
1/3January 2002

DK9_HC11
USER MANUAL

DK900-HC11 Development Kit
For PSD9XX Family of Flash PSDs

CONTENTS

■ (Please see next pages)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 DK900-HC11
DEVELOPMENT KIT

For PSD9XX Family of Flash PSDs
Rev 1.1

Contents:

v PSDsoft Express - Point and Click Windows based Development Software(from web)
v PSD9XX Sample
v DK900-HC11 Eval Board
v FlashLINK JTAG In-System Programmer (ISP)
v Ribbon and "Flying -Lead" JTAG cables for FlashLINK
v PSDload � WIN95/98/NT based UART software for IAP
v Serial UART cable for PSDload
v CDROM - Data Book, Software and Videos
v 110V or 220V Power supply

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 2

DK900-HC11 DEVELOPMENT KIT ...4

Introduction.. 4
A couple of definitions:...4
Hardware ..4
Software ...4

Detailed Descriptions..6
Step-By-Step Instructions for ISP Demo: ..7
Step-By-Step Instructions for IAP Demo:...10

Using DK900-HC11 as a Development Platform for HC11 MCU users:..................................... 15
Concept...15
General Board Description ...15
Downloading to the Development Board ...15
JTAG - ISP ..15
PC Software ...16

UART Support, PSDload ...16
Definition of Terms ...16
Serial Interface ...16
PSD Architecture ...16

Functions Available ...17

Memory Map ... 18
Getting started with PSDload ...18

A few reads and writes..19
Download ..21

How does this swapping stuff work anyway? .. 21
Macro level..21

PSDload address translation...24
Micro level...24

What really happens..25

A detailed look at the IAP example implementation.. 26
Top level functional flow..26

How to create your own app for UART Download... 26

References.. 28

Application notes...28

APPENDIX ...29

Appendix A - Jumper configuration on DK900-HC11 eval board .. 30

Appendix B Development Board Schematic and parts list ...33
Main Schematic ..33
Serial Port Schematic ...34
Power Supply Schematic ...35
Eval Board Parts List...36

Appendix C: FlashLINK Users Manual..37
Features ..37
Overview..37
Operating considerations...37
FLASHlink pinouts..39

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 3

Loop back connector schematic ...42

Appendix D crtsi.s routine... 43

Appendix E evl_init.c routine ... 45

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 4

DK900-HC11 Development Kit

Introduction
Congratulations on purchasing ST's DK900-HC11 Development kit. The DK900-HC11
(110V or 220 Volt version) is a low cost kit for evaluating the PSD9xx family of FLASH
Programmable System Devices (PSD). The kit is extremely versatile, and can be used in several
different modes. In it's simplest mode, it can be used to demonstrate the PSD9xx's capability of
JTAG In-System Programmability (ISP). After ISP is accomplished, the DK900-HC11 can be set-up
to update the program while the MCU is running, called In-Application Programming (IAP). And
lastly, HC11 family users can utilize the DK900-HC11 as an evaluation platform for code
development.

Regardless of how much development work is done on the DK900-HC11, it functions as an
extremely low cost complete JTAG ISP programmer for the PSD9xx family.

A couple of definitions:
In-System Programming (ISP)- A JTAG interface (IEEE 1149.1 compliant) is included on the PSD
enabling the entire device to be rapidly programmed while soldered to the circuit board (MAIN
FLASH, BOOT FLASH, the PLD, all configuration areas). This requires no MCU participation, so the
PSD can be programmed or reprogrammed anytime, anywhere, even while completely blank. The
MCU is completely bypassed.
In-Application Programming (IAP) � Since two independent FLASH memory arrays are included in
the PSD, the MCU can execute code from one memory while erasing and programming the other.
Robust product firmware updates in the field are possible over any communication channel (CAN,
Ethernet, UART, J1850, etc) using this unique architecture. In this case, all code is updated through
the MCU.

Hardware
• PSD9xx FLASH PSD (Programmable System Device) - see www.st.com/psm for data sheet.

PSD913F2 - 1Mb MAIN FLASH(128kx8), 256Kb BOOT FLASH(32kx8), 16Kb SRAM(2kx8)
-or-
PSD934F2 - 2Mb MAIN FLASH(256kx8), 256Kb BOOT FLASH(32kx8), 64Kb SRAM(8kx8)

• Eval/Demo Board with HC11 MCU, LCD Display, JTAG and UART ports for ISP/IAP
• FlashLINK JTAG ISP Programmer (uses PC's parallel port)
• Null Modem serial cable (Female-Female)
• Power Supply

Software
• To assure latest version, check our website often.

1. PSDsoft Express - Point and Click Windows programming development software. This
will install to it�s own directory.

• MCU Selection by manufacturer and part number
• Graphical definition of pin functions
• Easy creation of memory map
• JTAG ISP Programming

2. PSDload - Windows 95/98/NT based UART download software. This will also install to
it�s own directory.

• In-Application Programming
• Performs erase, fill, read, write, upload and download of PSD
• All functions performed through MCU's UART channel.

3. The distribution disk included with the kit contains the following directories, each with
executable code. This code is also available from the web site. For convenience, copy each
distribution disk directory to your machine under �\PSDexpress\dk900-HC11\� . For
example, �PSDexpress\ dk900-HC11\hwtest\, �PSDexpress\ dk900-HC11\demo1\, etc

• Hwtest. Validates DK900-HC11 board hardware including serial port

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 5

• IAP. Initial congratulations and also demonstrates serial port functionality.
• DEMO1. Simple program for IAP demo, displays �have no fear��

Each full code bundle directory(iap, hwt) contains the following
• *.zip for the psd
• *.zip for the C level source code
• readme.txt file containing late breaking information
• *.obj file suitable for direct PSD programming.
Others(demo1) contains the c code subset appropriate for uart download.

Since the *.obj file is the natural format needed by PSDsoft for direct programming of the
PSD, no unzipping is necessary to change the executing code in the development board. A
detailed description of each software bundle is included in the appendix.

The following table is a specific listing of the files and their locations on the distribution disk.
Place the files listed in the following table under �root� in the following directory
�PSDExpress\DK900-HC11\<table directory>

The files listed under �root�, are all the files that are needed for the demonstrations in this
manual. The remaining archives are source information from which these files were
constructed.

IAP Full code bundle(c level code and psd files)
 Dk9hciap_p_10.zip Contains all PSD source files
 Dk9hciap_c_10.zip Contains all C level code files
 Readme.txt Late breaking information

Demo No psd or obj files
 UART1-HC11.zip Contains all C level code files
 Uart1.hex Directly downloadable via IAP
 Readme.txt Late breaking information

Hwtest Full code bundle(c level code and psd files)
 Dk9hchwt_p_10.zip Contains all PSD source files
 Dk9hchwt_c_10.zip Contains all C level code files
 Readme.txt Late breaking information
 hwt.obj Duplicate obj file (also in PSD file above)
 hwt.mmf Memory map file used by PSDload

Root
 Iap_HC11.mmf Memory map file(from PSDsoft project)
 Iap_HC11.psd Configuration file for PSDload
 Iap_HC11.obj Executing code for IAP demo
 Uart1.hex IAP demo file for direct download

Directory Files Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 6

Detailed Descriptions

Figure 1 DK900-HC11 Development Board

• Display - A two line by 16 character LCD display is included on the Development Board.
• Power switch
• UART Serial Port(male) - Connected to MCU serial port; used for In-Applicat ion Programming
• HC11 MCU - Low cost MCU HC11, 44 pin PLCC
• Socket for PSD9xx - Blank PSD9xx is supplied, user installs and performs initial JTAG ISP.
• JTAG programming Port - Used in conjunction with FlashLINK programmer for ISP.
• Reset Button - For resetting the MCU and PSD
• DIP switch for IAP control
• LED�s for functional annunciation
• Pads for additional SRAM - The resident PSD9xx contains either 2KB or 8KB SRAM. This site

is for additional SRAM.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 7

Step-By-Step Instructions for ISP Demo:
a) Locate and install PSDsoft Express and PSDload. The latest version is always on the web.
b) Plug the blank PSD9XX device into the Eval board socket.
c) Plug the FlashLINK Programmer into your PCs parallel port and plug in the ribbon cable to the

JTAG port on the eval board (for help see the Appendix C, FlashLINK manual).
d) Plug in power supply and turn on power. Typically you will observe that the top row of

characters are black boxes. This indicates no code is running on the board. You may need to
adjust the contrast control located on the left side of the board under the LCD.

e) Run PSDsoft Express. Here is the initial screen if no project is open.

Figure 2 Opening screen upon PSDsoft Express invocation

Use cancel at this point since all we need to do is program the PSD and there is no need to
create a project. Later, in the �Using the DK900-HC11 as a development platform� section, a
further tutorial is given on using PSDsoft Express with the DK900-HC11 for development.

Figure 3 Invocation reminder screen

f) In the Design Flow (shown below), click on the ST JTAG/ISP button. Bottom row of
boxes left side.

Figure 4 PSDsoft Express flow

Clicking on this box yields the JTAG Operat ions- Single device dialog shown below.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 8

The following screen appears inquiring if it�s desired to program a single device or multiple devices in
the JTAG chain. Select �Only one� as shown below and click OK.

Figure 5 JTAG-ISP Operations dialog

g) Clicking OK brings up the JTAG Operations �Single Device dialog shown in the following figure.
h) Browse to the *.obj file shown, and click on this file. The information will be filled in for you.
i) In Step 2, click Execute.

Figure 6 PSDsoft Express, JTAG Operations dialog

j) Observe in the lower pane the JTAG activities that occur while programming your device. When
activities stop here, observe the LCD display on the Development Board itself.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 9

k) When the download is completed the Development Board will boot automatically, showing the
displays below: This display will sequence one time, ending with the last screen, PSDload Test.
This is the screen that needs to be active for the following IAP demo.

D K 9 0 0 E v a l B d

C o n g r a t u l a t i o n s

I S P D o w n l o a d
w a s S u c e s s f u l

P l e a s e c y c l e
p o w e r t o s e e

t h a t p r o g r a m
I s I n f l a s h

 T H A N K S

 P S D l o a d T e s t

Figure 7 Eval Board Displays for ISP

If you power off/on the board, you will see that the display will resequence, confirming that the
program and all configuration information are stored in the PSD's non-volatile memory.
l) For better understanding of the program you may want to examine the following resources:

1. System memory map. Figure 18.
2. PSDsoft Express project
3. The file source code (included) to see the flow of the executing code

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 10

Step-By-Step Instructions for IAP Demo:
a) Now, let's perform an In-Application Programming (IAP). Disconnect the FlashLINK programmer

and close PSDsoft Express. Connect the serial cable to the serial port on the PC, and the Dsub
connector on the Development Board. Note that this cable is a null modem cable(F-F).

b) Once the Development Board displays PSDload Test, proceed to the next step.
c) Invoke PSDload on the PC. At invocation of PSDload, most buttons will be greyed out indicating

the PC communications port is not configured as shown below.

Figure 8 Initial PSDload invocations screen (no comm)

d) From within PSDload, choose File, then Open. Find the file as follows; \DK900-HC11\iap*.psd.
This is a configuration file for PSDload that�s been constructed for this demo containing the
particulars of the design.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 11

e) Observe the buttons become active(colorful) when this file is selected indicating the
communications port is configured. If the button colors do not appear, change the comm port
(while retaining 19.2Kbaud) using the Select, Communications submenu or the Comm Port hot
button. In this case, you will also be prompted for the *.mmf file from the same directory. Do not
leave this step until you�ve achieved active buttons as shown below.

Figure 9 Initial PSDload invocations screen (with comm)

As well as the active buttons, notice that the main window is now populated with the active
design. The entries are effectively the equations used to determine the memory map. This
information was entered in PSDsoft Express during the design phase of the project and
conveyed to PSDload via the *.psd file (mmf file derivative).

If you must use the *.mmf file, the following two dialogs will appear;

The first is to setup the communications parameters.

Figure 10 PSDload comm parameter dialog

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 12

The second is the Describe Memory Usage dialog box. Here the user is to declare how the PSD
memory is used as well as which memory locations are unpopulated at the present time(ghosts).
The unpopulated locations occur from the desire to swap memory; in these cases there is
typically only one resident location for the memory at any particular time. The alternate location
also exists and is used after memory is swapped.

Figure 11 PSDload Describe Memory Usage dialog

f) Now, do a Write To Display using the Action, Write Display submenu or the LCD Display hot key.

Type something in the dialog, press OK and see if it comes up on the Development Board
display. If it does, you�ve successfully established communications between the PC and
Development Board. If this doesn�t work, check the following;

1. cable is plugged in
2. cable is of correct type(Null modem, F-F)
3. the correct comm port is selected on the PC

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 13

g) Select Action, download to observe the Download Segments dialog. The following screen will

appear.

Figure 12 Download Segments dialog, PSDload

Selecting the download destination (Step 1) to be fs7_a. Behind the scenes fs7_b will automatically
be selected as the execution location. This will be confirmed in the next screen. Click OK.

h) Now the Download Selection Summary screen, below, pops up. The intent is to validate the

settings chosen in the last screen. You should see fs7_a as the download destination and fs7_b
as the execution location. Click Download to start the process or back to change.

Figure 13 Download Summary screen

i) Observe the progress bar at the bottom of the PSDload window for activity. Also, observe the

display on the Development Board as follows.

 P S D l o a d t e s t
 d o w n l o a d i n g *

Figure 14 Development Board display for download in process

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 14

During the download, you�ll observe the * character position changing between the following -, \,
|, and /. A change from one character to the next occurs with each new packet received by the
Development Board. When the download is complete you will see the following.

 P S D l o a d t e s t
 d o w n l o a d d o n e

Figure 15 Eval Board display for download complete

Next, observe the results of the checksum calculation covering the entire downloaded contents
as shown below. Of course this was a successful download. This particular display does not
persist, so watch the display intently.

 P S D l o a d t e s t
 c h e c k s u m g o o d

Figure 16 Eval Board display for checksum validation

j) On the Development Board, place SW-PB3 in the on(up) position. This switch is read when the
board boots and indicates to the software the desired execution location. On(up) indicates the
desire to execute from the main flash area which you just downloaded. Off(down) indicates the
desire to continue executing from the default boot area.

k) Now click the reset button and observe the Development board display. The program you
just downloaded to the main flash area will boot showing the displays listed below.

Y o u h a v e j u s t
p e r f o r m e d

I n - A p p l i c a t i o n
P r o g r a m m I n g (I A P)

T h e M C U o p e r a t e d
d u r i n g d o w n l o a d

o f a n e w p r o g r a m
i n t o t h e F l a s h

N o w p o w e r c y c l e
o f f a n d o n t o

s e e t h e n e w
p r o g r a m e x e c u t e

G O O D J O B !

Figure 17 Eval Board display sequence for In Application Programming(IAP)

You can cycle power or press the reset button again to see that this code also persists in non volatile
FLASH memory. Note that this code bundle contains less communications capability than the IAP
code run previously.

l) Now, let�s reinvoke the original program that was running prior to the IAP download. This is

done by placing SW-PB3 in the off(down) position. Now press the reset button and observe the
original, ISP program execute again.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 15

Using DK900-HC11 as a Development Platform for HC11 MCU users:

Concept
The ST DK900-HC11 Development Board provides the following capabilities

• Demonstrate design concepts early, optimizing �time to market�
• Jump start user application with proven framework (hardware and software)
• Substitute for user target system until target prototypes are available
• Gives instant platform for testing ISP and IAP demonstration.
• Allows programming the PSD using included Flashlink cable

General Board Description
The DK900-HC11 Development Board is specific to the HC11 microcontroller family. The board
contains an empty socket for the PSD9xx, which can be populated with the included PSD9xx family
component. Programming of the PSD is required since the component provided is blank.

Downloading to the Development Board
Executable code can be downloaded to the Development Board two different ways; via the JTAG
(ISP)or via the UART (IAP). Both methods are described and demonstrated in the Step by Step
demos for ISP and IAP earlier in this manual.

The ISP programming can program all elements within the PSD (PLD, MAIN FLASH, secondary
FLASH memory and all configuration elements) using the 2x7 JTAG connector. That is, all internal
PSD components can be programmed via this channel.

The IAP method uses a standard null modem PC serial cable (F-F) and PSDload PC software
downloaded from the web as well as the UART of the installed MCU. The IAP method allows only
data and executable code to be downloaded over a PC serial link. The PSD, PLD cannot be
updated by the IAP channel.

The IAP method is not restricted in destination to the PSD. The destination can be any resources on
the Board itself; PSD components or the external SRAM (SRAM not supplied, user must solder in
standard 32Kx8 SRAM if you desire more SRAM than is contained in the PSD).

PSDload, a win95/98/NT compatible application for the PC, administers the PC side of the serial link.
The protocol used is described in PSDstep document on the web.

JTAG - ISP
The PSD813F JTAG interface provides the capability of programming all memory within the PSD (
PLD, configuration, MAIN and secondary FLASH memory and BOOT areas). This interface can
also be used to program a completely blank component as JTAG enabled is the default PSD state.
See Application Note 54 (AN054) for further description on our CD or website at
www.st.com/psm .

The LCD will be non operational during JTAG - ISP, since the MCU is not operating. During this
interval, the PSD is not connected to the MCU bus.

ST provides a FlashLINK programmer to facilitate this JTAG programming operation. The
FlashLINK programmer connects the PC parallel port to the JTAG connector (2x7) and is driven by
PSDsoft Express, the PSD development tool.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 16

PC Software

UART Support, PSDload

PSDload is a PC application (WIN95/98/NT) which allows serial communications between the PC
and the ST's series of Development Boards. This application utilizes the microcontroller
UART on the target system side and a standard serial PC channel. The protocol utilizes commands
to perform the following functions on the resident PSD, and potentially, other Development Board
resources.

1. Read and write registers, memory
2. Erase and fill memory areas
3. Write to the LCD display
4. Download files from the PC to the target system(any system area)
5. Program the downloaded file into the PSD memory in circuit(MAIN or BOOT areas)
6. Upload files from the PSD or development board resources
7. Reset the target system.

The primary target of this interface is FLASH based PSD�s from the standpoint of in circuit
programmability. However, the capability is also applicable to the OTP family of PSD�s(note that in
circuit programming is not available due to the OTP families EPROM base).

Definition of Terms

A few term definitions will ease the understandability of the document.
a. PSDLoad is the windows interface running on the PC.
b. PSDStep is the protocol used to communicate between the PC and the Evaluation board.
(Simple Test and Evaluation Protocol).

Serial Interface

The connection from the PC to the evaluation board is via a standard 9 pin null modem cable(F-F).
The communications parameters are 8 data bits, 1 stop bit and no parity. The interface uses simple
three wire (TX, Rx and GND) RS-232 with full-duplex operations. Flow control is accomplished via
software handshaking incorporated into the protocol (this is not XON XOFF). The baud rate of
PSDload is selectable from 4.8k to 56k but the HC11 board is presently restricted to 19.2kbaud.
Software flow control is used in order to minimize the master/slave physical connections.

Each command sent from PSDload is intended to elicit a response from the Development Board.
This handshake is used to verify a valid receipt of the transaction. Two methods exist to terminate
this handshake if it should become disrupted for any reason; the first is a hot key inside PSDload,

 and the second is a communications timeout parameter entered on comm invocation screen.

PSD Architecture

The PSD contains several different blocks of memory which vary within each family and between the
families. These encompass the following memory types; EPROM, FLASH, EEPROM, SRAM, and
registers. Generically these memory blocks are termed a memory �region�. The PSD913 contains
128kx8 FLASH, 32kx8 FLASH and 2kx8 sram.

PSDLoad must be aware of how these regions map into the system memory as all operations occur
based on addresses associated with the system memory. The system memory map is determined
using the development tool, PSDsoft Express. This information is provided in the form of a *.mmf file
automatically generated from PSDsoft Express and requested by PSDload at invocation. PSDload
utilizes this information to portray the system memory map to the user and construct commands to
send to the Eval Board. The *.psd file, once constructed, contains the information in the *.mmf file.

Since the system memory map is utilized to achieve the download, the PLD within the PSD must
have been programmed prior to a serial download attempt. PLD programming is accomplished via

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 17

either the JTAG interface or with a conventional parallel programmer, both of which are external to
PSDstep/PSDload.

Note that the addressing scheme used by PSDload is a different addressing scheme than is used by
PSDPro(parallel programmer) and/or FLASHlink. PSDload uses the system addresses; that is, the
addresses generated by the microcontroller in the system and correlated by the linker. PSDsoft
Express and FLASHlink use direct addresses (flat 24 bit memory space), that are independent of the
PLD and the end system application.

The FLASH region is erased by sector or bulk(entire FLASH) and programmed byte by byte. The
EEPROM region does not require erase and may be written by byte or by page. Which technology
resides in the BOOT area depends on the device you have chosen. For example, the F1 has
EEPROM in the BOOT area. An unambiguous method to determine the BOOT area technology is
by reading the flash ID.

Functions Available

Along with the standard windows controls of save , open , new , close and help
and the serial port controls , the following are available. These functions are can be accessed
either from a pull down menu (Action) or from the shown hot keys.

Function Description

Erase Erase FLASH(by segment or bulk)
Fill Fill area
Download Download new file to memory
Upload Upload file from memory
Read Read area(restricted to 160 bytes)
Write memory Write area(restricted to 160 bytes)
Write display Write to display (on dev board)
Reset board Reset development board
User data Encapsulate user specific commands
Source file entry Enter source file to be downloaded
Describe memory usage User interface aid

Table 1 PSDload Commands

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 18

Memory Map
Before we really get started using PSDload, we should be familiar with the system memory map. Recall that
all PSDload operations occur by using addresses in this map. The applicat ion is set up to take advantage of
the entire memory space of the 9xx using paging techniques even though the MAIN FLASH is initially
unpopulated(fs0..7). CSIOP is the base of the register band used to communicate with the PSD using the
microcontroller.

Figure 18 Memory Map of Eval Board

Getting started with PSDload
Since you�ve done this before in the previous step by step demo section, we�ll start with PSDload being
active. To establish a baseline communications, write something to the display by selecting the Action
submenu and then Write Display. A dialog will pop up allowing you to enter text. After you have completed
the message, click on the Write button. PSDload will send out the message. After the message has been
received, the development board responds by displaying the message and sending a response back to

0000

4000

PAGE 40000

8000

PAGE 30000

8000

PAGE 20000

8000

PAGE 10000

FFFF

4000

C000
COMMON
REGION

(any page)

PAGED
REGION

PAGE 0

fs0
16Kbytes

Main Flash

fs1
16Kbytes

Main Flash

fs2
16Kbytes

Main
Flash

fs3
16Kbytes

Main
Flash

fs4
16Kbytes

Main
Flash

fs5
16Kbytes

Main
Flash

fs6
16Kbytes

Main
Flash

fs7
16Kbytes

Main
Flash

csboot3
8Kbytes

Secondary
Flash

csboot2
8Kbytes

Secd Flash

csboot1
8Kbytes

Secondary Flash

csboot0
8Kbytes

Secondary Flash

68HC11 boots from the reset
vector stored here

8000

rs0, 2Kbytes SRAM

csiop, PSD control regs
68HC11 Regs/RAM

8200
8300
8400

cs_lcd , ext chip sel for LCD

A000

A800

nothing mapped

nothing mapped

IAP loader code
gets programmed
here by JTAG-ISP

or a convetional
programmer tool.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 19

PSDload. This response prompts PSDload to display an �operation completed� dialog to the user on the PC.
All transactions between PSDload and the development board use this handshaking scheme to maintain
continuity of the communications link.

A few reads and writes

Now let�s do a few read/write operations. We want to be careful in the selection of the address that we�re
writing to, so we won�t interfere with the execution of the present application. Do a read memory of RS0 by
selecting RS0 in the Select Segment field. When you select RS0, the start address of 0xA000 is populated
in the start address field. Modify this field to 0xA700 for the purposes of this test and enter a length of 40h in
the Length field. The following figure shows the dialog prior to clicking OK. Click OK.

Figure 19 Read Memory dialog in PSDload

A dialog will pop up with the contents of the memory in both hex (left side) and asc formats(right side) as
shown below.

Figure 20 Read Memory Data in PSDload

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 20

The contents appear as zeros as this is initialized volatile memory. Now, do a write of the same locations.
You�ll see the same box (read memory data) come up as PSDload always does a read prior to a write, but
now the box is editable. You can edit in either the hex display or the asc display and the conversion to hex
happens automatically as shown below. Try typing your name or something identifiable into the ASC field.
You will notice the hex bytes changing as you type.

Figure 21 Write Memory Data dialog in PSDload

Click Write. After the response, read it again to see if it�s really there. Cycle power and reread. You should
observe the data you entered is no longer there, indicating the fact that the information was stored in volatile
SRAM which is volatile.

Now let�s repeat these operation using FLASH. The dialogs are the same except for the FLASH selection so
they won�t be repeated. Since it�s not used in the application yet, no harm will be done. Select Write
Memory and, in the write dialog, select fs7 which stars at 0x0000. Read 40h bytes of the area. You will
notice that instead of the characters you observed in the above example using SRAM, you now get 0xff in all
locations. This is because the FLASH is blank. Type in something and click write. Now do a read to see if
it�s there. Type in something else of lesser length than above and read it back again. You will notice that the
entire first message is gone. This is because the FLASH was erased prior to the last write. Also, FLASH is
erased by sector; that is, the entire sector must be erased before you can rewrite the locations of interest.
You can also cycle power on the target to see that the information is held in non volatile form. Also try
ERASE which only works on the non volatile areas.

When you�re ready to do a download, one of the operations that�s needed is the selection of the source file.
This screen available from the Action submenu or the button. After exiting this screen, the selected hex
file shows up in the main mmf display. The same file and path are stored in the *.psd file when it�s saved.

Figure 22 Hex File Selection screen, PSDload

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 21

Download

You�ve already done this in the earlier demo portion of this document so lets dig a bit deeper to see what
makes it all work. See the following section.

How does this swapping stuff work anyway?

Macro level
First, let�s take a look at how the memory map changes during the transitional operations from one
executable code bundle to the other. The internal PSD resource of the PAGE register is used to affect this
change in addition to the PLD equations described. We will also use a non volatile resource to carry through
a power off condition. This resource will be called NVswap and can consist of any of the following (spare
non volatile segment in the PSD, board level switch, etc). In our case, Nvswap will be the board mounted
DIP switch.

The PAGE register (csiop+0xE0, 8 bits) is traditionally used to control memory paging, but we also use it to
control memory addresses, as presented to the microcontroller, using 1 or more bits. This register can be
read or written by the microcontroller. The initial value of the PAGE register is 0 at power up and is the
register is volatile. The swap bit is the msb of the PAGE register.

Following is a step by step procedure to boot from one code and change, on the fly, to another. Certainly,
there is more setup detail involved (described later under Micro level), but this is the essential procedure.

1. Power up system with default memory map. swap=0 (PAGE register msb)
2. Write swap=1 (PAGE register msb)

These steps are further depicted graphically in the following figures.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 22

Here�s the memory map at power up. Note that we are executing from CSBOOT0/1. During the IAP
download, the complete new executable, including the vector table, is copied into FS7. During this time the
swap bit in the PAGE register is 0.

Figure 23 Memory map at power up, NVswap=0

Now, let�s set a flag (NVswap) to indicate we want to run the code in FS7 the next time we power up. This
flag is non volatile so that, if power is removed, the system knows how it�s desired to power up.

Cycle power to the unit. We have embedded code running in the initialization routine to read the state of
NVswap and to write that value into the PAGE register (msb, swap) at power up. If swap= 0, the code
bundle residing in CSBOOT0/1 continues to run. If swap = 1, we perform the memory manipulations
depicted in the next figure.

For purposes of this example, let�s assume NVswap = 1 indicating the desire to execute from the MAIN
FLASH memory. At this point, the code residing in CSBOOT0/1 is still running.

0000

4000

PAGE 40000

8000

PAGE 30000

8000

PAGE 20000

8000

PAGE 10000

FFFF

4000

C000
COMMON
REGION

(any page)

PAGED
REGION

PAGE 0

fs0
16Kbytes

Main Flash

fs1
16Kbytes

Main Flash

fs2
16Kbytes

Main
Flash

fs3
16Kbytes

Main
Flash

fs4
16Kbytes

Main
Flash

fs5
16Kbytes

Main
Flash

fs6
16Kbytes

Main
Flash

fs7
16Kbytes

Main
Flash

csboot3
8Kbytes

Secondary
Flash

csboot2
8Kbytes

Secd Flash

csboot1
8Kbytes

Secondary Flash

csboot0
8Kbytes

Secondary Flash

68HC11 boots from the reset
vector stored here

8000

rs0, 2Kbytes SRAM

csiop, PSD control regs
68HC11 Regs/RAM

8200
8300
8400

cs_lcd , ext chip sel for LCD

A000

A800

nothing mapped

nothing mapped

IAP loader code
gets programmed
here by JTAG-ISP

or a convetional
programmer tool.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 23

Next, we write to the PAGE register. This action changes the system location where the code appears to the
microcontroller moving FS7 to 0xC000 and CSBOOT to 0x4000 as shown below.

Figure 24 Memory locations after step 3 of memory swap

After this write operation is complete, the very next instruction is fetched from FS7. Execution continues
from FS7 until the next time the system is powered down. At the same time, the CSBOOT area is moved.

With the NVswap bit set (SW-PB3 on, up), this sequence will occur every time power is applied.

As a short review, let�s talk about what just transpired. We booted from one memory(CSBOOT), then, at full
speed and without the awareness of the microcontroller, we swapped execution from that memory to FS7.
The new memory contents contained a substantially different set of code that picked up immediately. It
sounds like a stretch, but really isn�t.

0000

4000

PAGE 40000

8000

PAGE 30000

8000

PAGE 20000

8000

PAGE 10000

FFFF

4000

C000
COMMON
REGION

(any page)

PAGED
REGION

PAGE 0

fs0
16Kbytes

Main Flash

fs1
16Kbytes

Main Flash

fs2
16Kbytes

Main
Flash

fs3
16Kbytes

Main
Flash

fs4
16Kbytes

Main
Flash

fs5
16Kbytes

Main
Flash

fs6
16Kbytes

Main
Flash

fs7
16Kbytes

Main
Flash

csboot3
8Kbytes

Secondary
Flash

csboot2
8Kbytes

Secd Flash

8000

rs0, 2Kbytes SRAM

csiop, PSD control regs

68HC11 Regs/RAM
8200
8300
8400

cs_lcd, ext chip sel for LCD

A000

A800

nothing mapped

nothing mapped

1) SWAP bit = 1.
2) Now the MCU boot area (C000-FFFF) is
 occupied by main flash memory instead of
 secondary flash memory.
3) MCU can download new IAP loader code
 into csboot0/csboot1 if desired after
 setting the UNLOCK bit = 1.
4) MCU can use csboot2/csboot3 for general
 data storage.

SWAP

csboot1
8Kbytes 2nd

Flash
If UNLOCK = 1

csboot1
8Kbytes 2nd

Flash
If UNLOCK = 1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 24

PSDload address translation

If you look closely at the memory map, you will observe that the system addresses are not the same for fs7
and csboot0/1. However, when these respective code bundles execute, they must occupy the same address
range. Else, the mcu could not find the reset vector, boot and execute the code.

More specifically, when a download occurs, the downloaded hexfile contains addresses appropriate for
execution that, in this case is 0xC000-0xFFFF for FS7. However, we download this data to 0x4000 �7FFF.
If the downloaded addresses of the hex file start at 0xC000, how does the data get to 0x4000? Then, after
download is complete , how does the code get in high memory for execution? PSDload does an address
translation on every data byte in the hexfile; that is, it changes the addresses according to the download
destination of 0x4000-7FFF using the following equation.

Destination address = hex file address + destination base � execution base.

For this HC11 family example, code exe(hex file) is 0xC123, dest base = 0x4000, exe base = 0xC000
Download destination = C123 + 4000 � C000 = 0x4123

While this equation may look like overkill for this example, it allows transparent PSDload operation
regardless if the MCU boots from high memory(HC11) or low memory (8031).

Now that we�ve described this level of operation, lets take a bit closer look at the detailed sequence that
occurs between steps 1 and 2; that is, as the memory is physically swapped.

Micro level
You might ask how can this happen without knowledge of the microcontroller? You might be wondering how
can this all happen with the microcontroller running full speed? It all happens due to the chip select
decoding.

Here are the equations that control the memory map before, after and during the transition. For clarity we�ll
only consider the segments of interest for this application which are FS7 and CSBOOT0/1. Certainly the
same techniques apply with paging when using the remaining FLASH segments.

CSBOOT0 = ((address >= ^hC000) & (address <= ^hDFFF) & !swap)
 # ((address >= ^h4000) & (address >= ^h5FFF) & swap);

CSBOOT1 = ((address >= ^hE000) & (address <= ^hFFFF) & !swap)
 # ((address >= ^h6000) & (address >= ^h7FFF) & swap);

FS7 = ((address >= ^h4000) & (address <= ^h7FFF) & !swap)
 # ((address >= ^hC000) & (address <= ^hFFFF) & swap);

The above equation tells us that FS7 can show up in either of two places; 0x4000-0x7FFF or 0xC000-
0xFFFF. The choice of which location is used is based on the variable swap, a single bit in the PAGE
register. The swap bit is the most significant bit of the PAGE register (csiop+0xE0). The PAGE register is 0
at power up. So, if swap=0 at power up, then fs7 must appear at 4000-7FFF and CSBOOT0 is at C000-
0xDFFF and CSBOOT1 is at 0xE000-FFFF. In this case, code executes from CSBOOT0 and CSBOOT1 as
a default. See previous figure for a graphical representation.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 25

After the memory contortions are completed swap=1. We end up with the memory map of Figure 24 with
FS7 at 0xC000 (execution position) and CSBOOT at 0x4000.

The location where the vector table is located is generally referred to as the execution location in this
document. That is, this is where code needs to reside so that the microcontroller can find it easily. This
method of hardware relocation is very convenient due to the integrated components within the PSD.
Alternative methods use software relocation to accomplish the same task.

As an overview, consider this. What the microcontroller needs from the memory is really pretty simple. The
memory needs to provide the sequential instructions for the task at hand. The microcontroller generates the
address and the memory provides the instruction. Then the microcontroller executes that instruction. This
occurs over and over again. If a jump needs to occur, the microcontroller provides a new address to the
memory. Same with a subroutine return, the microcontroller gets the return address from the stack.

What really happens

There is a subtlety involved in the transfer of execution described above. This subtlety is because the MCU
really doesn�t know the source of the instruction bytes; boot area or main FLASH. All the MCU knows is that
valid instructions on valid address boundaries are presented on the bus when the MCU needs them. Then
the MCU executes the instruction and generates the next address. The key element involved is the
generation of the address by the MCU.

To understand this critical transfer of control, let�s examine the instruction by instruction transition from one
memory to the other. After the reset signal is deasserted, the MCU is executing from the csboot area
normally. This continues until the swap bit is written, moving FS7 into the execution location (0xC000-
0xFFFF). At this same time, csboot area is moved to 0x4000-7FFF. At this point, the MCU is generating the
next address from the instruction received from the csboot area. However, the next instruction will come
from the FS7 area. This next instruction fetch must be appropriate to maintain the program flow. That is, the
next instruction must be received by the MCU on an instruction boundary and be appropriate for the program
flow. In addition, any issues with the stack and stack pointer must be resolved so program flow can continue
(subroutine return addresses, temporary variables, etc.).

The method we�ve used to ensure correct operation is to place identical code at identical locations in both
applications through the point of the swap. After the point of the swap, the code bundles can diverge without
problems.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 26

A detailed look at the IAP example implementation
The previous example uses two code bundles; IAP_6811 and UART. The discussion will take the same
course as the previous demos and explain what occurs behind the scenes. Let�s take a walk through the
critical code to see how it works.

Top level functional flow
Let�s start with the top level flow. After the reset vector is fetched and executed the routine evl_init.c runs.
This is where the main action occurs (evl_init.c) that resides in both IAP_6811 and UART1 applications.

Evl_init.c contains a routine Run_Execution_Source that determines where execution resides. The flow of
this routine is listed below:

 Read_dip switch
 If (dip_switch = up)
 Execution_Main
 If (dip_switch = down)
 Execution_Boot

Of course, the execution from main flash will only occur properly if appropriate code is resident in main flash.
For Main flash execution, the swap bit is written and execution continues in the main flash area.

Now, let�s assume that we are executing from main flash (DIPSW-PB3 = up) and wish to revert to the original
code for execution. All we need to do is place DIPSW3-PB3 in the down position and hit the reset button.
The csboot0/1 code starts out, then evl_init.c runs, leaving the swap =0 resulting in executing remaining in
the boot area.

As you can observe from the above discussion, the manipulations at the top level to accomplish the
traditional boot loader function using hardware techniques are straightforward.

How to create your own app for UART Download
Typically, getting a single application to run is relatively straightforward since the linker (and user) ensure all
references are resolved when the executable file is created. Setting up your application for UART download
takes only a little more coordination between the two executable files; specifically in the area of code
placement and using the linker. Typically only minor code changes are required.

First, a quick review of what we�re trying to do. We are attempting to smoothly transition from one running
application to another. The microcontroller will initiate the action, but be substantially unaware of its
occurrence. We are going to accomplish this by manipulation of the code memory presented to the
microcontroller.

Certainly this will take some coordination between the two applications, but probably not as much as you
might initially think. To make things easier, we�ll do this critical transition just after a system reset as
described in �A detailed look at the IAP example implementation� section earlier in this document. This reset
can be initiated either through software or hardware means based on the method(s) available in your system.

You can tailor the scheme as described earlier in this document, or utilize the key generic elements listed
below;

1. Startup routine placed identically in both applications(csrtsi.s)
2. Flag indicating desire to jump from BOOT memory to main memory. This is the variable
(NVswap= 1)described earlier in this document.
3. Method to tell system of desire to return from main memory to BOOT memory. This is the
variable (Nvswap=0) also.

When using a PSD, we recommend the use of our crtsi.s routine or an equivalent included in the code
bundles. The code placement issues are serviced in the *.lkf file also included in the code bundles.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 27

The code content and positioning after the initialization code (crtsi.s) need have no correlation between the
two applications. That is, the linker can be allowed to handle post initialization code without ill effects to the
desired swapping operation. This element eases the creation of compatible applications as the critical code
placement is handled by this single file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 28

References

IEEE Std 1149.1-1990 IEEE Test Access Port and Boundary Scan Architecture
PSDSoft Express User Manual
Flashlink User Manual

Application notes
AN054 JTAG Information
AN067 Design Turorial for 8032/PSD9XX

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 29

Appendix

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 30

Appendix A - Jumper configuration on DK900-HC11 eval board

9. PSD�s power consumption measurement point (JP7)

 Two pins of this jumper are already connected using copper trace. To measure PSD�s power consumption, connect
DMM to these two pins after cutting pre-connected copper trace on PCB.

The measured PSD�s current will be,

Icc = PSD Icc + PSD Ic (I/O ports) + MCU Bus leakage Ic

 This measurement could be different from result of calculation according to formula in data sheet. To measure
correct value, make sure all of other terms should be zero.

10. PC1 TCK input option (JP8)

 Default setting of this jumper is non-buffered

 1

1-2 : direct connection to FlashLink TCK output
2-3 : buffered TCK output from HC14 on board

11. PSD SRAM Battery Vstby input to PC2 (JP9)

 Default setting of this jumper is weakly pulled up (disabled Vstby input from battery)

 1

 1-2 : connect PC2 to battery on board
 2-3 : PC2 is weakly pulled up through 100K ohm

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 31

12. SRAM (1M/256Kb) / ST�s TimerKeeper SRAM Expansion

(a) 0.3� pitch 256Kb SRAM expansion site (28PIN)

 A14 A14 VCC VCC
 A12 A12 /WE PB5 (/WR)
 PA7 (A7) A7 A13 A13
 PA6 (A6) A6 A8 A8
 PA5 (A5) A5 A9 A9
 PA4 (A4) A4 A11 A11
 PA3 (A3) A3 /OE PB4 (/RD)
 PA2 (A2) A2 A10 A10
 PA1 (A1) A1 /CS PB6 (/RAM_CS)
 PA0 (A0) A0 D7 AD7
 AD0 D0 D6 AD6
 AD1 D1 D5 AD5
 AD2 D2 D4 AD4
 GND D3 AD3

(b) 0.6� pitch 1Mb/256Kb SRAM or ST�s TimeKeeper SRAM expansion site (32PIN)

 NC VCC
 PB1 A16 A15 PB0
 JP3 (A14) A14 CS2 JP1 (VCC)

A12 A12 /WE PB5 (/WR)
 PA7 (A7) A7 A13 JP2 (A13)
 PA6 (A6) A6 A8 A8
 PA5 (A5) A5 A9 A9
 PA4 (A4) A4 A11 A11
 PA3 (A3) A3 /OE PB4 (/RD)
 PA2 (A2) A2 A10 A10
 PA1 (A1) A1 CS1 PB6 (/RAM_CS)
 PA0 (A0) A0 D7 AD7
 AD0 D0 D6 AD6
 AD1 D1 D5 AD5
 AD2 D2 D4 AD4
 GND D3 AD3

 *) PB0, 1 can be used for banked SRAM

 (c) Jumper settings for 0.6� pitch devices

 256Kb

SRAM
1Mb

SRAM
ST

M48T59
ST

M48T129

JP1 ON (VCC) ON (CS2-VCC) ON (VCC) OFF (/IRQ/FT)
JP2 ON (A13) ON (A13) OFF (/IRQ/FT) ON (A13)
JP3 ON (A14) ON (A14) OFF (/RST) ON (A14)

*) Default : All JP1-3 are OFF

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 32

13. System expansion connectors (J1,J2,J3)

 J1 (68HC11Dx) J2 (PSD8/9xx)
1 2 1 2

GND PA0 PA1
AD0 PA2 PA3
AD1 E PA4 PA5
AD2 MODA PA6 PA7
AD3 MODB GND GND
AD4 A8 PB0 PB1
AD5 A9 PB2 PB3
AD A10 PB4 PB5
AD7 A11 PB6 PB7

/XIRQ A12 GND GND
R_W A13 PC0 PC1
AS A14 PC2 PC3

/RESET A15 PC4 PC5
/IRQ PA0 PC6 PC7
PD0 PA1 CNTL2 /JEN
PD1 PA2 PD1 PD2
PD2 PA3
PD3 PA5
PD4 PA7
PD5 JP4 (VCC)

J3 1 2
 PA4
 PA5

* /JEN is connected to
FlashLink
* JP4 is OPEN as
default.

14. Others

(a) Battery power connector and re-charging circuit

When using re-chargeable battery as power source, you can use prepared normal charging circuit in this kit. To
use this charging circuit, assemble a diode with register that has proper value.
(Recommended battery is NiCD 10.8V)
*) Do not use charging circuit for Manganese, Lithium or Hydrargyrum batteries.

(b) Other power source input connector
 To use other power sources (SMPS, Transformer, �), a connector is prepared in this kit.
 (Recommended power source is AC/DC adapter, over 9V, output can be AC or DC)

(c) Re-charging circuit for Vstby Battery

When using re-chargeable battery as Vstby source, you can use prepared normal charging circuit in this kit. To
use this charging circuit, assemble a diode with register that has proper value.
(Recommended battery is NiCD 3.6V)
*) Do not use charging circuit for Manganese, Lithium or Hydrargyrum batteries.

.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 33

Appendix B Development Board Schematic and parts list

Main Schematic

{Doc} {RevCode}C

1 5Wednesday, April 19, 2000

{Title}

Size Document Number Rev

Date: Sheet of

WSI ASIA Design Center

Rm. 401, Sung Woo Bldg., 15-12, Yoido-Dong
Youngdeungpo-Gu, Seoul, Korea

TEL: 82-2-761-1281 /2

FAX: 82-2-761-1283

Title

Serial

SER232.SCH

RESOUT
TxD

RxD

Power

PWRBAT.SCH

VOUT

VCC

VDDVCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

RESET

Vstby
(*) (*)

(*)

RAM EXPANSION

(*) - not inserted

(*)

(Note)
Rcharge = (5-3.6-0.6) /
 (Ibat *charge%)

Factory setting using copper trace on board

(*)

(*)

EXPANSION

(*)

(*)

(*)

JTAG

(*)

(*)(*)

(*) (*)

(*)

(*)

JP1-4 are soldering jumper on solder side

PB0
PB1
PB2
PB3
/RD
/WR
/RAM_CS
LCD_E

LCD_E

R_W

R_W

PPA0
PPA1
PPA2
PPA3
PPA4
PPA5
PPA6
PPA7

PPD2
PPD3
PPD4
PPD5

PD2

PA6
PA7

AD7

AD2

A9

PPD1

AD1

A14

PA4

PA7

PA5

A11

/IRQ AD3
PA2

AD4

A14

AD7

PPD0

PB0

PD1

PA2

AD5

AD5

A10

AD7

PA2
MODA

AD1

MODB

A10

A13

/TERR/IRQ

PB3

PPA7

E

/TERR

A9
AD3

AD4
AD5

AD0

PA4AD2

/RD

PA3

AD6

AD1

A13

PA5

A10

A8

PPD1

PA7

PD2

A12

A15

PA4

PPD4

PA6

A14

PPA0
TDOPPA1

AD5

A11

AD0

PA6

R_W

PPA3

AD6

AD6

AD3

A12

A12

PA0

AD2

LCD_E/XIRQ

/XIRQ

AD0

PC7

AD1

PA3

PA3

AD7

Vstby

PPA5

A8

A9

A15

A11

PA5

AD0

PA1

PA0

AD2

MODB

/RAM_CS

/RES

PA0

MODA

PPD2

AD3

A15
TMS

/WR

AD6

AS

A8

TSTAT

PPD5

PB2

PA1

AD5
AD6

PB1

TSTAT

PA0

PPD0

A11
A10

A8

AD4

TCK

AD3

AD1

A13

AD0

TDI

AD7
A12

PPA2

AD4

AD4

PA1

AD2

E

Vstby
AS

PPD3

/RES

PPA4
PPA6

/JEN

PC7

PA6
PA7

PA4

PA2

PA5

PA3

PA1
PA0

PB0
PB1
PB2
PB3
/RD
/WR
/RAM_CS

CNTL2

PD1

/JEN

TMS

TDI

TCK

TDO

CNTL2

PB0
PB1
PB2
PB3

PB2

PB3

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

A8
A9
A10
A11
A12
A13
A14
A15

LCD_E

/RAM_CS

/RD
/WR

PB0
PB1

JP1

JP3

A14

A9

JP2

Y1
9.83MHz

C1

22pF

D1

1N4148

LCD1

LCD MODULE

VL
3

R/W
5

RS
4

E
6

D0
7D1
8

D2
9

D3
10

D4
11D5
12D6
13D7
14

VCC
2

GND
1

C2

22pF

R2

Rcharge

J4

CON2

1
2

+ C3
2.2uF/6.3V

U5

KIA7045P

VCC
1

RST
3

GND
2

JP7

PSD_Icc

S2
SW

U1

PSD813FXPLCC

AD0/A0
30

AD1/A1
31

AD2/A2
32

AD3/A3
33

AD4/A4
34

AD5/A5
35

AD6/A6
36

AD7/A7
37

A8
39

A9
40

A10
41

A11
42

A12
43

A13
44

A14
45

A15
46

PA0
29

PA1
28

PA2
27

PA3
25

PA4
24

PA5
23

PA6
22

PA7
21

PB0
7

PB1
6

PB2
5

PB3
4

PB4
3

PB5
2

PB6
52

PB7
51

(TMS)PC0
20

(TCK)PC1
19

(VSTBY)PC2
18

CNTL0(R_W)
47

CNTL1(E)
50

CNTL2
49

PD0(AS)
10

PD1
9

PD2
8

RESET
48

(TSTAT,RDY/BSY)PC3
17

(TERR,VBATON)PC4
14

(TDI)PC5
13

(TDO)PC6
12

PC7
11

R8
4.7K

+ C4
100uF/6.3V

D2

1N4148

J1

CON40A

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

J2

CON32A

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

104M

104M

BT1
3.6V

R1
10M

RP5
4.7K

2
3
4
5

1

R10
4.7K

J3

CON4A

1
3

2
4

U2

68HC11D0

XT
44

EX
43

RESET
14

IRQ
15

XIRQ
11

PA0
30

PA1
29

PA2
28

PA3
27

PA4
26

PA5
25

PA6
24

PA7
23

PB0/A8
39

PB1/A9
38

PB2/A10
37

PB3/A11
36

PB4/A12
35

PB5/A13
34

PB6/A14
33

PB7/A15
32

PC0/AD0
3

PC1/AD1
4

PC2/AD2
5

PC3/AD3
6

PC4/AD4
7

PC5/AD5
8

PC6/AD6
9

PC7/AD7
10

PD0/RXD
16

PD1/TXD
17

PD2/MSO
18

PD3/MOSI
19

PD4/SCK
20

PD5/SS
21

MODA
41

MODB
40

E
42

AS
13

R/W
12

EVSS
1

D7

1N4148

D7

1N4148

RA1C
100K

1
4

U3A

74HC14

1 2

U3F

74HC14

1312

U3C

74HC14

56

D4
LED

R2
470

U3B

74HC14

3 4

JP9

Vstby

RP4

R-SIP5

2
3
4
5

1

RP2

100K

2
3
4
51
6
7
8
9

RP1

100K

2
3
4
51
6
7
8
9

J4

CON14A

1
3
5
7
9

11
13

2
4
6
8
10
12
14

RA1A

100K

1
2

U3D

74HC14

98

R5
10K

RP3

100K

2
3
4
5 1
6
7
8
9

104M

C5
0.1uF

104M

SW1

SW DIP-4

1
2
3
4

8
7
6
5

LED-PB2
LED

LED-PB3
LED

R?
560

R?
560

R?
47

RP6

100K

2
3
4
5 1
6
7
8
9

RP7

100K

2
3
4
51
6
7
8
9

RA1C

100K

1
4

U3E

74HC14

11 10

JP8

TCK-OP

U3

628128

A0
12

A1
11

A2
10

A3
9

A4
8

A5
7

A6
6

A7
5

A8
27

A9
26

A10
23

A11
25

A12
4

A13
28

A14
3

A15
31

A16
2

D0
13

D1
14

D2
15

D3
17

D4
18

D5
19

D6
20

D7
21

CS1
22

CS2
30

WE
29

OE
24

104M

JP3
JUMPER

JP2
JUMPER

JP1
JUMPER

JP4
JUMPER

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 34

Serial Port Schematic

VCC

U7

MAX232C

C1+
1

C1-
3

C2+
4

C2-
5

TI1
11

RO1
12

TI2
10

RO2
9

V+
2

V-
6

TO1
14

RI1
13

TO2
7

RI2
8

R5

10K P1

CONNECTOR DB9

5
9
4
8
3
7
2
6
1

+

C6
1uF/16V

+

C7

1uF/16V

+

C8
1uF/16V

+

C9

1uF/16V

+

C10
1uF/16V

RxD
TxD

RESOUT

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 35

Power Supply Schematic

(*) (*)
(*)

(*)

(*)

(Note)
Rcharge =(Vdc-Vbat-0.6)/
 (Ibat * charge%)

Vdc

Vbat

D5
1N4001

D6
1N4001

D7
1N4001

D8
1N4001

J6

DC JACK

R6

Rcharge

D9
1N4001

J7

CON4

1
2
3
4

U8
LM7805

VIN
1

G
N

D
3

VOUT
2

+ C11
470uF/25V

S3
SW

D10

1N4148

CON2

1
2

VOUT

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 36

Eval Board Parts List

No. description part number Q'ty
1 MCU 68HC11D0 0
2 PLCC socket 44P-PLCC 1
3 PLCC socket 52P-PLCC 1
4 5V regulator KIA7805P 1
5 Reset comparator KIA7045P 1
6 TTL MC74HC14AN 1
7 232 Driver ICL232CPE 1
8 Crystal 9,8304MHz 1
9 block resister array AR100K-09P 3
10 block resister array AR100K-05P 2
11 block resister array AR4K7-05P 1
12 resister 10M 1/8W 1
13 resister 10K 1/8W 1
14 resister 4.7K 1/8W 2
15 resister 560 1/8W 3
16 resister 47 1/8W 1
17 potentiometer GF06S10K 1
18 diode (switching) 1N 4148RL 1
19 diode (rectifier) 1N 4002RL 4
20 electrolytic capacitor 1uF/50V EC1U50V 5
21 electrolytic capacitor 2.2uF/16V EC2.2U16V 1
22 electrolytic capacitor 470uF/16V EC470U16V 1
23 electrolytic capacitor 100uF/6.3V EC100U6.3V 1
24 ceramic capacitor 22pF CC22 2
25 monolytic capacitor 0.1uF/50V M104 5
26 LED (green, 3mm) BL-B2141-3D 3
27 4 position dip switch KSD04H 1
28 power switch (slide 3P) 1
29 reset siwtch 1
30 SIP 2 pin header 1
31 SIP 14 pin header (LCD side) 1
32 SIP 14 pin connector (PCB side) 1
33 DB-9 connector DB-9SR 1
34 DC-JACK 1
35 7x2 pin ribbon cable w/ male con. (150mm) 1
36 7x2 pin connector (angle) 1
37 standoffs (3 mm x 10 mm) for LCD 2
38 bolt,nut (2.6 mm x 16mm) for LCD 2
39 anti-static bag (170 mm x 300 mm) 1
40 box (110 mm x 150 mm x 24 mm) 1
41 LCD module 1

42 standoffs for PCB board 4
43 PCB board

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 37

Appendix C: FlashLINK Users Manual

Features

• Allows PC parallel port to communicate with PSD9xx via PSDsoft Express
• Provides interface medium for JTAG communications
• Supports basic IEEE 1149.1 JTAG signals (TCK, TMS, TDI, TDO)
• Supports additional signals to enhance download speed (!TERR, TSTAT)
• Can be used for programming and/or testing
• Wide power supply range of 2.7 to 5.5v
• Pinout independent with target side flying leads
• Convenient desktop packaging allows varying applications(desk, lab or production)
• Synchronous JTAG interface allows speeds as fast as pc can drive

Overview
Flashlink is a hardware interface from a standard PC parallel port to one or more PSD9xx devices located
within a target PC board as shown below. This interface cable allows the PSD to be exercised for purposes
of programming and/or testing. PSDsoft Express is the source for driving FlashLINK.

Mates with
PC parallel

port

FlashLink
adapter

6 feet

12 WIRES

6 inches

Target
device

Flying lead
cable

Figure 25 Typical FLASHlink application

Operating considerations
Operating power for FlashLINK is derived from the target system in the range of 2.7 to 5.5 v.
Compatibility over this voltage range is ensured by the design of FlashLINK. No settings are involved.

On a cautionary note, it is recommended that the target system be powered with a well regulated and stable
source of power which is energized at the final value of Vcc. It is not recommended that the input voltage
be varied using the verneer on a regulated power supply, as this may cause the internal FlashLINK IC�s
(74VHC240) to misoperate toward the lower end of the supply range.

Each FLASHLink is packaged with a six-inch "flying lead" cable for maximum adaptability (a ribbon cable
requires the use a certain connector on the target assembly). This flying lead cable mates to the FlashLink
adapter on one end and has loose sockets on the other end to slide onto 0.025 square posts on the target
assembly.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 38

PIN

SIGNAL
NAME

DESCRIPTION
JTAG = IEEE 1149.1
EJTAG = ST EHANCED JTAG

Type Flashlink is
Signal

1 JEN\ Enables JTAG pins on PSD8XXF (optional) OC,100K Source
2 TRST\ * JTAG reset on target (optional per 1149.1) OC,10K Source
3 GND Signal ground
4 CNTL * Generic control signal, (optional) OC,100K Source
5 TDI JTAG serial data input Source
6 TSTAT EJTAG programming status (optional) Destination
7 Vcc VDC Source from target (2.7 - 5.5 VDC)
8 RST\ Target system reset (recommended) OC,10K Source
9 TMS JTAG mode select Source
10 GND Signal ground
11 TCK JTAG clock Source

12 GND Signal ground
13 TDO JTAG serial data output Destination
14 TERR\ EJTAG programming error (optional) Destination

Notes
 1. Bold signals are required connections
 2. all signal grounds are connected inside FlashLink adapter
 3. OC = open collector, pulled-up to Vcc inside FlashLink adapter
 4. * = Not supported initially by PSDsoft.
 5. The target device must supply Vcc to the FlashLink Adapter (2.7 to 5.5 VDC, 15mA
 max @ 5.5V).

Figure 26 Pin descriptions for FlashLink adapter assembly

All 14 signals may not be needed for a given application. Here's how they break down:

(6) Core signals that must be connected: TDI, TDO, TMS, TCK, Vcc, GND

(2) Optional signals for enhanced ISP (Option 3 flow control): TSTAT, TERR\

(1) Optional signal to control multiplexing of the JTAG signals: JEN\

(1) Recommended signal to allow FlashLink to reset target system during and
 after ISP: RST\

(1) Optional IEEE-1149.1 signal for JTAG chain reset: TRST\

(1) Optional generic control signal from FlashLink to target system: CNTL

(2) Two additional ground lines to help reduce EMI if a ribbon cable is used.
 These ground lines "sandwich" the TCK signal in the ribbon cable. These
 lines are not needed for use with the flying lead cable, that is why the
 flying lead cable has only 12 of 14 wires populated.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 39

FLASHlink pinouts
There is no "standard" JTAG connector. Each manufacturer differs. ST has a specific connector and
pinout for the FlashLink programmer adapter. The connector scheme on the FlashLink adapter can accept a
standard 14 pin ribbon connector (2 rows of 7 pins on 0.1" centers, standard keying) or any other user
specific connector that can slide onto 0.025" square posts. The pinout for the FlashLink adapter connector
is shown in figure 4.

A standard ribbon cable is good way to quickly connect to the target circuit board. If a ribbon cable is used,
then the receiving connector on the target system should be the same connector type with the same pinout
as the FlashLink adapter shown in Figure 4. Keep in mind that the JTAG signal TDI is sourced from the
FlashLink adapter and should be routed on the target circuit card so that it connects to the TDI input pin of
the PSD device. Although the name "TDI" infers "Data In" by convention, it is an output from FlashLink
and an input to the PSD device. Also keep in mind that the JTAG signal TDO is an input received by the
FlashLink adapter and is sourced by the PSD device on the TDO output pin. Use Figures 1, 2, 3, and 6 as a
guide.

TDO

TCK

TMS

VCC

TDI

GND

JEN

TERR

GND

GND

RST

TSTAT

CNTL

TRST

14

12

10

13

11

9

78

6 5

4 3

2 1

KEY
WAY

VIEW: LOOKING INTO FACE OF
SHROUDED MALE CONNECTOR.
0.025" POSTS ON 0.1" CENTERS.

Connector reference: Molex 70247-1401

ST ENHANCED JTAG ISP CONNECTOR DEFINITION

Recommended ribbon cable for quick
connection of FlashLink adapter to end
product:
Samtec: HCSD-07-D-06.00-01-S-N
 or
Digikey: M3CCK-14065-ND

Note:
TDI is a signal source on the Flashlink
and a signal destination on the target
board.

TDO is a signal destination on the
FlashLink and a signal source on the
target board.

Figure 27 Pinout for FlashLink Adapter and Target System

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 40

Vcc

TMS
TCK

TDI

TSTAT
!TERR

TDO

!JEN
!TRST
GND*
CNTL
!RST

GND*
GND*

1

PSD8XXF

TMS
TCK

TDI
TDO

TSTAT
TERR\

13

6

9

11

5

14

Target System, 3v or 5v

straight through
ribbon cable

2 row, 7 position

Vcc

7

optional
optional

optional

optional

optional
recommended

1

2
3
4
8

10
12

* all ground pins are
connected together inside

flashlink assembly

PSD8XXF

TMS
TCK

TDI
TDO

Any JTAG
Device in

ByPass Mode

2

n

FlashLink
Adapter
Conncetor

System
Reset

Circuitry

9

11

13

5

6
14

7

12

1

2
3
4
8

10

JTAG Chaining Example,
PSD8XXF and other JTAG
compatible devices.

recommended
buffering

TMS

TCK

TDI
TDO

TSTAT
TERR\

Figure 28 JTAG Chaining Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 41

FlashLink PCB G1

FlashLink Schematic

Waferscale Integration

47280 Kato Road
Fremont, CA 94538

B

1 1Monday, July 26, 1999

Title

Size Document Number Rev

Date: Sheet of

VCC

VCC

VCC VCC

VCC

VCC

VCC

VCC

SOLDERING PAD PATTERN

(DRAIN WIRE)

(FRAME GND)

(FOR U2) (FOR U3)

(FOR U1)

white

red
org
pink
yellow
green
lt green

grey
black
orgt
brnt

TDI

VCCIN

TMS

TCK

TSTATN

TRSTN
/JEN

CONTROL

RSTN

TDO
TERRN

SHIELD

D6 DB8

SEL DB13

GND

D4(TRST)DB6

ERRN DB15

D0(TCK)DB2

ACKN DB10

D5(RST) DB7

D2(TDI) DB4
D1(TMS) DB3

BUSY DB11

D3(JEN\) DB5

DB14AUTO LINE FEED

DB12PAP

GND

GND DB18

D1
6.2V

P1

70247-1401
MOLEX

1
2
3
4
5
6
7
8
9
10
11
12
13
14

R1247
R1347

R1447

R50 10

C50

1UF

C240.01UF

R51

100K

R810

U1B

74VHC240

A417

A315

A2
13

A1
11

G
19

Y4 3

Y3 5

Y2
7

Y1
9 R1547

R1847

R1747

R1647

R2047

R1947

U2B

74AC05

3 4

U2C

74AC05

5 6

R2210K

U3C

74AC05

56

U3B

74AC05

3 4

U3E

74AC05

1110

R2147

U3D

74AC05

98

U3A

74AC05

1 2

R2310K

R39

10K

R41 4.7K

R26

10K

C250.01UF C260.01UF

U2D

74AC05

9 8

R3010K

R31100K

R32100K

R33100K

U2E

74AC05

11 10

U2F

74AC05

13 12

U3F

74AC05

13 12

S1

PAD1

1

S2

PAD1

1
R800

R3510K

R34

100K

R3610K

R3710K

R3810K

C51

0.01UF

D3

4148

Q1
2N3904

3
2

1

D2

4148

R40

10K

R25470K

R42
4.7K

R43
4.7K

R28
4.7K

C52
100pf

R29
4.7K

C55
100pf

C53
100pf

C54
100pf

R647

U1A

74VHC240

A12

A24

A3
6

A4
8

G
1

Y1 18

Y2 16

Y3
14

Y4
12R447

R847

U2A

74AC05

1 2

R247

CBL1

PAD14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

R947

R547

R347

R1047

R747

R147

R1147

D4

1N5817

C56
100pf

C57
100pf

C58
100pf

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 42

Loop back connector schematic

14 pin dual row 0.025 sq
receptacle(polarized, same as cable 5)

to flash
link
assy

VCC

GND

PC output
signal

PC intput
signal

TDI !TSTAT

!TERRTMS

TCK !TDO

PC connector
line

ACKN (8)

ERRN (10)

PAP (9)

!TSTAT

TMS

TDO

VCC

TCK

TDI

!TERR

GND

J1

CON1

1

J2

CON2

1

J1

CON14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 29 Loop Back Tester, Passive, FLASHlink

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 43

Appendix D crtsi.s routine
; crtsi.s
; C STARTUP FOR MC68HC11
; WITH AUTOMATIC DATA INITIALISATION
; Copyright (c) 1995 by COSMIC Software
;
 xdef_exit, __stext
 xref _main, __memory, __idesc__, __stack
 xref _evl_optn
;
 switch .bss
__sbss:
svx:
 dc.w 0
sve:
 dc.w 0
;
 switch .text
__stext:
 ldx #__idesc__ ; descriptor address
 ldy 0,x ; start address of prom data
 inx ; skip address
 inx
ibcl:
 ldaa 0,x ; test flag byte
 beq zbss ; no more segment
 bpl nobk ; skip bank
 inx ; info
 inx ; if any
nobk:
 stx svx ; save pointer
 ldd 3,x ; end address
 std sve ; in memory
 ldx 1,x ; destination address
dbcl:
 ldab 0,y ; copy from prom
 stab 0,x ; to ram
 inx ; next byte
 iny
 cpy sve ; last one ?
 bne dbcl ; no, loop again
 ldx svx ; reload pointer to desc
 ldab #5 ; size of one entry
 abx ; point to next entry
 bra ibcl ; and loop
zbss:
 ldx #__sbss ; start of bss
 bra loop ; start loop
zbcl:
 staa 0,x ; clear byte
 inx ; next byte
loop:
 cpx #__memory ; up to the end
 bne zbcl ; and loop
 lds #__stack ; re-initialize stack pointer
 jsr _main ; execute main
_exit:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 44

 bra _exit ; and stay here
;
; Special routines for non-stop concurrnet swap & execute
; both boot and main code must have identical following routines
;
 xdef _EXECUTE_SOURCE
 xdef _Execute_Main, _Execute_Boot, _Return_Boot
 xref _PSD8xx_reg
 xref _PSDload_init, _PSDload
;
 switch .text
;
; swap to main flash and execute main code
;
_Execute_Main:
 cli ; disable all interrupts
 ldaa #$80
 ldy #_PSD8xx_reg
 oraa $E0,y ; set SWAP in PAGE to 1
 staa $E0,y ; now in main flash
 jmp __stext ; jump to Cstarup of main
 ; hc11 option setting is not allowed
;
; swap to boot flash and execute boot code
;
_Execute_Boot:
 cli ; disable all interrupts
 ldaa #$7F
 ldy #_PSD8xx_reg
 anda $E0,y ; clear SWAP in PAGE to 0
 staa $E0,y ; now in boot flash
 jmp __stext ; jump to Cstarup of boot
 ; hc11 option setting is not allowed
;
; swap to boot flash and execute PSDload with message in boot
;
_Return_Boot:
 cli ; disable all interrupts
 ldaa #$7F
 ldy #_PSD8xx_reg
 anda $E0,y ; clear SWAP in PAGE to 0
 staa $E0,y ; now in boot flash
 lds #__stack ; initialize stack pointer before
 ; calling PSDload subroutine(s) written in C
 jsr _PSDload_init
 jsr _PSDload ; loop forever in C
;
_EXECUTE_SOURCE:
 dc.b 'PSDload'
 dc.b 'V1.0',0

 end

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

 45

Appendix E evl_init.c routine

void evl_init(void)
{
 psd_init(); // initialize PSD
 // if any PSD port(s) is/are used for
 // latched address output for external data memory,
 // the PSD port must be initialized in "evl_optn.c"
 // to guarantee initialization of data segment.

 Run_Execution_Source(); // check & run execution source
 // EXECUTE_SOURCE[] containes this information

 PSDload_init(); // initialize other I/Os for PSDload function
}

// This is for checking setting of execution source and running
extern void Execute_Main(void); // to ensure, same code in both BOOT and MAIN
extern void Return_Boot(void); // these functions are in Cstartup(crtsi.s)
extern void Execute_Boot(void);

extern const char EXECUTE_SOURCE[]; // this data storage also in Cstartup(crtsi.s)

void Run_Execution_Source(void)
{
 char *copy_loc;

 if (!read_dipsw(DIP_SW3)) {
 // current execution location is BOOT
 // && same Cstartup code may be in MAIN
 copy_loc = (char *)(((uint)EXECUTE_SOURCE - boot_mem_start_addr) + unswapped_Fseg_addr);
 page_set (unswapped_Fseg_page);
 if (!page_get(SWAP) && !strcmp(EXECUTE_SOURCE, copy_loc))
 Execute_Main();
 }
 else
 // current execution location is MAIN
 // && execution source setting is BOOT
 if (page_get(SWAP))
 Execute_Boot();
}

// This is initialization for only direct PSDload running
// this can be called from STARTUP.A51
void PSDload_init(void)
{
 com_initialize(); // initialize UART buffer.
 init_message_level(); // initialize message level variables
 timer_initialize(); // initialize real time interrupt,

 lcd_init(); // initialize LCD. 8 bits, 2 lines, 5x7 font,
 // no blink, cursor off, clear
}

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

DK9_HC11 - USER MANUAL

2/3

Table 1. Document Revision History

Date Rev. Description of Revision

1.0 Document written in the WSI format

30-Jan-2002 1.1

DK9_HC11: DK900-HC11 Development Kit For PSD9XX Family of Flash PSDs
Front page, and back two pages, in ST format, added to the PDF file
Any references to Waferscale, WSI, EasyFLASH and PSDsoft 2000
updated to ST, ST, Flash+PSD and PSDsoft Express

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

3/3

DK9_HC11 - USER MANUAL

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psm

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -

India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

