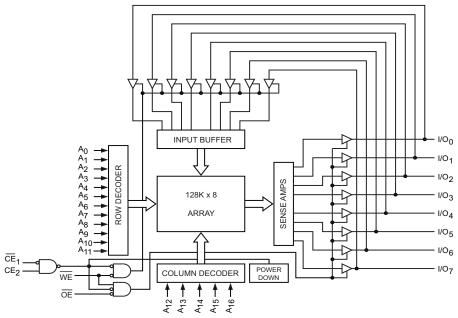


Features

- Very high-speed: 45 ns
- Temperature ranges: □ Automotive-A: -40 °C to +85 °C □ Automotive-E: -40 °C to +125 °C
- Wide voltage range: 2.2 V to 3.6 V
- Pin compatible with CY62128DV30
- Ultra low standby power
 Typical standby current: 1 μA
 Maximum standby current: 4 μA
- Ultra low active power
 Typical active current: 1.3 mA at f = 1 MHz
- Easy memory expansion with CE₁, CE₂, and OE features
- Automatic power down when deselected
- Complementary metal oxide semiconductor (CMOS) for optimum speed and power
- Offered in Pb-free 32-pin small outline integrated circuit (SOIC), 32-pin thin small outline package (TSOP I), and 32-pin STSOP packages


Logic Block Diagram

Functional Description

The CY62128EV30^[1] is a high performance CMOS static RAM module organized as 128K words by 8 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption when addresses are not toggling. Placing the device in standby mode reduces power consumption by more than 99 percent when deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW). The eight input and output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or a write operation is in progress (\overline{CE}_1 LOW and \overline{CE}_2 HIGH and WE LOW).

To write to the device, take Chip Enable (\overline{CE}_1 LOW and CE_2 HIGH) and Write Enable (WE) inputs LOW. Data on the eight I/O pins is then written into the location specified on the Address pin (A₀ through A₁₆).

To read from the device, ta<u>ke</u> Chip Enable (\overline{CE}_1 LOW and CE_2 <u>HIG</u>H) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins.

Note

1. For best practice recommendations, refer to the Cypress application note "System Design Guidelines" at http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 001-65528 Rev. ** 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised January 6, 2011

Contents

Pin Configuration	
Maximum Ratings	
Operating Range	
Electrical Characteristics	
Capacitance	5
Thermal Resistance	5
Data Retention Characteristics	5
Switching Characteristics	6
Switching Waveforms	
Truth Table	
Ordering Information	9

Ordering Code Definition	9
Package Diagrams	
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	14
Products	14
PSoC Solutions	14

Pin Configuration

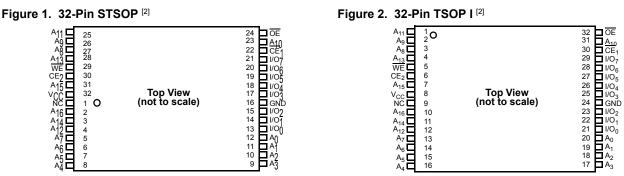


Figure 3. 32-Pin SOIC [2]

guic	U. U		
	Тор	View	
	1 O 2 3 4 5 6 7 8 9 10 11 12 13 14	32 31 30 29 28 27 26 25 24 23 22 21 20 19	Vcc 52 Vcc 52 Vc 15 2 Vc 16 10 Vc 16 0 Vc 16 0
GND	15 16	18 17	1/O ₃

Table 1. Product Portfolio

	Range							Power D	issipati	on	
Product		V _{CC} Range (V)		Speed (ns)	0	perating	l I _{CC} (mA)	Standby	I (A)	
					、 -7	f = 1 MHz		f = f _{max}		— Standby I _{SB2} (μΑ)	
		Min	Typ ^[3]	Мах		Typ ^[3]	Мах	Typ ^[3]	Мах	Typ ^[3]	Max
CY62128EV30LL	Auto-A	2.2	3.0	3.6	45	1.3	2.0	11	16	1	4
CY62128EV30LL	Auto-E	2.2	3.0	3.6	55	1.3	4.0	11	35	1	30

Table 2. Pin Definitions

Input	A ₀ -A ₁₆ . Address inputs
Input/output	I/O ₀ -I/O ₇ . Data lines. Used as input or output lines depending on operation
Input/control	WE. Write Enable, Active LOW. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted.
Input/control	CE ₁ . Chip Enable 1, Active LOW.
Input/control	CE ₂ . Chip Enable 2, Active HIGH.
Input/control	OE . Output Enable, Active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins
Ground	GND. Ground for the device
Power supply	V _{CC} . Power supply for the device
Notes	

2. NC pins are not connected on the die.

3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature	–65 °C to +150 °C
Ambient temperature with power applied	–55 °C to +125 °C
Supply voltage to ground potential	–0.3 V to V _{CC(max)} + 0.3 V
DC voltage applied to outputs in High-Z state ^[4, 5]	–0.3 V to V _{CC(max)} + 0.3 V
DC input voltage ^[4,5]	–0.3 V to V _{CC(max)} + 0.3 V

Output current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	> 2001 V
Latch up current	> 200 mA

Operating Range

Device	Range Ambient Temperature		V_{CC^[6]}
CY62128EV30LL	Auto-A	–40 °C to +85 °C	
	Auto-E –40 °C to +125 °C		3.6 V

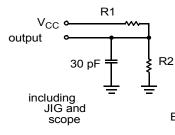
Electrical Characteristics

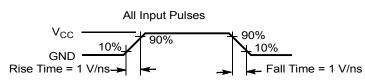
(Over the Operating Range)

Doromotor	neter Description Test Conditions		45	ns (Auto	o-A)	55 I	Unit		
Parameter	Description	Test Conditions	Min	Typ ^[7]	Max	Min	Typ ^[7]	Max	Unit
V _{OH}	Output HIGH voltage	I_{OH} = -0.1 mA, $V_{CC} \le 2.70 \text{ V}$	2.0	-	-	2.0	-	-	V
		I_{OH} = -1.0 mA, $V_{CC} \ge 2.70$ V	2.4	-	-	2.4	-	-	V
V _{OL}	Output LOW voltage	I _{OL} = 0.1 mA	-	-	0.4	-	_	0.4	V
		I _{OL} = 2.1 mA, V _{CC} ≥ 2.70 V	-	-	0.4	-	_	0.4	V
V _{IH}	Input HIGH voltage	V _{CC} = 2.2 V to 2. V	1.8	-	V _{CC} + 0.3V	1.8	-	V _{CC} + 0.3V	V
		V _{CC} = 2.7 V to 3.6 V	2.2	-	V _{CC} + 0.3V	2.2	-	V _{CC} + 0.3V	V
V _{IL}	Input LOW voltage	V_{CC} = 2.2 V to 2.7 V	-0.3	-	0.6	-0.3	-	0.6	V
		V _{CC} = 2.7 V to 3.6 V	-0.3	-	0.8	-0.3	_	0.8	V
I _{IX}	Input leakage current	$GND \leq V_I \leq V_{CC}$	-1	-	+1	-4	-	+4	μA
I _{OZ}	Output leakage current	$GND \leq V_O \leq V_{CC}$, output disabled	-1	-	+1	-4	-	+4	μA
I _{CC}	V _{CC} operating supply	$f = f_{max} = 1/t_{RC}$ $V_{CC} = V_{CCmax}$	-	11	16	-	11	35	mA
	current	f = 1 MHz I _{OUT} = 0 mA CMOS levels	-	1.3	2.0	1	1.3	4.0	mA
I _{SB1}	Automatic CE power-down current — CMOS inputs		_	1	4	_	1	35	μA
I _{SB2^[8]}	Automatic CE power-down current — CMOS inputs		-	1	4	-	1	30	μA

Notes

- Notes
 4. V_{IL(min)} = -2.0 V for pulse durations less than 20 ns.
 5. V_{IL(min)} = V_{CC}+0.75 V for pulse durations less than 20 ns.
 6. Full device AC operation assumes a 100 µs ramp time from 0 to V_{CC}(min) and 200 µs wait time after V_{CC} stabilization.
 7. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C
 8. Chip enables (CE₁ and CE₂) must be at CMOS level to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.


Capacitance


Parameter ^[9]	Description	Test Conditions	Мах	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz,	10	pF
C _{OUT}	Output capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance

Parameter ^[9]	Description	Test Conditions	TSOP I	SOIC	STSOP	Unit
Θ_{JA}		Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	33.01	48.67	32.56	°C / W
Θ _{JC}	Thermal resistance (Junction to case)		3.42	25.86	3.59	°C / W

Figure 4. AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT R_{TH} Output ~ V C

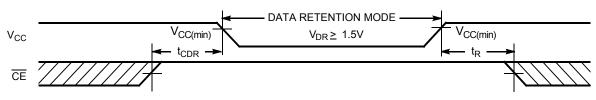
Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics

(Over the Operating Range)

Parameter	Description	Conditions		Min	Typ ^[10]	Max	Unit
V _{DR}	V _{CC} for data retention			1.5	-	-	V
I _{CCDR} ^[11]	Data retention current	$\underline{V_{CC}} = 1.5 \text{ V},$	Auto-A	-	-	3	μA
		$\begin{array}{l} \underline{V_{CC}} = 1.5 \text{ V}, \\ CE_1 \geq V_{CC} - 0.2 \text{ V or } CE_2 \\ \leq 0.2 \text{ V}, \text{ V}_{\text{IN}} \geq V_{CC} - 0.2 \text{ V} \\ \text{or } \text{ V}_{\text{IN}} \leq 0.2 \text{ V} \end{array}$	Auto-E	-	-	30	μA
t _{CDR} ^[12]	Chip deselect to data retention time			0	-	_	ns
t _R ^[13]	Operation recovery time		CY62128EV30LL-45	45	-	-	ns
			CY62128EV30LL-55	55			

Note


9. Tested initially and after any design or process changes that may affect these parameters 10. Typical values <u>are</u> included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25 \,^{\circ}C$. 11. Chip enables (\overline{CE}_1 and CE_2) must be at CMOS level to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating. 12. Tested initially and after any design or process changes that may affect these parameters 13. Full device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \,\mu$ s or stable at $V_{CC(min)} \ge 100 \,\mu$ s.

Document #: 001-65528 Rev. **

Page 5 of 14

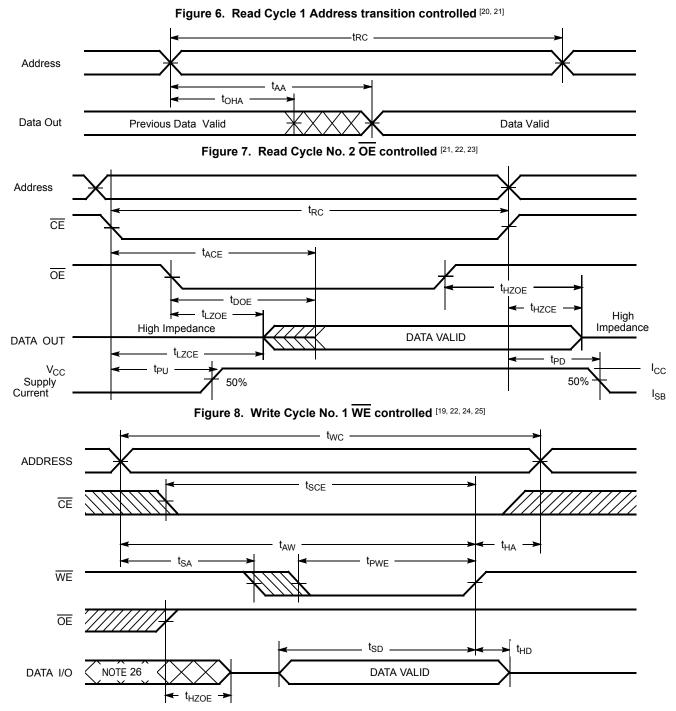
Figure 5. Data Retention Waveform [14]

Switching Characteristics

(Over the Operating Range)

D		45 ns (Auto-A)		55 ns (Auto-E)		
Parameter ^[14, 15]	Description	Min	Max	Min	Мах	Unit
Read Cycle						
t _{RC}	Read cycle time	45	_	55	-	ns
t _{AA}	Address to data valid	_	45	_	55	ns
t _{OHA}	Data hold from address change	10	-	10	-	ns
t _{ACE}	CE LOW to data valid	_	45	_	55	ns
t _{DOE}	OE LOW to data valid	_	22	_	25	ns
t _{LZOE}	OE LOW to Low Z ^[16]	5	-	5	_	ns
t _{HZOE}	OE HIGH to High Z ^[16,17]	_	18	_	20	ns
t _{LZCE}	CE LOW to Low Z ^[16]	10	_	10	_	ns
t _{HZCE}	CE HIGH to High Z ^[16, 17]	-	18	_	20	ns
t _{PU}	CE LOW to Power-up	0	_	0	_	ns
t _{PD}	CE HIGH to Power-down	_	45	_	55	ns
Write Cycle ^[18]						
t _{WC}	Write cycle time	45	-	55	-	ns
t _{SCE}	CE LOW to write end	35	_	40	_	ns
t _{AW}	Address setup to write end	35	_	40	_	ns
t _{HA}	Address hold from write end	0	_	0	_	ns
t _{SA}	Address setup to write start	0	_	0	_	ns
t _{PWE}	WE pulse width	35	_	40	_	ns
t _{SD}	Data setup to write end	25	_	25	-	ns
t _{HD}	Data Hold from write end	0	-	0	-	ns
t _{HZWE}	WE LOW to High Z ^[16, 17]	_	18	_	20	ns
t _{LZWE}	WE HIGH to Low Z ^[16]	10	_	10	_	ns

Notes

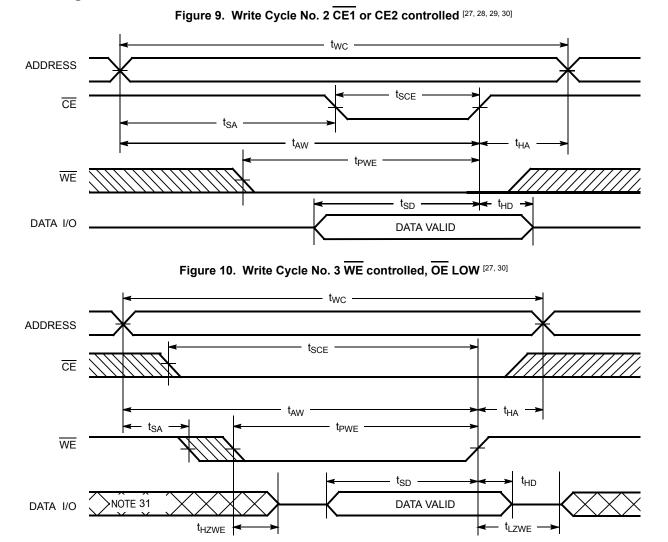

Notes

14. CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.
15. Test Conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{QL}/I_{OH} as shown in the "AC Test Loads and Waveforms" on page 5.
16. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZWE} is less than t_{LZWE} for any given device.
17. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.
18. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.

Document #: 001-65528 Rev. **

Switching Waveforms

Notes


- **Notes** 19. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE} = V_{IL}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write. 20. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$. 21. \overline{WE} is HIGH for read cycle. 22. \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH. 23. Address valid before or similar to \overline{CE}_1 transition LOW and CE_2 transition HIGH. 24. Data I/O is into impedance if $\overline{OE} = V_{UC}$.

- 24. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
- 25. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in high impedance state. 26. During this period, the I/Os are in output state. Do not apply input signals.

Document #: 001-65528 Rev. **

Switching Waveforms (continued)

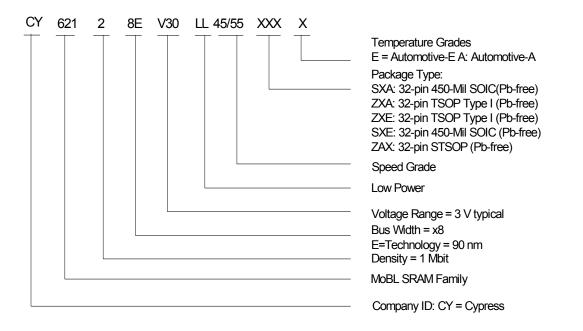
Truth Table

CE ₁	CE2	WE	OE	Inputs/Outputs	Mode	Power
Н	X ^[32]	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[32]	L	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data out	Read	Active (I _{CC})
L	Н	L	Х	Data in	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, outputs disabled	Active (I _{CC})

Notes

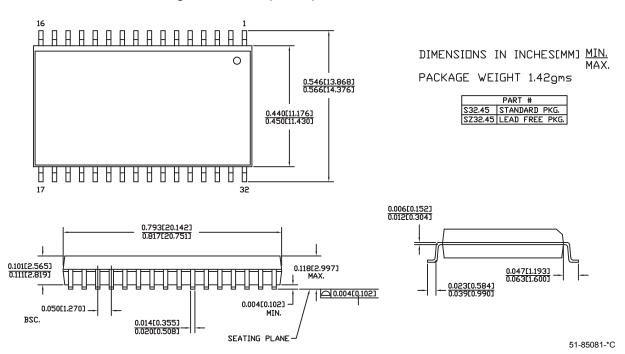
Notes 27. CE is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH 28. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE} = V_{IL}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write. 29. Data I/O is high impedance if $\overline{OE} = V_{IH}$. 30. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in high impedance state. 31. During this period, the I/Os are in output state. Do not apply input signals. 32. The V(Cont) core of the for the Cen explose in the trut table explore the herein explore the local other HICH or LOW). Intermediate veltage levels on these pine is not apply input signals.

32. The 'X' (Don't care) state for the Chip enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62128EV30LL-45SXA	51-85081	32-pin 450-Mil SOIC (Pb-free)	Automotive-A
	CY62128EV30LL-45ZXA	51-85056	32-pin TSOP Type I (Pb-free)	
	CY62128EV30LL-45ZAXA	51-85094	32-pin STSOP (Pb-free)	
55	CY62128EV30LL-55ZXE	51-85056	32-pin TSOP Type I (Pb-free)	Automotive-E
	CY62128EV30LL-55SXE	51-85081	32-pin 450-Mil SOIC (Pb-free)	


Contact your local Cypress sales representative for availability of these parts.

Ordering Code Definition

Package Diagrams

Package Diagrams (continued)

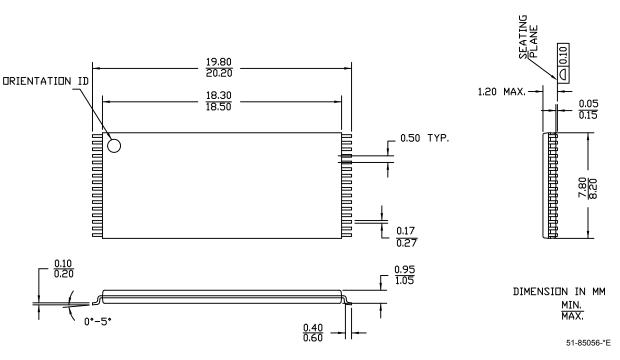
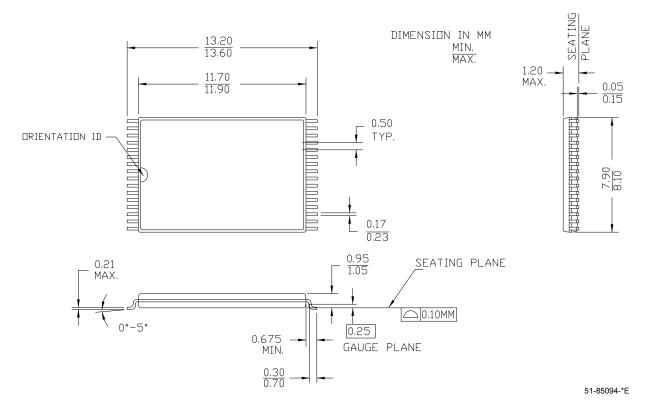



Figure 12. 32-Pin Thin Small Outline Package Type I (8 x 20 mm), 51-85056

Package Diagrams (continued)

Acronyms

Acronym	Description
CMOS	complementary metal oxide semiconductor
I/O	input/output
SOIC	small outline integrated circuit
SRAM	static random access memory
TSOP	thin small outline package

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degrees Celsius	
μA	microamperes	
mA	milliampere	
MHz	megahertz	
ns	nanoseconds	
pF	picofarads	
V	volts	
Ω	ohms	
W	watts	

Document History Page

Document Title: CY62128EV30 MoBL [®] Automotive 1-Mbit (128K x 8) Static RAM Document Number: 001-65528					
Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change	
**	3115909	01/06/2011	RAME	New Datasheet for Automotive SRAM parts. Created separate datasheet for Automotive SRAM parts from Document no. 38-05579 Rev. *H	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2004-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-65528 Rev. **

Revised January 6, 2011

Page 14 of 14

All products and company names mentioned in this document may be the trademarks of their respective holders.