna

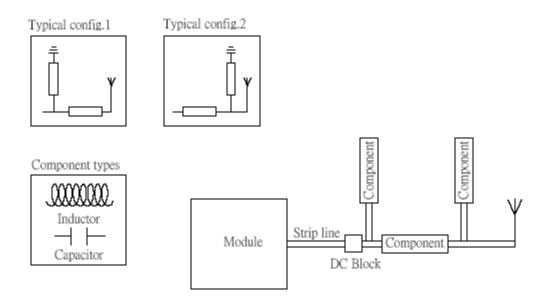


3.2 Evaluation board dimensions

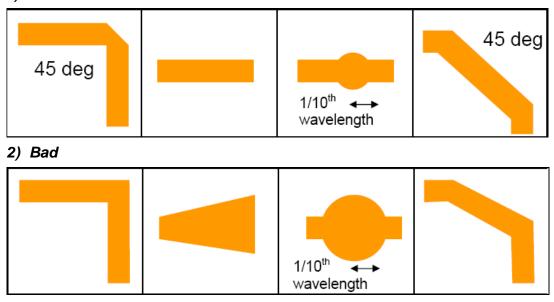
3.3 Recommended layout (as per Taoglas evalution board)



SPE-11-8-060/D 29-July-11 Page 15 of 19


View from underneath board – note solder pads either side – laid out on non metal area Layout dimensions - Allow 6mm clearance all around if possible (minimum 4mm)

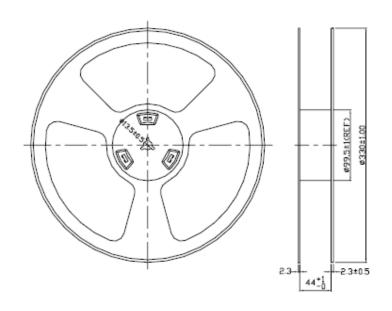
t,w=Unique dimensioning according to your PCB.
C=inductor and capacitor values according to your specific device.


3.4 Recommended Transmission Line and Matching Network

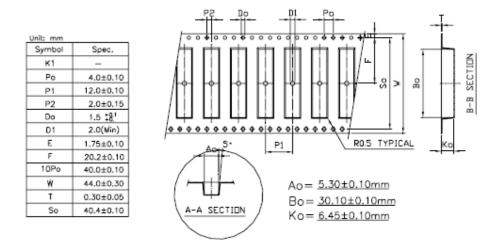
The matching network has to be individually designed using one, two or three components.

Note: The PA.22 can be made "quad band" with appropriate matching circuit Guidelines for routing RF when designing a PCB;

1) Good

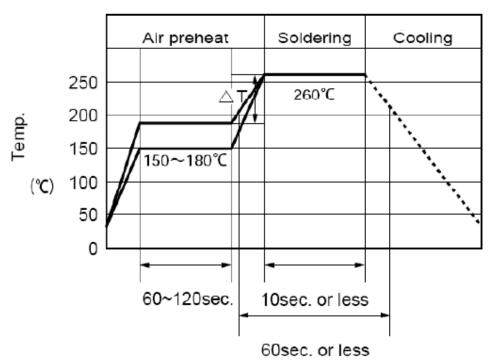

4.0 Delivery Mode

Blister tape to IEC 286-3, polyester


Pieces per tape: 450

4 Reels (1800) in each Carton - Carton size 37cm*36cm*27.5cm

Carton Weight – Net Weight 5.9kg – Gross Weight 7.5kg (approx)


Note: Design application note also available

Note: Environmental test report also available

5.0 Recommended Reflow Temperature Profile

- (1) Time shown in the above figures is measured from the point when chip surface reaches temperature.
- (2) Temperature difference in high temperature part should be within 110°C.
- (3) After soldering, do not force cool, allow the parts to cool gradually.
- *General attention to soldering:
- High soldering temperatures and long soldering times can cause leaching of the termination, decrease in adherence strength, and the change of characteristic may occur.
- for soldering, please refer to the soldering curves above. However, please keep exposure to temperatures exceeding 200°C to under 50 seconds.
- please use a mild flux (containing less than 0.2wt% Cl). Also, if the flux is water soluble, be sure to wash thoroughly to remove any residue from the underside of components that could affect resistance.

Cleaning:

When using ultrasonic cleaning, the board may resonate if the output power is too high. Since this vibration can cause cracking or a decrease in the adherence of the termination, we recommend that you use the conditions below.

Frequency: 40 kHz max. - Output power: 20W/liter -Cleaning time: 5minutes max.