feATURES

- Complete Switch Mode Power Supply
- Wide Input Voltage Range: 4.5 V to 28 V
- 12A DC Typical, 14A Peak Output Current
- 0.6 V to 5 V Output Voltage
- Output Voltage Tracking and Margining
- Redundant Mounting Pads for Enhanced Solder-Joint Strength
- Parallel Multiple μ Module ${ }^{\circledR}$ Regulators for Current Sharing
- Differential Remote Sensing for Precision Regulation
- PLL Frequency Synchronization
- $\pm 1.5 \%$ Total DC Error
- Current Foldback Protection (Disabled at Start-Up)
- Pb-Free (e4) RoHS Compliant Package with Gold Finish Pads
- $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range (LTM4601AHVMPV)
- UltrafastTM Transient Response
- Up to 95% Efficiency at $5 \mathrm{~V}_{\text {IN }}, 3.3 \mathrm{~V}_{\text {OUT }}$
- Programmable Soft-Start
- Output Overvoltage Protection
- Enhanced ($15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm}$) Surface Mount LGA Package

APPLICATIONS

- Telecom, Industrial and Networking Equipment
- Military and Avionics Systems

12A, 28VIN DC/DC μ Module Regulator with PLL, Output Tracking and Margining DESCRIPTIOn
The LTM ${ }^{\oplus} 4601$ AHV is a complete 12A step-down switch mode DC/DC power supply with onboard switching controller, MOSFETs, inductor and all support components. The μ Module regulator is housed in a small surface mount $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm}$ LGA package. The LTM4601AHV LGA package is designed with redundant mounting pads to enhance solder-joint strength for extended temperature cycling endurance. Operating over an input voltage range of 4.5 to 28 V , the LTM4601AHV supports an output voltage range of 0.6 V to 5 V as well as output voltage tracking and margining. The high efficiency design delivers 12A continuous current (14A peak). Only bulk input and output capacitors are needed to complete the design.
The low profile (2.8 mm) and light weight (1.7 g) package easily mounts in unused space on the back side of PC boards for high density point of load regulation. The μ Module regulator can be synchronized with an external clock for reducing undesirable frequency harmonics and allows PolyPhase ${ }^{\circledR}$ operation for high load currents.

An onboard differential remote sense amplifier can be used to accurately regulate an output voltage independent of load current.
$\boldsymbol{\Delta T}$, LT, LTC and LTM, Linear Technology, the Linear logo, μ Module and PolyPhase are registered trademarks and Ultrafast is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 5481178, 5847554, 6580258, 6304066, 6476589, 6774611, 6677210.

TYPICAL APPLICATION

2.5V/12A Power Supply with 4.5 V to 28 V Input

Efficiency and Power Loss vs Load Current

LTM4601AHV

ABSOLUTE MAXIMUM RATIOGS

(Note 1)
$I^{\prime N T V}$ CC, DRV $_{\text {CC }}, V_{\text {OUT_LCL }}, V_{\text {OUT }}\left(V_{\text {OUT }} \leq 3.3 \mathrm{~V}\right.$ with
Remote Sense Amp) \qquad
PLLIN, TRACK/SS, MPGM, MARG0, MARG1,
PGOOD, f. $_{\text {SET }}$............................. -0.3 V to INTV $_{\text {CC }}+0.3 \mathrm{~V}$
RUN ... 0.3 V to 5 V
$V_{\text {FB }}$, COMP ... -0.3 V to 2.7 V
VIN ... -0.3 V to 28 V
$\mathrm{V}_{\text {OSNS }}{ }^{+}, \mathrm{V}_{\text {OSNS }}{ }^{-}$......................... -0.3 V to $\mathrm{INTV}_{\text {CC }}+0.3 \mathrm{~V}$
Operating Temperature Range (Note 2)
E and I Grades $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
MP Grade.. $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature .. $125^{\circ} \mathrm{C}$
Storage Temperature Range................... $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTM4601AHVEV\#PBF	LTM4601AHVV	$133-$ Lead $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm})$ LGA	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTM4601AHVIV\#PBF	LTM4601AHVV	$133-$ Lead $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm})$ LGA	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTM4601AHVMPV\#PBF	LTM4601AHVMPV	$133-$ Lead $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm})$ LGA	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/

ELECTRICAL CHAßACTERISTICS
The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ (Note 2). Per typical application (front page) configuration, $\mathrm{R}_{\text {SET }}=40.2 \mathrm{k}$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN(}(\mathrm{DC})}$	Input DC Voltage		\bullet	4.5		28	V
$\mathrm{V}_{\text {OUT(DC) }}$	Output Voltage Total Variation with Line and Load	$\begin{gathered} \mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F} \times 3, \mathrm{C}_{\text {OUT }}=200 \mu \mathrm{~F}, \mathrm{R}_{\text {SET }}=40.2 \mathrm{k} \\ \mathrm{~V}_{\text {IN }}=5 \mathrm{~V} \text { to } 28 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \text { to } 12 \mathrm{~A} \text { (Note } 5 \text {) } \end{gathered}$	\bullet	1.478	1.5	1.522	V
Input Specifications							
$\mathrm{V}_{\text {IN(UVLO) }}$	Undervoltage Lockout Threshold	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$			3.2	4	V
IINRUSH(VIIN)	Input Inrush Current at Startup	$\begin{gathered} I_{\text {OUT }}=O A . V V_{\text {OUT }}=1.5 \mathrm{~V} \\ V_{\text {IN }}=5 \mathrm{~V} \\ V_{\text {IN }}=12 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$		A A
$\mathrm{I}_{\text {Q(VIN,NO LOAD) }}$	Input Supply Bias Current	$\begin{aligned} & V_{\text {IIN }}=12 V, V_{\text {OUT }}=1.5 \mathrm{~V} \text {, No Switching } \\ & V_{\text {II }}=12 V, V_{\text {OUT }}=1.5 \mathrm{~V} \text {, Switching Continuous } \\ & V_{\text {II }}=5 \mathrm{VV}, V_{\text {OUT }}=1.5 \mathrm{~V} \text {, No Switching } \\ & V_{\text {IN }}=5 \mathrm{~V}, V_{\text {OUT }}=1.5 \mathrm{~V} \text {, Switching Continuous } \\ & \text { Shutdown, RUN }=0, V_{\text {IN }}=12 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 3.8 \\ & 38 \\ & 2.5 \\ & 42 \\ & 22 \end{aligned}$		$m A$ $m A$ $m A$ $m A$ $\mu \mathrm{~A}$

ELECIRACAL CHARACFRISTICS The e denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ (Note 2). Per typical application (front page) configuration, $R_{\text {SET }}=40.2 \mathrm{k}$.| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {S(VIN }}$ | Input Supply Current | $\begin{aligned} & V_{\text {IN }}=12 V, V_{\text {OUT }}=1.5 \mathrm{~V}, I_{\text {OUT }}=12 \mathrm{~A} \\ & V_{\text {IN }}=12 V, V_{\text {OUT }}=3.3 V, I_{\text {OUT }}=12 \mathrm{~A} \\ & V_{\text {IN }}=5 \mathrm{~V}, V_{\text {OUT }}=1.5 \mathrm{~V}, I_{\text {OUT }}=12 \mathrm{~A} \end{aligned}$ | | $\begin{aligned} & 1.81 \\ & 3.63 \\ & 4.29 \end{aligned}$ | | A A A |
| INTV $_{\text {cc }}$ | $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{RUN}>2 \mathrm{~V}$ | No Load | 4.7 | 5 | 5.3 | V |

Output Specifications

IOUTDC	Output Continuous Current Range	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$ (Note 5)				12	A
$\frac{\Delta \mathrm{V}_{\text {OUT(LINE) }}}{V_{\text {OUT }}}$	Line Regulation Accuracy	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V}-28 \mathrm{~V}$	\bullet			0.3	\%
$\frac{\Delta V_{\text {OUT(LOAD }}}{V_{\text {OUT }}}$	Load Regulation Accuracy	$V_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to $12 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$, with Remote Sense Amplifier, (Note 5)	\bullet			0.25	\%
$V_{\text {OUT(AC) }}$	Output Ripple Voltage	$\begin{gathered} \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{C}_{\text {OUT }}=2 \times, 100 \mu \mathrm{~F} / \mathrm{X} 5 \mathrm{R} / \text { Ceramic } \\ V_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V} \\ V_{\text {IN }}=5 \mathrm{~V}, V_{\text {OUT }}=1.5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 20 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$
$\mathrm{f}_{\text {s }}$	Output Ripple Voltage Frequency	$\mathrm{I}_{\text {OUT }}=5 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$			850		kHz
$\Delta V_{\text {OUT(START) }}$	Turn-On Overshoot, TRACK/SS = 10 nF	$\begin{aligned} & C_{\text {OUT }}=200 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \\ & V_{\text {IN }}=12 \mathrm{~V} \\ & V_{\text {IN }}=5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$		mV mV
$\mathrm{t}_{\text {START }}$	Turn-On Time, TRACK/SS = Open	$\begin{aligned} & \text { Cout }=200 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, \\ & \text { IOUT }=1 \mathrm{~A} \text { Resistive Load } \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.7 \end{aligned}$		ms ms
$\Delta \mathrm{V}_{\text {OUTLS }}$	Peak Deviation for Dynamic Load	Load: 0\% to 50\% to 0\% of Full Load, $\mathrm{C}_{\text {OUT }}=2 \times 22 \mu \mathrm{~F} /$ Ceramic, $470 \mu \mathrm{~F}, 4 \mathrm{~V}$ Sanyo POSCAP $\begin{aligned} & V_{I N}=12 \mathrm{~V} \\ & V_{I N}=5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 35 \\ & 35 \end{aligned}$		mV mV
tSETTLE	Settling Time for Dynamic Load Step	Load: 0\% to 50\%, or 50\% to 0\% of Full Load $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$			25		$\mu \mathrm{S}$
IOUTPK	Output Current Limit	$\begin{gathered} \text { CoUT }=200 \mu \text { F, Table } 2 \\ V_{\text {IN }}=12 V, V_{\text {OUT }}=1.5 \mathrm{~V} \\ V_{\text {IN }}=5 \mathrm{~V}, V_{\text {OUT }}=1.5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 17 \\ & 17 \end{aligned}$		A

Remote Sense Amp (Note 3)

$\begin{aligned} & \mathrm{V}_{\text {OSNS }}{ }^{+}, \mathrm{V}_{\text {OSNS }}{ }^{-} \\ & \text {CM Range } \end{aligned}$	Common Mode Input Voltage Range	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{RUN}>2 \mathrm{~V}$		0	$\mathrm{INTV}_{\text {cc }}-1$	V
DIFFV ${ }_{\text {OUT }}$ Range	Output Voltage Range	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, DIFFV $_{\text {OUT }}$ Load $=100 \mathrm{k}$		0	$\mathrm{INTV}_{\text {CC }}-1$	V
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage Magnitude		\bullet		$\begin{gathered} 1.25 \\ 2 \end{gathered}$	mV mV
A_{V}	Differential Gain				1	V/N
GBP	Gain Bandwidth Product				3	MHz
SR	Slew Rate				2	V/ $/ \mathrm{S}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{V}_{\text {SSNS }}{ }^{+}$to GND			20	$\mathrm{k} \Omega$
CMRR	Common Mode Rejection Mode				100	dB

LTM4601AHV

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply ver the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ (Note 2). Per typical application (front page) configuration, $R_{\text {SET }}=40.2 \mathrm{k}$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Control Stage							
$V_{\text {FB }}$	Error Amplifier Input Voltage Accuracy	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$	\bullet	0.594	0.6	0.606	V
$\mathrm{V}_{\text {RUN }}$	RUN Pin On/Off Threshold			1	1.5	1.9	V
ISS/TRACK	Soft-Start Charging Current	$\mathrm{V}_{\text {SS/TRACK }}=0 \mathrm{~V}$		-1.0	-1.5	-2.0	$\mu \mathrm{A}$
$\underline{t_{0 N(M I N)}}$	Minimum On Time	(Note 4)			50	100	ns
$\mathrm{t}_{\text {OFF(MIN) }}$	Minimum Off Time	(Note 4)			250	400	ns
RPLLIN	PLLIN Input Resistance				50		$\mathrm{k} \Omega$
IdrvCc	Current into DRV ${ }_{\text {cc }}$ Pin	$\begin{aligned} & V_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}, \text { Frequency }=850 \mathrm{kHz}, \\ & \mathrm{DRV}_{\text {CC }}=5 \mathrm{~V} \end{aligned}$			18	25	mA
$\mathrm{R}_{\text {FBHI }}$	Resistor Between $\mathrm{V}_{\text {OUT }}$ and $\mathrm{V}_{\text {FB }}$			60.098	60.4	60.702	$k \Omega$
$\mathrm{V}_{\text {MPGM }}$	Margin Reference Voltage				1.18		V
$\mathrm{V}_{\text {MARGO, }} \mathrm{V}_{\text {MARG1 }}$	MARG0, MARG1 Voltage Thresholds				1.4		V
PGOOD Output							
$\Delta \mathrm{V}_{\text {FBH }}$	PG00D Upper Threshold	$V_{\text {FB }}$ Rising		7	10	13	\%
$\Delta V_{\text {FBL }}$	PG00D Lower Threshold	$V_{\text {FB }}$ Falling		-7	-10	-13	\%
$\Delta V_{\text {FB(HYS }}$	PGOOD Hysteresis	$V_{\text {FB }}$ Returning			1.5		\%
$\mathrm{V}_{\text {PGL }}$	PGOOD Low Voltage	$\mathrm{I}_{\text {PGOOD }}=5 \mathrm{~mA}$			0.15	0.4	V

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTM4601AHVE is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4601AHVI is guaranteed and tested over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature
range. The LTM4601AHVMP is guaranteed and tested over the $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating temperature range. For output current derating at high temperature, please refer to Thermal Considerations and Output Current Derating discussion.
Note 3: Remote sense amplifier recommended for $\leq 3.3 \mathrm{~V}$ output.
Note 4: 100% tested at wafer level only.
Note 5: See output current derating curves for different $\mathrm{V}_{I N}, \mathrm{~V}_{\text {OUT }}$ and T_{A}.

TYPICAL PERFORMANCE CHARACTERISTICS (See Figures 19 and 20 or all curves)

1.2V Transient Response

2.5V AT 6A/ $/ \mathrm{s}$ LOAD STEP
$\mathrm{C}_{\text {OUT }}=3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMICS
470 FF 4V SANYO POSCAP
$\mathrm{C} 3=100 \mathrm{pF}$

1.5V Transient Response

1.5V AT 6A/ Hs LOAD STEP

COUT $=3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMICS
470 HF $4 V$ SANYO POSCAP
$\mathrm{C} 3=100 \mathrm{pF}$

Efficiency vs Load Current with $24 V_{\text {IN }}$

1.8V Transient Response

1.8V AT 6A/ $\mu \mathrm{S}$ LOAD STEP
$\mathrm{C}_{\text {OUT }}=3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$ CERAMICS
470 F 4V SANYO POSCAP
$\mathrm{C} 3=100 \mathrm{pF}$

LTM4601AHV

TYPICAL PGRFORMANCE CHARACTERISTICS (See Figures 19 and 20 or all curves)

Track, $\mathrm{I}_{\text {OUT }}=12 \mathrm{~A}$

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$
$V_{\text {OUT }}=1.5 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}=470 \mu \mathrm{~F}, 3 \times 22 \mu \mathrm{~F}$
SOFT-START $=10 \mathrm{nF}$

PIn FUNCTIOnS (See Package Description for Pin Assignment)

$\mathbf{V}_{\text {IN }}$ (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing input decoupling capacitance directly between $\mathrm{V}_{\text {IN }}$ pins and PGND pins.
$V_{\text {OUt }}$ (Bank 3): Power Output Pins. Apply output load between these pins and PGND pins. Recommend placing outputdecoupling capacitance directly between these pins and PGND pins. Review the figure below.

PGND (Bank 2): Power ground pins for both input and output returns.
$\mathrm{V}_{\text {osss }}{ }^{-}$(Pin M12): (-) Inputtothe Remote Sense Amplifier. This pin connects to the ground remote sense point. The remote sense amplifier is used for $\mathrm{V}_{\text {Out }} \leq 3.3 \mathrm{~V}$.
$\mathrm{V}_{\text {OSNs }}{ }^{+}$(Pin J12): (+) Input to the Remote Sense Amplifier. This pin connects to the output remote sense point. The remote sense amplifier is used for $\mathrm{V}_{\text {OUT }} \leq 3.3 \mathrm{~V}$.
DIFFV $_{\text {OUT }}$ (Pin K12): Output of the Remote Sense Amplifier. This pin connects to the $V_{\text {OUt_LCL }}$ pin.
DRV $_{\text {cc }}$ (Pin E12): This pin normally connects to INTV $_{\text {CC }}$ for powering the internal MOSFET drivers. This pin can be biased up to 6 V from an external supply with about 50 mA capability, or an external circuit shown in Figure 18. This improves efficiency at the higher input voltages by reducing power dissipation in the module.
INTV $_{\text {CC }}$ (Pin A7, D9): This pin is for additional decoupling of the 5 V internal regulator. These pins are internally connected. Pin A7 is a test pin.

PLLIN (Pin A8): External Clock Synchronization Input to the Phase Detector. This pin is internally terminated to SGND with a 50 k resistor. Apply a clock above 2 V and below INTV cC. See Applications Information.
TRACK/SS (Pin A9): OutputVoltage Tracking and Soft-Start Pin. When the module is configured as a master output, then a soft-startcapacitor is placed on this pin to ground to control the master ramp rate. A soft-start capacitor can be used for soft-start turn on as a stand alone regulator. Slave operation is performed by putting a resistor divider from the master output to the ground, and connecting the center point of the divider to this pin. See Applications Information.
MPGM (Pins A12, B11): Programmable Margining Input. A resistor from this pin to ground sets a current that is equal to $1.18 \mathrm{~V} / \mathrm{R}$. This current multiplied by $10 \mathrm{k} \Omega$ will equal a value in millivolts that is a percentage of the 0.6 V reference voltage. See Applications Information. To parallel LTM4601AHVs, each requires an individual MPGM resistor. Do not tie MPGM pins together. Both pins are internally connected. Pin A12 is a test pin.
fset (Pins B12, C11): Frequency Set Internally to 850kHz. An external resistor can be placed from this pin to ground to increase frequency. This pin can be decoupled with a 1000pF capacitor. See Applications Information for frequency adjustment. Both pins are internally connected. Pin B12 is a test pin.
$V_{\text {FB }}$ (Pin F12): The Negative Input of the Error Amplifier. Internally, this pin is connected to $\mathrm{V}_{\text {OUt_LCL }}$ pin with a 60.4 k precision resistor. Different output voltages can be programmed with an additional resistor between $\mathrm{V}_{\text {FB }}$ and SGND pins. See Applications Information.
MARGO (Pin C12): This pin is the LSB logic input for the margining function. Together with the MARG1 pin will determine if margin high, margin low or no margin state is applied. The pin has an internal pull-down resistor of 50k. See Applications Information.
MARG1 (Pin D12): This pin is the MSB logic input for the margining function. Together with the MARGO pin will determine if margin high, margin low or no margin state is applied. The pin has an internal pull-down resistor of 50k. See Applications Information.

LTM4601AHV

PIn fUnCTIOnS
 (See Package Description for Pin Assignment)

SGND (Pins H12, H11, G11): Signal Ground. These pins connect to PGND at output capacitor point. See Figure 17. COMP (Pin A11): Current Control Threshold and Error Amplifier Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0 V to 2.4 V with 0.7 V corresponding to zero sense voltage (zero current).
PG00D (Pins G12, F11): Output Voltage Power Good Indicator. Open-drain logic output that is pulled to ground when the output voltage is not within $\pm 10 \%$ of the regulation point, after a $25 \mu \mathrm{~s}$ power bad mask timer expires.

RUN (Pin A10): Run Control Pin. A voltage above 1.9 V will turn on the module, and when below 1 V , will turn off the module. A programmable UVLO function can be accomplished with a resistor from $\mathrm{V}_{\text {IN }}$ to this pin that has a 5.1V Zener to ground. Maximum pin voltage is 5 V . Limit current into the RUN pin to less than 1 mA .
$V_{\text {OUT_LCL }}$ (Pin L12): $V_{\text {OUT }}$ connects directly to this pin to bypass the remote sense amplifier, or DIFFV to this pin when remote sense amplifier is used.
MTP1, MTP2, MPT3 (Pins C10, D10, D11): Extra Mounting Pads. These pads must be left floating (electrical open circuit) and are used for increased solder integrity strength.

SIMPLIFIGD BLOCK DIAGRAm

Figure 1. Simplified LTM4601AHV Block Diagram

DECOUPLING $\boldsymbol{R} \in$ PUIRGME@TS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{W}}=12 \mathrm{~V}$ Use Figure 1 configuration.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{C}_{\text {IN }}$	External Input Capacitor Requirement ($\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to 28 V , $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$)	$\mathrm{I}_{\text {Out }}=12 \mathrm{~A}, 3$ 10 $\mu \mathrm{F}$ Ceramics	20	30		$\mu \mathrm{F}$
Cout	External Output Capacitor Requirement ($\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$)	$\mathrm{I}_{\text {OUT }}=12 \mathrm{~A}$	100	200		$\mu \mathrm{F}$

OPGRATION

Power Module Description

The LTM4601AHV is a standalone nonisolated switching mode DC/DC power supply. It can deliver up to 12A of DC output current with some external input and output capacitors. This module provides precisely regulated output voltage programmable via one external resistor from $0.6 \mathrm{~V}_{\text {DC }}$ to $5.0 \mathrm{~V}_{\text {DC }}$ over a 4.5 V to 28 V wide input voltage. The typical application schematics are shown in Figures 19 and 20.

The LTM4601AHV has an integrated constant on-time current mode regulator, ultralow $R_{D S(O N)}$ FETs with fast switching speed and integrated Schottky diodes. The typical switching frequency is 850 kHz at full load. With current mode control and internal feedback loop compensation, the LTM4601AHV module has sufficient stability margins and good transient performance under a wide range of operating conditions and with a wide range of output capacitors, even all ceramic output capacitors.

Current mode control provides cycle-by-cycle fast current limit. Besides, foldback current limiting is provided in an overcurrent condition while $\mathrm{V}_{\text {FB }}$ drops. Internal overvoltage and undervoltage comparators pull the open-drain PGOOD output low if the output feedback voltage exits a $\pm 10 \%$ window around the regulation point. Furthermore, in an
overvoltage condition, internal top FET Q1 is turned off and bottom FET Q2 is turned on and held on until the overvoltage condition clears.
Pulling the RUN pin below 1 V forces the controller into its shutdown state, turning off both Q1 and Q2. At low load current, the module works in continuous current mode by default to achieve minimum output voltage ripple.
When DRV $_{\text {CC }}$ pin is connected to INTV $_{\text {CC }}$ an integrated 5 V linear regulator powers the internal gate drivers. If a 5 V external bias supply is applied on the $\mathrm{DRV}_{\text {Cc }}$ pin, then an efficiency improvement will occur due to the reduced power loss in the internal linear regulator. This is especially true at the high end of the input voltage range.

The LTM4601AHV has a very accurate differential remote sense amplifier with very low offset. This provides for very accurate remote sense voltage measurement. The MPGM pin, MARG0 pin and MARG1 pin are used to support voltage margining, where the percentage of margin is programmed by the MPGM pin, and the MARGO and MARG1 select margining.
The PLLIN pin provides frequency synchronization of the device to an external clock. The TRACK/SS pin is used for power supply tracking and soft-start programming.

LTM4601AHV

APPLICATIONS INFORMATION

The typical LTM4601AHV application circuits are shown in Figures 19 and 20. External component selection is primarily determined by the maximum load current and output voltage. Refer to Table 2 for specific external capacitor requirements for a particular application.

$\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ Step-Down Ratios

There are restrictions in the maximum $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ step down ratio that can be achieved for a given input voltage. These constraints are shown in the Typical Performance Characteristics curves labeled " $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ Step-Down Ratio". Note that additional thermal derating may apply. See the Thermal Considerations and Output Current Derating section of this data sheet.

Output Voltage Programming and Margining

The PWM controller has an internal 0.6 V reference voltage. As shown in the Block Diagram, a 1 M and a $60.4 \mathrm{k} 0.5 \%$ internal feedback resistor connects $V_{\text {OUT }}$ and $V_{\text {FB }}$ pins together. The $\mathrm{V}_{\text {OUT_LCL }}$ pin is connected between the 1 M and the 60.4 k resistor. The 1 M resistor is used to protect against an output overvoltage condition if the Vout_LCL pin is not connected to the output, or if the remote sense amplifier output is not connected to $\mathrm{V}_{\text {OUT_LCL. The }}$ The output voltage will default to 0.6 V . Adding a resistor $\mathrm{R}_{\text {SET }}$ from the $V_{\text {FB }}$ pin to SGND pin programs the output voltage:

$$
V_{\text {OUT }}=0.6 \mathrm{~V} \frac{60.4 \mathrm{k}+\mathrm{R}_{\text {SET }}}{R_{\text {SET }}}
$$

or equivalently:

$$
R_{\text {SET }}=\frac{60.4 \mathrm{k}}{\left(\frac{V_{\text {OUT }}}{0.6 \mathrm{~V}}-1\right)}
$$

Table 1. Standard 1\% Resistor Values

$\mathbf{R}_{\text {SET }}$ $\mathbf{(k \mathbf { \Omega })}$	Open	60.4	40.2	30.1	25.5	19.1	13.3	8.25
$\mathbf{V}_{\text {OUT }}$ (\mathbf{V})	0.6	1.2	1.5	1.8	2	2.5	3.3	5

The MPGM pin programs a current that when multiplied by an internal 10k resistor sets up the 0.6 V reference \pm offset for margining. A 1.18 V reference divided by the RPGM resistor on the MPGM pin programs the current. Calculate $\mathrm{V}_{\text {OUT(MARGIN) }}$:

$$
\mathrm{V}_{\text {OUT(MARGII) }}=\frac{\% \mathrm{~V}_{\text {OUT }}}{100} \cdot \mathrm{~V}_{\text {OUT }}
$$

where $\% \mathrm{~V}_{\text {OUT }}$ is the percentage of $\mathrm{V}_{\text {OUT }}$ you want to margin, and $\mathrm{V}_{\text {OUT(MARGIN) }}$ is the margin quantity in volts:

$$
\mathrm{R}_{\text {PGM }}=\frac{\mathrm{V}_{\text {OUT }}}{0.6 \mathrm{~V}} \cdot \frac{1.18 \mathrm{~V}}{\mathrm{~V}_{\text {OUT(MARGII) }}} \cdot 10 \mathrm{~K}
$$

where RPGM is the resistor value to place on the MPGM pin to ground.
The output margining will be added or subtracted from the nominal output voltage. This is determined by the MARGO and MARG1 pins. See the truth table below:

MARG1	MARG0	MODE
LOW	LOW	NO MARGIN
LOW	HIGH	MARGIN UP
HIGH	LOW	MARGIN DOWN
HIGH	HIGH	NO MARGIN

Input Capacitors

LTM4601AHV module should be connected to a low AC impedance DC source. Input capacitors are required to be placed adjacent to the module. In Figure 18, the 10 $\mu \mathrm{F}$ ceramic input capacitors are selected for their ability to handle the large RMS current into the converter. An input bulk capacitor of 100μ F is optional. This $100 \mu \mathrm{~F}$ capacitor is only needed ifthe input source impedance is compromised by long inductive leads or traces.

APPLICATIONS INFORMATION

For a buck converter, the switching duty-cycle can be estimated as:

$$
D=\frac{V_{\text {OUT }}}{V_{\text {IN }}}
$$

Without considering the inductor current ripple, the RMS current of the input capacitor can be estimated as:

$$
I_{\mathrm{CIN}(\mathrm{RMS})}=\frac{I_{\text {OUT(MAX) }}}{\eta \%} \cdot \sqrt{D \cdot(1-D)}
$$

In the above equation, $\eta \%$ is the estimated efficiency of the power module. $\mathrm{C}_{\text {IN }}$ can be a switcher-rated electrolytic aluminum capacitor, OS-CON capacitor or high volume ceramic capacitor. Note the capacitor ripple current ratings are often based on temperature and hours of life. This makes it advisable to properly derate the input capacitor, or choose a capacitor rated at a higher temperature than required. Always contact the capacitor manufacturer for derating requirements.
In Figures 19 and 20, the $10 \mu \mathrm{~F}$ ceramic capacitors are together used as a high frequency input decoupling capacitor. In a typical 12A output application, three very low ESR, X5R or X7R (extended temperature range), $10 \mu \mathrm{~F}$ ceramic capacitors are recommended. These decoupling capacitors should be placed directly adjacent to the module input pins in the PCB layout to minimize the trace inductance and high frequency AC noise. Each 10 1 F ceramic is typically good for 2A to 3A of RMS ripple current. Refer to your ceramics capacitor catalog for the RMS current ratings.

Multiphase operation with multiple LTM4601AHV devices in parallel will lower the effective input RMS ripple current due to the interleaving operation of the regulators. Application Note 77 provides a detailed explanation. Refer to Figure 2 for the input capacitor ripple current requirement as a function of the number of phases. The figure provides a ratio of RMS ripple current to DC load current as function of duty cycle and the number of paralleled phases.

Pick the corresponding duty cycle and the number of phases to arrive at the correct ripple current value. For example, the 2-phase parallel LTM4601AHV design provides 24A at 2.5 V output from a 12 V input. The duty cycle is $\mathrm{DC}=$ $2.5 \mathrm{~V} / 12 \mathrm{~V}=0.21$. The 2-phase curve has a ratio of ~ 0.25 for a duty cycle of 0.21 . This 0.25 ratio of RMS ripple current to a DC load current of 24A equals ~6A of input RMS ripple current for the external input capacitors.

Output Capacitors

The LTM4601AHV is designed for low output voltage ripple. The bulk output capacitors defined as Cout are chosen with low enough effective series resistance (ESR) to meet the output voltage ripple and transient requirements. COUT can be a low ESR tantalum capacitor, a low ESR polymer capacitor or a ceramic capacitor. The typical capacitance is $200 \mu \mathrm{~F}$ if all ceramic output capacitors are used. Additional output filtering may be required by the system designer, if further reduction of output ripple or dynamic transient spike is required. Table 2 shows a matrix of different output voltages and output capacitors to minimize the voltage droop and overshoot during a 5A/ μ s transient. The table optimizes total equivalent ESR and total bulk capacitance to maximize transient performance.

Figure 2. Normalized Input RMS Ripple Current vs Duty Factor for One to Six Modules (Phases)

LTM4601AHV

APPLICATIONS INFORMATION

Multiphase operation with multiple LTM4601AHV devices in parallel will lower the effective output ripple current due to the interleaving operation of the regulators. For example, each LTM4601AHV's inductor current of a 12 V to 2.5 V multiphase design can be read from the Inductor Ripple

Figure 3. Inductor Ripple Current vs Duty Cycle

Current versus Duty Cycle graph (Figure 3). The large ripple current at low duty cycle and high output voltage can be reduced by adding an external resistor from $\mathrm{f}_{\mathrm{SET}}$ to ground which increases the frequency. If the duty cycle is $D C=2.5 \mathrm{~V} / 12 \mathrm{~V}=0.21$, the inductor ripple current for 2.5 V output at 21% duty cycle is $\sim 6 \mathrm{~A}$ in Figure 3.
Figure 4 provides a ratio of peak-to-peak output ripple current to the inductor current as a function of duty cycle and the number of paralleled phases. Pick the corresponding duty cycle and the number of phases to arrive at the correct output ripple current ratio value. If a 2 -phase operation is chosen at a duty cycle of 21%, then 0.6 is the ratio. This 0.6 ratio of output ripple current to inductor ripple of 6 A equals 3.6A of effective output ripple current. Refer to Application Note 77 for a detailed explanation of output ripple current reduction as a function of paralleled phases.

The output voltage ripple has two components that are related to the amount of bulk capacitance and effective series resistance (ESR) of the output bulk capacitance.

Figure 4. Normalized Output Ripple Current vs Duty Cycle, DIr = $\mathrm{V}_{0} \mathrm{~T} / \mathrm{L}_{\mathbf{l}}$, DIr = Each Phase's Inductor Current

APPLICATIONS InFORMATION

Therefore, the output voltage ripple can be calculated with the known effective output ripple current. The equation: $\Delta \mathrm{V}_{\text {OUT }}(\mathrm{P}-\mathrm{P}) \approx\left(\Delta \mathrm{I}_{\mathrm{L}} /\left(8 \bullet \mathrm{f} \bullet \mathrm{m} \cdot \mathrm{C}_{\text {OUT }}\right)+\mathrm{ESR} \cdot \Delta \mathrm{l}_{\mathrm{L}}\right)$, where f is frequency and m is the number of parallel phases. This calculation process can be easily fulfilled using our Excel tool (Refer to the Linear Technology μ Module Power Design Tool).

Fault Conditions: Current Limit and Overcurrent Foldback

LTM4601AHV has a current mode controller, which inherently limits the cycle-by-cycle inductor current not only in steady-state operation, but also in transient.

To further limit current in the event of an overload condition, the LTM4601AHV provides foldback current limiting. If the output voltage falls by more than 50%, then the maximum output current is progressively lowered to about one sixth of its full current limit value. The current limit returns to its nominal value once $\mathrm{V}_{\text {OUT }}$ and V_{FB} have returned to their nominal values.

Soft-Start and Tracking

The TRACK/SS pin provides a means to either soft-start the regulator or track it to a different power supply. A capacitor on this pin will program the ramp rate of the output voltage. A $1.5 \mu \mathrm{~A}$ current source will charge up the external soft-start capacitor to 80% of the 0.6 V internal voltage reference plus or minus any margin delta. This will control the ramp of the internal reference and the output voltage. The total soft-start time can be calculated as:

$$
\mathrm{t}_{\text {SOFTSTART }}=0.8 \cdot\left(0.6 \mathrm{~V} \pm \mathrm{V}_{\text {OUT(MARGIN })}\right) \cdot \frac{\mathrm{C}_{S S}}{1.5 \mu \mathrm{~A}}
$$

When the RUN pin falls below 1.5 V , then the SS pin is reset to allow for proper soft-start control when the regulator is enabled again. Current foldback and force continuous mode are disabled during the soft-start process. The soft-start function can also be used to control the output ramp up time, so that another regulator can be easily tracked to it.

Output Voltage Tracking

Output voltage tracking can be programmed externally using the TRACK/SS pin. The output can be tracked up and down with another regulator. The master regulator's output is divided down with an external resistor divider that is the same as the slave regulator's feedback divider. Figure 5 shows an example of coincident tracking. Ratiometric modes of tracking can be achieved by selecting different resistor values to change the output tracking ratio. The master output must be greater than the slave output for the tracking to work. Figure 6 shows the coincident output tracking characteristics.

Figure 5. Coincident Tracking Schematic

Figure 6. Coincident Tracking

LTM4601AHV

APPLICATIONS INFORMATION

Run Enable

The RUN pin is used to enable the power module. The pin has an internal 5.1V Zener to ground. The pin can be driven with a logic input not to exceed 5 V .

The RUN pin can also be used as an undervoltage lock out (UVLO) function by connecting a resistor divider from the input supply to the RUN pin:

$$
V_{U V L O}=\frac{R 1+R 2}{R 2} \cdot 1.5 \mathrm{~V}
$$

Power Good

The PGOOD pin is an open-drain pin that can be used to monitor valid output voltage regulation. This pin monitors a $\pm 10 \%$ window around the regulation point and tracks with margining.

COMP Pin

This pin is the external compensation pin. The module has already been internally compensated for most output voltages. Table 2 is provided for most application requirements. A spice model will be provided for other control loop optimization.

PLLIN

The power module has a phase-locked loop comprised of an internal voltage controlled oscillator and a phase detector. This allows the internal top MOSFET turn-on to be locked to the rising edge of the external clock. The frequency range is $\pm 30 \%$ around the operating frequency of 850 kHz . A pulse detection circuit is used to detect a clock on the PLLIN pin to turn on the phase lock loop. The pulse width of the clock has to be at least 400 ns and 2 V in amplitude. During the start-up of the regulator, the phase-lock loop function is disabled.

INTV ${ }_{\text {cC }}$ and DRV ${ }_{\text {cc }}$ Connection

An internal low dropout regulator produces an internal 5 V supply that powers the control circuitry and $\mathrm{DRV}_{\mathrm{CC}}$ for driving the internal power MOSFETs. Therefore, if the system does not have a 5 V power rail, the LTM4601AHV can be directly powered by $\mathrm{V}_{\mathbb{I N}}$. The gate driver current
through the LDO is about 20 mA . The internal LDO power dissipation can be calculated as:

$$
\text { PLDo_Loss }=20 \mathrm{~mA} \cdot\left(\mathrm{~V}_{\text {IN }}-5 \mathrm{~V}\right)
$$

The LTM4601AHV also provides the external gate driver voltage pin $\mathrm{DRV}_{\mathrm{cc}}$. If there is a 5 V rail in the system, it is recommended to connect $\mathrm{DRV}_{\mathrm{cc}}$ pin to the external 5 V rail. This is especially true for higher input voltages. Do not apply more than 6 V to the $\mathrm{DRV}_{c c}$ pin. A 5 V output can be used to power the $\operatorname{DRV}_{C C}$ pin with an external circuit as shown in Figure 18.

Parallel Operation of the Module

The LTM4601AHV device is an inherently current mode controlled device. Parallel modules will have very good current sharing. This will balance the thermals on the design. Figure 21 shows a schematic of the parallel design. The voltage feedback equation changes with the variable n as modules are paralleled:

$$
V_{\text {OUT }}=0.6 \mathrm{~V} \frac{\frac{60.4 \mathrm{k}}{\mathrm{~N}}+\mathrm{R}_{\mathrm{FB}}}{\mathrm{R}_{\mathrm{FB}}}
$$

or equivalently:

$$
\mathrm{R}_{\mathrm{FB}}=\frac{\frac{60.4 \mathrm{k}}{\mathrm{~N}}}{\left(\frac{\mathrm{~V}_{\text {OUT }}}{0.6 \mathrm{~V}}-1\right)}
$$

where N is the number of paralleled modules.
Figure 21 shows two LTM4601AHV modules used in a parallel design. An LTM4601AHV device can be used without the differential amplifier.

Thermal Considerations and Output Current Derating

The power loss curves in Figures 7 and 8 can be used in coordination withthe load current derating curves in Figures 9 to 16 for calculating an approximate θ_{JA} for the module with various heat sinking methods. Thermal models are derived from several temperature measurements at the bench and thermal modeling analysis. Thermal Application Note 103 provides adetailed explanation of the analysis for

APPLICATIONS INFORMATION

Figure 7. 1.5V Output Power Loss

Figure 9. No Heat Sink $5 \mathrm{~V}_{\text {IN }}$

Figure 11. No Heat Sink $12 \mathrm{~V}_{\mathrm{IN}}$

Figure 8. 3.3V Output Power Loss

Figure 10. BGA Heat Sink $5 \mathrm{~V}_{\text {IN }}$

Figure 12. BGA Heat Sink $12 V_{I N}$

LTM4601AHV

APPLICATIONS INFORMATION

Figure 13. $12 V_{I N}, 3.3 V_{\text {OUT }}$, No Heat Sink

Figure 15. $\mathbf{2 4 V}_{\mathrm{V}_{\mathrm{N}}}, 1.5 \mathrm{~V}_{\text {OUT }}$, No Heat Sink

Figure 14. $12 V_{I_{N}}, 3.3 V_{\text {OUT }}$, BGA Heat Sink

Figure 16. $\mathbf{2 4 V}_{\text {IN }}, \mathbf{1 . 5 V}_{\text {OUT }}$, BGA Heat Sink

APPLICATIONS INFORMATION

Table 2. Output Voltage Response Versus Component Matrix* (Refer to Figures 19 and 20), OA to 6A Load Step TYPICAL MEASURED VALUES

Cout1 VENDORS	PART NUMBER	Cout2 VENDORS	PART NUMBER
TDK	C4532X5R0J107MZ $(100 \mu F 6.3 \mathrm{~V})$	SANYO POSCAP	6TPE330MIL (330
TAIYO 6.3 V)			
TAIYO YUDEN	JMK432BJ107MU-T $(100 \mu F 6.3 \mathrm{~V})$	SANYO POSCAP	2R5TPE470M9 $(470 \mu F, 2.5 \mathrm{~V})$

$\mathrm{V}_{\text {OUT }}$ (V)	$\begin{gathered} \mathrm{C}_{\mathrm{IN}} \\ \text { (CERAMIC) } \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{IN}_{1}} \\ \text { (BULK) } \end{gathered}$	$\begin{gathered} \text { CouT1 }^{\text {(CERAMIC) }} \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\text {OUT2 }} \\ & \text { (BULK) } \end{aligned}$	$\mathrm{C}_{\text {comp }}$	C3	$\begin{aligned} & \hline V_{I N} \\ & (V) \end{aligned}$	$\begin{gathered} \hline \text { DROOP } \\ (\mathrm{mV}) \end{gathered}$	PEAK TO PEAK (mV)	$\begin{aligned} & \hline \text { RECOVERY } \\ & \text { TIME (} \mu \mathrm{s} \text {) } \end{aligned}$	$\begin{aligned} & \text { LOAD STEP } \\ & (\mathrm{A} / \mathrm{\mu s}) \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}} \\ & (\mathrm{k} \Omega) \end{aligned}$
1.2	$2 \times 10 \mathrm{FF} 35 \mathrm{~V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 HF 4V	NONE	47pF	5	70	140	30	6	60.4
1.2	$2 \times 10 \mathrm{~F} \mathrm{~F} 5 \mathrm{~V}$	150¢F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 2.5 V	NONE	100pF	5	35	70	20	6	60.4
1.2	$2 \times 10 \mathrm{~F}$ 35V	150山F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	3304F 6.3 V	NONE	22pF	5	70	140	20	6	60.4
1.2	$2 \times 10 \mathrm{FF} 35 \mathrm{~V}$	150¢F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	5	40	93	30	6	60.4
1.2	$2 \times 10 \mathrm{FF} 35 \mathrm{~V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 HF 4 V	NONE	100pF	12	70	140	30	6	60.4
1.2	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 2.5V	NONE	100pF	12	35	70	20	6	60.4
1.2	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	330^F 6.3 V	NONE	22pF	12	70	140	20	6	60.4
1.2	$2 \times 10 \mu \mathrm{~F} \mathrm{35V}$	150¢F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	12	49	98	20	6	60.4
1.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 HF 4V	NONE	100pF	5	48	100	35	6	40.2
1.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 2.5V	NONE	33pF	5	54	109	30	6	40.2
1.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	3304F 6.3 V	NONE	100pF	5	44	84	30	6	40.2
1.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	5	61	118	30	6	40.2
1.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470uF 4V	NONE	100pF	12	48	100	35	6	40.2
1.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 2.5V	NONE	33pF	12	54	109	30	6	40.2
1.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	330uF 6.3 V	NONE	100pF	12	44	89	25	6	40.2
1.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	12	54	108	25	6	40.2
1.8	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470 HF 4V	NONE	47pF	5	48	100	30	6	30.1
1.8	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470uF 2.5 V	NONE	100pF	5	44	90	20	6	30.1
1.8	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	3304F 6.3V	NONE	100pF	5	68	140	30	6	30.1
1.8	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	5	65	130	30	6	30.1
1.8	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 4 V	NONE	100pF	12	60	120	30	6	30.1
1.8	$2 \times 10 \mathrm{FF} 35 \mathrm{~V}$	150¢F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 2.5V	NONE	100pF	12	60	120	30	6	30.1
1.8	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	3304F 6.3V	NONE	100pF	12	68	140	30	6	30.1
1.8	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	12	65	130	20	6	30.1
2.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 4 V	NONE	100pF	5	48	103	30	6	19.1
2.5	$2 \times 10 \mu \mathrm{~F} \mathrm{35V}$	150¢F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	330uF 6.3 V	NONE	220pF	5	56	113	30	6	19.1
2.5	$2 \times 10 \mathrm{FF} 35 \mathrm{~V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 4 V	NONE	NONE	5	57	116	30	6	19.1
2.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	5	60	115	25	6	19.1
2.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 4 V	NONE	100pF	12	48	103	30	6	19.1
2.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470¢F 4V	NONE	NONE	12	51	102	30	6	19.1
2.5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$2 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	330^F 6.3 V	NONE	220pF	12	56	113	30	6	19.1
2.5	$2 \times 10 \mathrm{FF} 35 \mathrm{~V}$	150¢F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	220pF	12	70	140	25	6	19.1
3.3	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	3304F 6.3V	NONE	100pF	7	120	240	30	6	13.3
3.3	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$1 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470¢F 4V	NONE	100pF	7	110	214	30	6	13.3
3.3	$2 \times 10 \mu \mathrm{~F} \mathrm{35V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470¢F 4V	NONE	100pF	7	110	214	30	6	13.3
3.3	$2 \times 10 \mu \mathrm{~F} \mathrm{35V}$	150¢F 35V	$4 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	NONE	NONE	100pF	7	114	230	30	6	13.3
3.3	$2 \times 10 \mu \mathrm{~F} \mathrm{35V}$	150¢F 35V	$1 \times 100 \mathrm{FF} 6.3 \mathrm{~V}$	470^F 4 V	NONE	100pF	12	110	214	30	6	13.3
3.3	$2 \times 10 \mathrm{FF} 35 \mathrm{~V}$	150¢F 35V	$3 \times 22 \mu \mathrm{~F} 6.3 \mathrm{~V}$	470^F 4 V	NONE	150pF	12	110	214	35	6	13.3
3.3	$2 \times 10 \mu \mathrm{~F} \mathrm{35V}$	150山F 35V	$2 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	330^F 6.3 V	NONE	100pF	12	110	214	35	6	13.3
3.3	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150^F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	100pF	12	114	230	30	6	13.3
5	$2 \times 10 \mathrm{FF} 35 \mathrm{~V}$	150^F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	22pF	15	188	375	25	6	8.25
5	$2 \times 10 \mu \mathrm{~F} 35 \mathrm{~V}$	150¢F 35V	$4 \times 100 \mu \mathrm{~F} 6.3 \mathrm{~V}$	NONE	NONE	22pF	20	159	320	25	6	8.25

${ }^{*} X 7 \mathrm{R}$ is recommended for extended temperature range

LTM4601AHV

APPLICATIONS INFORMATION

Table 3. 1.5V Output at 12A

DERATING CURVE	$\mathbf{V}_{\text {IN }}(\mathbf{V})$	POWER LOSS CURVE	AIR FLOW (LFM)	HEAT SINK	$\theta_{\mathbf{J A}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$
Figures $9,11,15$	$5,12,24$	Figure 7	0	None	15.2
Figures $9,11,15$	$5,12,24$	Figure 7	200	None	14
Figures $9,11,15$	$5,12,24$	Figure 7	400	None	12
Figures $10,12,16$	$5,12,24$	Figure 7	0	BGA Heat Sink	13.9
Figures $10,12,16$	$5,12,24$	Figure 7	200	BGA Heat Sink	11.3
Figures $10,12,16$	$5,12,24$	Figure 7	400	BGA Heat Sink	10.25

Table 4. 3.3V Output at 12A

DERATING CURVE	$\mathbf{V}_{\text {IN }}(\mathbf{V})$	POWER LOSS CURVE	AIR FLOW (LFM)	HEAT SINK	$\theta_{\mathbf{J A}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$
Figure 13	12	Figure 8	0	None	15.2
Figure 13	12	Figure 8	200	None	14.6
Figure 13	12	Figure 8	400	None	13.4
Figure 14	12	Figure 8	0	BGA Heat Sink	13.9
Figure 14	12	Figure 8	200	BGA Heat Sink	11.1
Figure 14	12	Figure 8	400	BGA Heat Sink	10.5

Heat Sink Manufacturer

Wakefield Engineering	Part No: 20069	Phone: 603-635-2800

APPLICATIONS INFORMATION

the thermal models and the derating curves. Tables 3 and 4 provide a summary of the equivalent θ_{JA} for the noted conditions. These equivalent θ_{JA} parameters are correlated to the measured values, and are improved with air flow. The case temperature is maintained at $100^{\circ} \mathrm{C}$ or below for the derating curves. The maximum case temperature of $100^{\circ} \mathrm{C}$ is to allow for a rise of about $13^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ inside the μ Module regulator with a thermal resistance θ_{Jc} from junction to case between $6^{\circ} \mathrm{C} / \mathrm{W}$ to $9^{\circ} \mathrm{C} / \mathrm{W}$. This will maintain the maximum junction temperature inside the device below $125^{\circ} \mathrm{C}$.

Safety Considerations

The LTM4601AHV modules do not provide isolation from $V_{\text {IN }}$ to $V_{\text {OUT }}$. There is no internal fuse. If required, a slow blow fuse with a rating twice the maximum input current needs to be provided to protect each unit from catastrophic failure.

Layout Checklist/Example

The high integration of LTM4601AHV makes the PCB board layout very simple and easy. However, to optimize
its electrical and thermal performance, some layout considerations are still necessary.

- Use large PCB copper areas for high current path, including V_{IN}, PGND and $\mathrm{V}_{\text {OUT }}$. It helps to minimize the PCB conduction loss and thermal stress.
- Place high frequency ceramic input and output capacitors next to the $\mathrm{V}_{\text {IN }}$, PGND and $\mathrm{V}_{\text {OUT }}$ pins to minimize high frequency noise.
- Place a dedicated power ground layer underneath the unit. Refer frequency synchronization source to power ground.
- To minimize the via conduction loss and reduce module thermal stress, use multiple vias for interconnection between top layer and other power layers.
- Do not put vias directly on pads unless they are capped.
- Use a separated SGND ground copper area for components connected to signal pins. Connect the SGND to PGND underneath the unit.
Figure 17 gives a good example of the recommended layout.

Figure 17. Recommended Layout

LTM4601AHV

APPLICATIONS INFORMATION

Frequency Adjustment

The LTM4601AHV is designed to typically operate at 850 kHz across most input conditions. The $\mathrm{f}_{\text {SET }}$ pin is normally left open or decoupled with an optional 1000pF capacitor. The switching frequency has been optimized for maintaining constant output ripple noise over most operating ranges. The 850 kHz switching frequency and the 400 ns minimum off time can limit operation at higher duty cycles like 5 V to 3.3 V , and produce excessive inductor ripple currents for lower duty cycle applications like 28 V to 5 V . The 5 V and 3.3V drop out curves are modified by adding an external resistor on the $\mathrm{f}_{\text {SET }}$ pin to allow for lower input voltage operation, or higher input voltage operation.

Example for 5V Output

LTM4601AHV minimum on-time $=100 \mathrm{~ns}$;
$\mathrm{t}_{\text {ON }}=\left[\left(\mathrm{V}_{\text {OUT }} \cdot 10 \mathrm{pf}\right) / I_{\text {fSET }}\right]$, for $\mathrm{V}_{\text {OUT }}$ use 4.8 V .
LTM4601AHV minimum off-time $=400 \mathrm{~ns}$;
$t_{\text {OFF }}=t-t_{\text {ON }}$, where $t=1 /$ Frequency
Duty Cycle $=\mathrm{t}_{\mathrm{ON}} / \mathrm{t}$ or $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$
Equations for setting frequency:
$\mathrm{I}_{\text {fSET }}=\left[\mathrm{V}_{\text {IN }} /\left(3 \cdot \mathrm{R}_{\text {fSET }}\right)\right]$, for 28V operation, $\mathrm{I}_{\text {fSET }}=238 \mu \mathrm{~A}$, $\mathrm{t}_{\mathrm{ON}}=\left[(4.8 \cdot 10 \mathrm{pF}) / \mathrm{I}_{\mathrm{fSET}}\right], \mathrm{t}_{\mathrm{ON}}=202 \mathrm{~ns}$, where the internal $\mathrm{R}_{\mathrm{fSET}}$ is 39.2 k . Frequency $=\left[\mathrm{V}_{\text {OUT }} /\left(\mathrm{V}_{\text {IN }} \bullet \mathrm{t}_{\mathrm{ON}}\right)\right]=[5 \mathrm{~V} /(28 \bullet$ 202 ns)] $\sim 884 \mathrm{kHz}$. The inductor ripple current begins to get high at the higher input voltages due to a larger voltage across the inductor. This is noted in the Typical Inductor Ripple Current verses Duty Cycle graph (Figure 3) where $\mathrm{I}_{\mathrm{L}} \approx 10 \mathrm{~A}$ at 20% duty cycle. The inductor ripple current can be lowered at the higher input voltages by adding an external resistor from ${ }_{\text {SET }}$ to ground to increase the switching frequency. A 7 A ripple current is chosen, and the total peak current is equal to $1 / 2$ of the 7 A ripple current plus the output current. The 5 V output current is limited to 8 A , so the total peak current is less than 11.5A. This is below
the 14A peak specified value. A 100k resistor is placed from $\mathrm{f}_{\mathrm{SET}}$ to ground, and the parallel combination of 100k and 39.2 k equates to 28 k . The $\mathrm{I}_{\text {fSET }}$ calculation with 28 k and 28 V input voltage equals $333 \mu \mathrm{~A}$. This equates to a t_{ON} of 144 ns . This will increase the switching frequency from $\sim 884 \mathrm{kHz}$ to $\sim 1.24 \mathrm{MHz}$ for the 28 V to 5 V conversion. The minimum on time is above 100 ns at 28 V input. Since the switching frequency is approximately constant over input and output conditions, then the lower input voltage range is limited to 10 V for the 1.24 MHz operation due to the 400 ns minimum off time. Equation: $\mathrm{t}_{\mathrm{ON}}=\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right) \cdot$ (1/Frequency) equates to a 400ns on time, and a 400ns off time. The " $V_{\text {IN }}$ to $V_{\text {OUT }}$ Step-Down Ratio" curves reflect an operating range of 10 V to 28 V for 1.24 MHz operation with a 100k resistor to ground as shown in Figure 18, and an 8 V to 16 V operation for $\mathrm{f}_{\text {SET }}$ floating. These modifications are made to provide wider input voltage ranges for the 5 V output designs while limiting the inductor ripple current, and maintaining the 400 ns minimum off time.

Example for 3.3V Output

LTM4601AHV minimum on-time = 100ns;
$\mathrm{t}_{\text {ON }}=\left[\left(\mathrm{V}_{\text {OUT }} \cdot 10 \mathrm{pF}\right) / I_{\text {fSET }}\right]$, for $\mathrm{V}_{\text {OUT }}$ use 3.3 V .
LTM4601AHV minimum off-time $=400 \mathrm{~ns}$;
$t_{\text {OFF }}=t-t_{0 N}$, where $t=1 /$ Frequency
Duty Cycle (DC) = $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}$ or $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$
Equations for setting frequency:
$\mathrm{I}_{\text {fSET }}=\left[\mathrm{V}_{\text {IN }} /\left(3 \cdot \mathrm{R}_{\text {fSET }}\right)\right]$, for 28 V operation, $\mathrm{I}_{\text {fSET }}=238 \mu \mathrm{~A}$, $\mathrm{t}_{\text {ON }}=\left[(3.3 \cdot 10 \mathrm{pf}) / I_{\text {fSET }}\right], \mathrm{t}_{\text {ON }}=138.7 \mathrm{~ns}$, where the internal $\mathrm{R}_{\text {fSET }}$ is 39.2 k . Frequency $=\left[\mathrm{V}_{\text {OUT }} /\left(\mathrm{V}_{\text {IN }} \bullet \mathrm{t}_{\mathrm{ON}}\right)\right]=[3.3 \mathrm{~V} /(28 \bullet$ $138.7 \mathrm{~ns})] \sim 850 \mathrm{kHz}$. The minimum on-time and minimumoff time are within specification at 139 ns and 1037 ns . The 4.5 V minimum input for converting 3.3 V output will not meet the minimum off-time specification of 400 ns . $\mathrm{t}_{\mathrm{ON}}=$ 868 ns , Frequency $=850 \mathrm{kHz}, \mathrm{t}_{\mathrm{OFF}}=315 \mathrm{~ns}$.

0

APPLICATIONS INFORMATION

Solution

Lower the switching frequency at lower input voltages to allow for higher duty cycles, and meet the 400ns minimum off-time at 4.5 V input voltage. The off-time should be about 500 ns with 100 ns guard band. The duty cycle for $(3.3 \mathrm{~V} / 4.5)=\sim 73 \%$. Frequency $=(1-\mathrm{DC}) / \mathrm{t}_{\mathrm{OFF}}$ or $(1-0.73) / 500 \mathrm{~ns}=540 \mathrm{kHz}$. The switching frequency needs to be lowered to 540 kHz at 4.5 V input. $\mathrm{t}_{\mathrm{ON}}=\mathrm{DC} /$ frequency, or $1.35 \mu \mathrm{~s}$. The f SET pin voltage compliance is $1 / 3$ of $\mathrm{V}_{\text {IN }}$, and the $\mathrm{I}_{\mathrm{fSET}}$ current equates to $38 \mu \mathrm{~A}$ with the internal $39.2 k$. The $l_{\text {fSET }}$ current needs to be $24 \mu A$ for

540 kHz operation. As shown in Figure 19, a resistor can be placed from $V_{\text {OUT }}$ to $f_{\text {SET }}$ to lower the effective $I_{\text {fSET }}$ current out of the fet pin to $24 \mu \mathrm{~A}$. The $\mathrm{f}_{\text {SET }}$ pin is $4.5 \mathrm{~V} / 3$ $=1.5 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$, therefore 130 k will source $14 \mu \mathrm{~A}$ into the fet node and lower the $\mathrm{I}_{\text {fSET }}$ current to $24 \mu \mathrm{~A}$. This enables the 540 kHz operation and the 4.5 V to 28 V input operation for down converting to 3.3 V output. The frequency will scale from 540 kHz to 1.1 MHz over this input range. This provides for an effective output current of 8 A over the input range.

Figure 18. 5V at 8A Design Without Differential Amplifier

LTM4601AHV

APPLICATIONS INFORMATION

Figure 19. 3.3V at 10A Design

Figure 20. Typical 22V to $28 \mathrm{~V}, 1.5 \mathrm{~V}$ at 10 A Design, 500 kHz

APPLICATIONS INFORMATION

*C5 OPTIONAL TO REDUCE ANY LC RINGING.
NOT NEEDED FOR LOW INDUCTANCE PLANE CONNECTION
Figure 21. 2-Phase Parallel, 3.3V at 20A Design

LTM4601AHV

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS

PACKAGE DESCRIPTION

PACKAGE DESCRIPTION

Pin Assignment Table 5
(Arranged by Pin Number)

| PIN NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A1 $\mathrm{V}_{\text {IN }}$ | B1 $\mathrm{V}_{\text {IN }}$ | C1 $\mathrm{V}_{\text {IN }}$ | D1 PGND | E1 PGND | F1 PGND |
| A2 $\mathrm{V}_{\text {IN }}$ | B2 $\mathrm{V}_{\text {IN }}$ | C2 $\mathrm{V}_{\text {IN }}$ | D2 PGND | E2 PGND | F2 PGND |
| A3 $\mathrm{V}_{\text {IN }}$ | B3 $\mathrm{V}_{\text {IN }}$ | C3 $\mathrm{V}_{\text {IN }}$ | D3 PGND | E3 PGND | F3 PGND |
| A4 $\mathrm{V}_{\text {IN }}$ | B4 $\mathrm{V}_{\text {IN }}$ | C4 $\mathrm{V}_{\text {IN }}$ | D4 PGND | E4 PGND | F4 PGND |
| A5 $\mathrm{V}_{\text {IN }}$ | B5 $\mathrm{V}_{\text {IN }}$ | C5 $\mathrm{V}_{\text {IN }}$ | D5 PGND | E5 PGND | F5 PGND |
| A6 $\mathrm{V}_{\text {IN }}$ | B6 $\mathrm{V}_{\text {IN }}$ | C6 $\mathrm{V}_{\text {IN }}$ | D6 PGND | E6 PGND | F6 PGND |
| A7 INTV ${ }_{\text {c }}$ | B7 PGND | C7 PGND | D7 | E7 PGND | F7 PGND |
| A8 PLLIN | B8 | C8 | D8 PGND | E8 | F8 PGND |
| A9 TRACK/SS | B9 PGND | C9 PGND | D9 INTV ${ }_{\text {CC }}$ | E9 PGND | F9 PGND |
| A10 RUN | B10 | C10 MTP1 | D10 MPT2 | E10 | F10 |
| A11 COMP | B11 MPGM | C11 f $\mathrm{f}_{\text {SET }}$ | D11 MPT3 | E11 | F11 PGO0D |
| A12 MPGM | B12 $\mathrm{f}_{\text {SET }}$ | C12 MARGO | D12 MARG1 | E12 DRV ${ }_{\text {CC }}$ | F12 $\mathrm{V}_{\text {FB }}$ |

| PIN NAME |
| :---: | :---: | :---: | :---: | :---: | :---: |
| G1 PGND | H1 PGND | J1 $\mathrm{V}_{\text {OUT }}$ | K1 $\mathrm{V}_{\text {OUT }}$ | L1 $\mathrm{V}_{\text {OUT }}$ | M1 $\mathrm{V}_{\text {OUT }}$ |
| G2 PGND | H2 PGND | J2 $\mathrm{V}_{\text {OUT }}$ | K2 $V_{\text {OUT }}$ | L2 V ${ }_{\text {OUT }}$ | M2 $\mathrm{V}_{\text {OUt }}$ |
| G3 PGND | H3 PGND | J3 $\mathrm{V}_{\text {OUT }}$ | K3 V ${ }_{\text {OUT }}$ | L3 $\mathrm{V}_{\text {OUT }}$ | M3 $\mathrm{V}_{\text {OUT }}$ |
| G4 PGND | H4 PGND | J4 $\mathrm{V}_{\text {OUT }}$ | K4 V ${ }_{\text {OUT }}$ | L4 V ${ }_{\text {OUT }}$ | M4 $\mathrm{V}_{\text {OUT }}$ |
| G5 PGND | H5 PGND | J5 $\mathrm{V}_{\text {OUT }}$ | K5 V ${ }_{\text {OUT }}$ | L5 V ${ }_{\text {OUT }}$ | M5 $\mathrm{V}_{\text {OUT }}$ |
| G6 PGND | H6 PGND | J6 $\mathrm{V}_{\text {OUT }}$ | K6 $\mathrm{V}_{\text {OUT }}$ | L6 V ${ }_{\text {OUT }}$ | M6 $\mathrm{V}_{\text {OUT }}$ |
| G7 PGND | H7 PGND | J7 $\mathrm{V}_{\text {OUT }}$ | K7 V ${ }_{\text {OUT }}$ | L7 V ${ }_{\text {OUT }}$ | M7 $\mathrm{V}_{\text {OUT }}$ |
| G8 PGND | H8 PGND | J8 Vout | K8 V ${ }_{\text {OUT }}$ | L8 V ${ }_{\text {OUT }}$ | M8 Vout |
| G9 PGND | H9 PGND | J9 $\mathrm{V}_{\text {OUT }}$ | K9 $\mathrm{V}_{\text {OUT }}$ | L9 V $\mathrm{VOUT}^{\text {l }}$ | M9 $\mathrm{V}_{\text {OUT }}$ |
| G10 | H10 | J10 V OUT | K10 $\mathrm{V}_{\text {OUT }}$ | L10 V OUT | M10 $\mathrm{V}_{\text {OUT }}$ |
| G11 SGND | H11 SGND | J11 | K11 Vout | L11 V ${ }_{\text {OUT }}$ | M11 V ${ }_{\text {OUT }}$ |
| G12 PG00D | H12 SGND | J12 $\mathrm{V}_{\text {OSNS }}{ }^{+}$ | K12 DIFFV ${ }_{\text {OUT }}$ | L12 V ${ }_{\text {OUT_LCL }}$ | M12 $\mathrm{V}_{\text {OSNS }}{ }^{-}$ |

LTM4601AHV

PACKAGG DESCRIPTION

Pin Assignment Tables (Arranged by Pin Function)

PIN NAME	
A1	$V_{\text {IN }}$
A2	$V_{\text {IN }}$
A3	$V_{\text {IN }}$
A4	$V_{\text {IN }}$
A5	$V_{\text {IN }}$
A6	$V_{\text {IN }}$
B1	$V_{\text {IN }}$
B2	$V_{\text {IN }}$
B3	$V_{\text {IN }}$
B4	$V_{\text {IN }}$
B5	$V_{\text {IN }}$
B6	$V_{\text {IN }}$
C1	$V_{\text {IN }}$
C2	$V_{\text {IN }}$
C3	$V_{\text {IN }}$
C4	$V_{\text {IN }}$
C5	$V_{\text {IN }}$
C6	$V_{\text {IN }}$

PIN NAME	
D1	PGND
D2	PGND
D3	PGND
D4	PGND
D5	PGND
D6	PGND
D8	PGND
E1	PGND
E2	PGND
E3	PGND
E4	PGND
E5	PGND
E6	PGND
E7	PGND
F1	PGND
F2	PGND
F3	PGND
F4	PGND
F5	PGND
F6	PGND
F7	PGND
F8	PGND
F9	PGND
G1	PGND
G2	PGND
G3	PGGND
G4	PGGND
G6	PGND
G7	PGND
G8	PGND
G9	PGND
HG	PGND
H3	PGND
H4	PGND
H5	PGND
H6	PGND
H7	PGND
H8	PGND
H9	PGND
	PGND

PIN	
NAME	
J1	$V_{\text {OUT }}$
J2	$V_{\text {OUT }}$
J3	$V_{\text {OUT }}$
J4	$V_{\text {OUT }}$
J5	$V_{\text {OUT }}$
J6	$V_{\text {OUT }}$
J7	$V_{\text {OUT }}$
J8	$V_{\text {OUT }}$
J9	$V_{\text {OUT }}$
J10	$V_{\text {OUT }}$
K1	$V_{\text {OUT }}$
K2	$V_{\text {OUT }}$
K3	$V_{\text {OUT }}$
K4	$V_{\text {OUT }}$
K5	$V_{\text {OUT }}$
K6	$V_{\text {OUT }}$
K7	$V_{\text {OUT }}$
K8	$V_{\text {OUT }}$
K9	$V_{\text {OUT }}$
K10	$V_{\text {OUT }}$
K11	$V_{\text {OUT }}$
L1	$V_{\text {OUT }}$
L2	$V_{\text {OUT }}$
L3	$V_{\text {OUT }}$
L4	$V_{\text {OUT }}$
L5	$V_{\text {OUT }}$
L6	$V_{\text {OUT }}$
L7	$V_{\text {OUT }}$
L8	$V_{\text {OUT }}$
L9	$V_{\text {OUT }}$
L10	$V_{\text {OUT }}$
L11	$V_{\text {OUT }}$
M1	$V_{\text {OUT }}$
M2	$V_{\text {OUT }}$
M3	$V_{\text {OUT }}$
M4	$V_{\text {OUT }}$
M6	$V_{\text {OUT }}$
M7	$V_{\text {OUT }}$
M8	$V_{\text {OUT }}$
M10	$V_{\text {OUT }}$
M11	$V_{\text {OUT }}$
MOUT	
M	$V_{\text {OUT }}$

PIN NAME	
A7	INTVCC
A8	PLLIN
A9	TRACK/SS
A10	RUN
A11	COMP
A12	MPGM
B12	fSET $^{\text {SE }}$
C12	MARG0
D12	MARG1 2
E12	DRV $_{\text {CC }}$
F12	VFB $^{\text {G12 }}$
PGOOD	
H12	SGND
J12	V $_{\text {OSNS }}{ }^{+}$
K12	DIFFV $_{\text {OUT }}$
L12	V $_{\text {OUT_LCL }}$
M12	V $_{\text {OSNS }}$

PIN NAME	
B7	PGND
B8	-
B9	PGND
B10	-
B11	MPGM
C7	PGND
C8	-
C9	PGND
C10	MTP1
C11	fSET
D7	-
D8	PGND
D9	INTVCC
D10	MTP2
D11	MTP3
E8	-
E9	PGND
E10	-
E11	-
F10	-
F11	PG00D
G10	-
G11	SGND
H10	-
H11	SGND
J11	-

REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$12 / 10$	Updated DIFFV OUT	
		Updange specification in the Electrical Chacteristics section. MTP2, MTP3 pin description in the Pin Functions section. Updated the Simplified Block Diagam.	3
		Edited various text in the Applications Information section. Updated Figures 7 and 8.	8

LTM4601AHV

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC2900	Quad Supply Monitor with Adjustable Reset Timer	Monitors Four Supplies, Adjustable Reset Timer
LTC2923	Power Supply Tracking Controller	Tracks Both Up and Down, Power Supply Sequencing
LT3825/LT3837	Synchronous Isolated Flyback Controllers	No Optocoupler Required, 3.3V, 12A Output, Simple Design
LTM4600	10A DC/DC μ Module Regulator	Fast Transient Response, LTM 4600 HVMPV : $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Tested
LTM4601	12A DC/DC μ Module Regulator with PLL, Output Tracking/ Margining and Remote Sensing	Synchronizable, PolyPhase Operation to 48A, LTM4601-1 Version Has No Remote Sensing
LTM4602	6A DC/DC μ Module Regulator	Pin Compatible with the LTM4600
LTM4603	6A DC/DC μ Module Regulator with PLL and Output Tracking/Margining and Remote Sensing	Synchronizable, PolyPhase Operation, LTM4603-1 Version Has No Remote Sensing, Pin Compatible with the LTM4601
LTM4604A	4A Low Voltage DC/DC μ Module Regulator	$\begin{aligned} & 2.375 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}, 0.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}, \\ & 9 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.3 \mathrm{~mm} \text { (Ultra-thin) LGA Package } \end{aligned}$
LTM4608A	8A Low Voltage DC/DC μ Module Regulator	$\begin{aligned} & 2.375 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}, 0.6 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V} ; \\ & 9 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm} \text { LGA Package } \end{aligned}$
LTM8020	200mA, 36V ${ }_{\text {IN }}$ DC/DC μ Module Regulator	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 1.25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}, \\ & 6.25 \mathrm{~mm} \times 6.25 \mathrm{~mm} \times 2.32 \mathrm{~mm} \text { LGA Package } \end{aligned}$
LTM8021	500mA, 36V ${ }_{\text {IN }} \mathrm{DC} / \mathrm{DC} \mu$ Module Regulator	$\begin{aligned} & 3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 0.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}, \\ & 11.25 \mathrm{~mm} \times 6.25 \mathrm{~mm} \times 2.8 \mathrm{~mm} \text { LGA Package } \end{aligned}$
LTM8022/ LTM8023	1A/2A, 36V ${ }_{\text {IN }} \mathrm{DC} / \mathrm{DC} \mu$ Module Regulator Family	$3.6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 0.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 10 \mathrm{~V}$, Pin Compatible, $11.25 \mathrm{~mm} \times 9 \mathrm{~mm} \times 2.8 \mathrm{~mm}$ LGA Package

