ﬁ DK9 HC11

® USER MANUAL
DK900-HC11 Development Kit
For PSD9XX Family of Flash PSDs

CONTENTS
n (Please see next pages)

January 2002 1/3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

’ I ® DK900-HC11

DEVELOPMENT KIT
For PSD9XX Family of Flash PSDs
Rev 1.1

Contents:

PSDsoft Express - Point and Click Windows based Development Software(from web)
PSD9XX Sample

DK900-HC11 Eval Board

FlashLINK JTAG In-System Programmer (ISP)

Ribbon and "Flying -Lead" JTAG cables for FlashLINK

PSDload — WIN95/98/NT based UART software for IAP

Serial UART cable for PSDload

CDROM - Data Book, Software and Videos

110V or 220V Power supply

®. O o% o KR/ O o% %
LI X IR X R X X X IR X X X g

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

DK900-HC11 DEVELOPMENT KIT

Introduction...............
A couple of definitions:..
HATAWATE ...ttt sttt b bt s s s s s s s s e b bt s e s e s e s e s s s s e s s s e s e s s s sese s e b e s s s s s s s aeses s ssesesesesesensnsnes
SOTEWALEvvviieiecieieieietst ettt ettt b b b s s s s s e b e s e s s s e s s s s s s seseseses s e ssesss s s et e s se s e bbb s e s e sebebes e ssssese st eesssssesebesssesesesesesasnsnsnsnses

Detailed DeSCHIPLIONS.........ccccc s e e e s s s ss s s s s ssssssssssssmesesssssennnnnnnnnnnens 6
Step-By-Step Instructions for ISP DEmO:cciiuririieeeiee ettt ettt sttt s et estesena 7
Step-By-Step Instructions fOr TAP Dm0cocueriiiieieieie ettt ettt s e sesesensas 10

COMCEPL. .ttt ettt ettt bbbttt et £ e et b E et b b b4 £ et Re b b e et bbbt A b bttt bbbttt e et eee
General BOArd DESCIIPTION «..c.c.cueuiuriiuiieietririccitietet ettt ettt ettt ettt e s e bttt e e e e bt e e eat e bbb e eree e acaeseb et et s eneasasaetesen
Downloading to the Development Board ..
TTAG = ISP ettt e b s s bbb bbbt bbb
PO SOTIWALE ...ttt ettt s e b b et £t e e e s et e s e et s e bt A e s et et e bt taeee s e s et e et aeasset et eseasasaetesesreas
UART Support, PSDload ..
Definition of Terms
Serial Interface
PSD ATCRIECTUIR ...ttt et ettt sttt bbbttt st e bt enas
FUNCHIONS AVAIIADLEooeiiiiiiiiicicii ettt ettt ies

Memory Mapcccccvemmmmmnsssmsnsmismessssssssssssssssssssnnes

Getting started with PSDload ...
A few reads and writes..........
DIOWILOAA ...ttt ettt ettt ettt et ae et et s s et e st et e s e st et eae et et easesess et et eas et et et ent et et ens et ent et et ens et ens et etensetens et eae s erenen

PSDload address translation.
IMICTO LEVEL..eeeeeteeeeee ettt ettt ettt ettt te et et et et ess et et ens et eae et et ess et eas s et essesasetess et esens et esses et ensesens et esensesensesesensesenen
WAt TRAILY NAPPEIIS. ...ttt ettt b e b ettt e et e b et e e e b et ebeeeacasanaas

A detailed look at the IAP example implementation
TOP 1eVE] FUNCHIONAL TIOWovieiieieiiiiiicicieiccee ettt sttt s bbb st b bbbt s s sssseses s sssnsssssesesens

How to create your own app for UART Download...........cccccrrvcemieismrmeneesssssessssseessssssessssamensans

=Y =1 = ¢ o=
W 0] o1 1T 1 Lo 4 N 4 L) (=SS 28

N o o 1])R
Appendix A - Jumper configuration on DK900-HC11 eval board

Appendix B Development Board Schematic and parts listcccccomrecciccerrirmeccennneccceceeeens
IMAIN SCREMALICeivveiiiiecieieieisi ettt ettt et b st es e s s s s sebes et esssssesesesesssseseseses s esessssasesesesessssssesesesesessnsesasesesssnas
SErial POIt SCHEMALICevcveiiiiicicieieiet ettt ettt s bbb e b s s se b e s s s as s s e s s es s sss s ssesesesesesessssnsasesessssnsnsnsns
Power Supply Schematic
Eval Board Parts List.........

Appendix C: FlashLINK Users Manual...........cccccoorieiirnnsmnmrnssssssssensnseennnns
Features
O VEIVIEW..eeiuieiieiereteteteteee ettt et et ettt bt e s e s e s e st essas et s bt e s e s e s esetesssea s e s bt eseseb et esessssasas s b e st e s eassse b et s s ebebebetesessasesassesesebesesesnasananasane
OPErating CONSIACTALIONS.......c.eueueveiiririeeieteteiieeiete ettt sttt ss st asss s s sesessssssssesesessssesssssesessssassssesesestesesssssssnsesesssssassnsnsasans
FLASHINK PINOULS ...ttt ettt st ettt ses s s st s ssesesesessssssssesesessssssssssesessssssssessssssesessssssssssesessssssssssesesssnn

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Lo0p back CONNECLOT SCREIMALIC ..ottt ettt ettt e st see s eaes et e s e acasse s et e s eaenees 42
Appendix D CHSI.S FOULINE.........oiieeeeer e r e e e s s e me e e e eessme e e e s e e ememn e e e ennnne 43
Appendix E eVI_iNit.C roUtiNe ... s s n e 45

3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

DK900-HC11 Development Kit

Introduction

Congratulations on purchasing ST's DK900-HC11 Development kit. The DK900-HC11

(110V or 220 Volt version) is a low cost kit for evaluating the PSD9xx family of FLASH
Programmable System Devices (PSD). The kit is extremely versatile, and can be used in several
different modes. In it's simplest mode, it can be used to demonstrate the PSD9xx's capability of
JTAG In-System Programmability (ISP). After ISP is accomplished, the DK900-HC11 can be set-up
to update the program while the MCU is running, called In-Application Programming (IAP). And
lastly, HC11 family users can utilize the DK900-HC11 as an evaluation platform for code
development.

Regardless of how much development work is done on the DK900-HC11, it functions as an
extremely low cost complete JTAG ISP programmer for the PSD9xx family.

A couple of definitions:

In-System Programming (ISP)- A JTAG interface (IEEE 1149.1 compliant) is included on the PSD
enabling the entire device to be rapidly programmed while soldered to the circuit board (MAIN
FLASH, BOOT FLASH, the PLD, all configuration areas). This requires no MCU participation, so the
PSD can be programmed or reprogrammed anytime, anywhere, even while completely blank. The
MCU is completely bypassed.

In-Application Programming (IAP) — Since two independent FLASH memory arrays are included in
the PSD, the MCU can execute code from one memory while erasing and programming the other.
Robust product firmware updates in the field are possible over any communication channel (CAN,
Ethernet, UART, J1850, etc) using this unique architecture. In this case, all code is updated through

the MCU.
Hardware
 PSD9xx FLASH PSD (Programmable System Device) - see www.st.com/psm for data sheet.
PSD913F2 - 1Mb MAIN FLASH(128kx8), 256Kb BOOT FLASH(32kx8), 16Kb SRAM(2kx8)
-or-

PSD934F2 - 2Mb MAIN FLASH(256kx8), 256Kb BOOT FLASH(32kx8), 64Kb SRAM(8kx8)
e Eval/Demo Board with HC11 MCU, LCD Display, JTAG and UART ports for ISP/IAP
e FlashLINK JTAG ISP Programmer (uses PC's parallel port)
e Null Modem serial cable (Female-Female)
e Power Supply

Software

* To assure latest version, check our website often.
1. PSDsoft Express - Point and Click Windows programming development software. This
will install to it's own directory.
¢« MCU Selection by manufacturer and part number
e Graphical definition of pin functions
e Easy creation of memory map
e« JTAG ISP Programming
2. PSDload - Windows 95/98/NT based UART download software. This will also install to
it's own directory.
* In-Application Programming
e Performs erase, fill, read, write, upload and download of PSD
e All functions performed through MCU's UART channel.
3. The distribution disk included with the kit contains the following directories, each with
executable code. This code is also available from the web site. For convenience, copy each
distribution disk directory to your machine under ...\PSDexpress\dk900-HC11\... . For
example, ...PSDexpress\ dk900-HC11\hwtest\, ... PSDexpress\ dk900-HC11\demo1\, etc
« Hwtest. Validates DK900-HC11 board hardware including serial port

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

< |AP. Initial congratulations and also demonstrates serial port functionality.
« DEMO1. Simple program for IAP demo, displays “have no fear...”

Each full code bundle directory(iap, hwt) contains the following

e *.zip for the psd

e *.zip for the C level source code

¢ readme.txt file containing late breaking information

e *.obj file suitable for direct PSD programming.

Others(demo1) contains the ¢ code subset appropriate for uart download.

Since the *.obj file is the natural format needed by PSDsoft for direct programming of the
PSD, no unzipping is necessary to change the executing code in the development board. A
detailed description of each software bundle is included in the appendix.

The following table is a specific listing of the files and their locations on the distribution disk.
Place the files listed in the following table under “root” in the following directory
...PSDExpress\DK900-HC11\<table directory>

The files listed under “root”, are all the files that are needed for the demonstrations in this
manual. The remaining archives are source information from which these files were
constructed.

| Directory | Files | Description

IAP Full code bundle(c level code and psd files)
Dk9hciap p 10.zip | Contains all PSD source files
Dk9hciap ¢ 10.zip | Contains all C level code files
Readme.txt Late breaking information

Demo No psd or obj files
UART1-HC11.zip Contains all C level code files
Uart1.hex Directly downloadable via IAP
Readme.txt Late breaking information

Hwtest Full code bundle(c level code and psd files)
Dk9hchwt p 10.zip | Contains all PSD source files
Dk9hchwt ¢ 10.zip | Contains all C level code files
Readme.txt Late breaking information
hwt.obj Duplicate obj file (also in PSD file above)
hwt. mmf Memory map file used by PSDload

Root
lap_HC11.mmf Memory map file(from PSDsoft project)
lap_HC11.psd Configuration file for PSDload
lap_HC11.0bj Executing code for IAP demo
Uart1.hex IAP demo file for direct download

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Detailed Descriptions

2 line x 16 char s Power Switch
LCD display Eriy

LED’s

Pads for

additional SRAM DC Power Input

Reset Switch L
ITAG ' DB9
Programming port serial port
O cm—
Socket for PSD \ HC11
PSD is supplied

Expansion Ports

Figure 1 DK900-HC11 Development Board

Display - A two line by 16 character LCD display is included on the Development Board.
Power switch

UART Serial Port(male) - Connected to MCU serial port; used for In-Application Programming

HC11 MCU - Low cost MCU HC11, 44 pin PLCC

Socket for PSD9xx - Blank PSD9xx is supplied, user installs and performs initial JTAG ISP.

JTAG programming Port - Used in conjunction with FlashLINK programmer for ISP.
Reset Button - For resetting the MCU and PSD

DIP switch for IAP control

LED’s for functional annunciation

Pads for additional SRAM - The resident PSD9xx contains either 2KB or 8KB SRAM. This site

is for additional SRAM.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Step-By-Step Instructions for ISP Demo:

a) Locate and install PSDsoft Express and PSDload. The latest version is always on the web.

b) Plug the blank PSD9XX device into the Eval board socket.

¢) Plug the FlashLINK Programmer into your PCs parallel port and plug in the ribbon cable to the
JTAG port on the eval board (for help see the Appendix C, FlashLINK manual).

d) Plug in power supply and turn on power. Typically you will observe that the top row of
characters are black boxes. This indicates no code is running on the board. You may need to
adjust the contrast control located on the left side of the board under the LCD.

e) Run PSDsoft Express. Here is the initial screen if no project is open.

PSDsoft - Specify Project
Choose one

@ Open an existing project
" Create a new project

Cancel |

Figure 2 Opening screen upon PSDsoft Express invocation

Use cancel at this point since all we need to do is program the PSD and there is no need to
create a project. Later, in the “Using the DK900-HC11 as a development platform” section, a
further tutorial is given on using PSDsoft Express with the DK900-HC11 for development.

Pt Dazign Ensinn nmsnl

! Uz Piogeel Dpan o Piogect M e b seect of ciaala apopect fie
(L 5

Figure 3 Invocation reminder screen

f) In the Design Flow (shown below), click on the ST JTAG/ISP button. Bottom row of
boxes left side.

MCLU Frnvware

Figure 4 PSDsoft Express flow

Clicking on this box yields the JTAG Operations- Single device dialog shown below.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

The following screen appears inquiring if it's desired to program a single device or multiple devices in
the JTAG chain. Select “Only one” as shown below and click OK.

JTAGASP Dpesa

Hewe marsy derices am in e TAG chein on
your eircut bamd?

= Onlp ong

™ Mare Han oo

Figure 5 JTAG-ISP Operations dialog

g) Clicking OK brings up the JTAG Operations —Single Device dialog shown in the following figure.
h) Browse to the *.obj file shown, and click on this file. The information will be filled in for you.
i) In Step 2, click Execute.

JTAG-ISP Operations - Single Device I
—S5tep 1: Select Programming file and PSD
Select folder and programming file: Select device:
|D:\PSDexpress\dkSDD-hc11\h09piap.obi Browse. . I IPSDQ1 aF2 j
—Step 2: Specify JTAG-ISF operation and conditions
Select operation: Select PSD region: Select # of JTAG ping to uge: Other conditions:
| Program i I =] |4pins =l [Propetis...

Click here to perform specified JTAG-1SF operation: Exrecute |

—Step 3: Save or retrieve JTAG-ISP setup
Specify folder and filename to save the setup of this JTAG-ISP session o retrieve a previous session, Save |

Select folder and fils: Browese... |

™ Log Mode - Click box to record session infomation in the log fils * plg.

PSD JTAG-SP Operations -]
PSDsoft Exprezs £.12 Copyright [C] 2000 W aferscale Integration. Inc. Al Rights Reserved.
DATE : 08/16/2000 TIME : 13:43:30

Hiw! Setupl HesetTarget! Cloze I

Figure 6 PSDsoft Express, JTAG Operations dialog

j) Observe in the lower pane the JTAG activities that occur while programming your device. When
activities stop here, observe the LCD display on the Development Board itself.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

k) When the download is completed the Development Board will boot automatically, showing the
displays below: This display will sequence one time, ending with the last screen, PSDload Test.
This is the screen that needs to be active for the following IAP demo.

DK 900 Eval B d

Congrat ul ati on s

(7]
o
O
o
=
=
» o
]
o

Pl eas e cycl e
p ower t o s e e

t h at progr am
I s I n fl a h
THANKS

PSDI oad Test

Figure 7 Eval Board Displays for ISP

If you power off/on the board, you will see that the display will resequence, confirming that the
program and all configuration information are stored in the PSD's non-volatile memory.
I) For better understanding of the program you may want to examine the following resources:
1. System memory map. Figure 18.
2. PSDsoft Express project
3. The file source code (included) to see the flow of the executing code

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Step-By-Step Instructions for IAP Demo:

a) Now, let's perform an In-Application Programming (IAP). Disconnect the FlashLINK programmer
and close PSDsoft Express. Connect the serial cable to the serial port on the PC, and the Dsub
connector on the Development Board. Note that this cable is a null modem cable(F-F).

b) Once the Development Board displays PSDload Test, proceed to the next step.

c) Invoke PSDload on the PC. At invocation of PSDload, most buttons will be greyed out indicating
the PC communications port is not configured as shown below.

&k Untitled - PSDland
Ela Yiew pAclion Jesac Help
s|@fafs] a) efufe]e|a]a]-]=n]] [=]]
Target System Memory Map Delinition [irom PS0Dsoft Smmf]
P50 Page Staiting Erding
Memoy Fagea Ao Ak enoiy Sovca Pl
Seoments |birany] [hezs] [Fes] Tyo= to Dol nad
Legedt
rciceahes: e 1p baion which can be el bl nok weitery luoe als e s pace
ristes memary beection which can be 1ad o vatien
T Siep 1 Openarew e o sekecl % ped ke lom previcus session [skip teps 244 L7 ped fle i ueed)
Slap 2 Sakct communicalioon paramabers
Slep A Sekcl “mml lis from FS0scll pogct.
Step4 Descibe memony uesge.
Slep S Peiloin desied hanclion using Acion submeru which conlare svalsble comnands.
For Heln, press F Feady FS0 Pal | ComFoil COMD Bevd Rete [0

Figure 8 Initial PSDload invocations screen (no comm)

d) From within PSDload, choose File, then Open. Find the file as follows; \DK900-HC11\iap*.psd.
This is a configuration file for PSDload that’s been constructed for this demo containing the
particulars of the design.

10

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

e) Observe the buttons become active(colorful) when this file is selected indicating the
communications port is configured. If the button colors do not appear, change the comm port
(while retaining 19.2Kbaud) using the Select, Communications submenu or the Comm Port hot
button. In this case, you will also be prompted for the *.mmf file from the same directory. Do not
leave this step until you’'ve achieved active buttons as shown below.

S heOpinp. pad - PSDinad
Bl Yiew pclion Seds Help
I__“|E_||H|i|ﬂ w|ﬂ|ﬁ£‘;:;| -‘|%|“|?|H|i‘ﬁ I-‘gi;'|T||
Target System Memory Map Definilion [irom PS0soft "mmf]
FED Page Tlaitieg Treding
WAy Fagaer e =] A Wlamaiy aoiacd Pl
Seaments |birany] [heasi] [Fes] Tuoe= b Dol oad
[EX Qoo E Flsth =1
k1 a0 . ik
Isz LLLE i Flezh
[t A0 FFE Flash
I=d RLLE FFT Flazh
f:E 4000 TFFF Flash
Ick wapaiad] 1 o 3 Flazh
BT Mizean011 4000 FFE Flazhy G:hiools Bhitkd he £ uaidhuart] hes
cebocd(l_| [1 1 Flzsy
cebocd1_f Db i BN FFFF Flzziy 2
rsbeei? i 00 OO FFF Flathy
cahondd vl [T ¥FF Fleety k|
Legert
rchcalies; mem g ocalon ot can | | bl rck iy, luoe o by eeeaca i ory A pacsa
izl memnie ocadion which con ba 1aad or villar
M Slap 1 Cery 2 reaw o o zakee) % pred filks hom pravious s o |ship sape 241 ped e & usad)
Slap 2 Sabecd comimricalions paramees
Slep 3 Skt mmi il from PS0ecl pokEcl.
Step 4 Desoibe memoy a0
T T 1) L A S o B Lt et A i i Ly e e e e T e
For Help, press F1 FReady P50 Pal (PS031F2 ComPoil [[OHT Baud Rale [152n0

Figure 9 Initial PSDload invocations screen (with comm)

As well as the active buttons, notice that the main window is now populated with the active
design. The entries are effectively the equations used to determine the memory map. This
information was entered in PSDsoft Express during the design phase of the project and
conveyed to PSDload via the *.psd file (mmf file derivative).

If you must use the *.mmf file, the following two dialogs will appear,;

The first is to setup the communications parameters.

Lommurscalinmn Faram el

Foik: Bevud Rate:
% Coml ~ AE0n
 Com2 " 5E00
O Com 3 i+ ﬁsﬁ]ﬂ
£ Com A r gg,mu

" nErnn

FiesponseTine Dul [seconds|
|1IWII 10000 = il fme oul

| Canced |

Figure 10 PSDload comm parameter dialog

11

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

The second is the Describe Memory Usage dialog box. Here the user is to declare how the PSD

memory is used as well as which memory locations are unpopulated at the present time(ghosts).

The unpopulated locations occur from the desire to swap memory; in these cases there is
typically only one resident location for the memory at any particular time. The alternate location

also exists and is used after memory is swapped.

Dasaibie Mamoiy Uzags

—5ian T Delie esecilion souins
Select the P30 memory smey conlanirg ihe imeais that i handing LBAT
conmunications. While wile opersiiors s not slosed b tis nenoy esd
DES0Es G QoouL

1™ Wain Flash Anap
1% Seconday Bool fAney |eiber Flash o EEFRIOM]

Step 2 Define unpopulseed bcatione

Physical memon ssgments can be naposd lo moe ihan one MOU sddec
1ange il designad thal wap i P50 soft for puipoaes ol menoip manpulaion
Howeomn, o arg oien limes. & given phyeicel mesmony segmend cenonly iezida
in 2 sinole MCL address ravoe.

From the st below, idsridy thoss memoy segnenis (het resids in MCU
andiaes rangas Ihat ane onb placebaloais [Dheste] duing be sesson of
PiDloed These "ghosi® MO addiess 1anges contan o phpsmcs menogy
and can not be arcessed by FPEDbad

| Segmen | Skat - End addessses
wiral = 4000 - TTFF
1£=7 -k cood - FFFE
Wicabooed a 4000 — SFFF
_|zahoonD b cood - DFFF
jeahoord b EDO0 - FTFF
oe | Covcel | Hep |

Figure 11 PSDload Describe Memory Usage dialog

f) Now, do a Write To Display using the Action, Write Display submenu or the LCD Display hot key.

Type something in the dialog, press OK and see if it comes up on the Development Board
display. If it does, you've successfully established communications between the PC and

Development Board. If this doesn’t work, check the following;

Downloaded from Elcodis.com electronic components distributor

cable is plugged in
cable is of correct type(Null modem, F-F)

the correct comm port is selected on the PC

12

http://elcodis.com/parts/845014/DK900-HC11-220.html

g) Select Action, download to observe the Download Segments dialog. The following screen will
appear.

B Tips:
Slep 1. Select dovrlcad dezination. This & (he zyeden mesmoap
g ko sbor rhere the senal bansler places thacode. Thize not
fhe losation rom mhch erscdnn oooas.

Selex| Dovmnload Dasinationds|

[eshooll b
[Jeshoot]_b

o | cred |

Figure 12 Download Segments dialog, PSDload

Selecting the download destination (Step 1) to be fs7_a. Behind the scenes fs7_b will automatically
be selected as the execution location. This will be confirmed in the next screen. Click OK.

h) Now the Download Selection Summary screen, below, pops up. The intent is to validate the
settings chosen in the last screen. You should see fs7_a as the download destination and fs7_b
as the execution location. Click Download to start the process or back to change.

Droswmlpad Selichihon Summany

The follosing Segrents wem sehected, @d vall ke dosrloaded to e rorreeeautsble Deshration _J
Dieslinalon Location Enecuable Lacalion Scumce Fie

Fz7_a b DAP S D mgrees DK 30HHCT Thiaa] _he
Fres: Dordnlinad o contirias o) Back 10 1eum

J o

[Cmriead Bt |

Figure 13 Download Summary screen

i) Observe the progress bar at the bottom of the PSDload window for activity. Also, observe the
display on the Development Board as follows.

PS DI o

s t
d o wnl o -

a d t e
adi ng

Figure 14 Development Board display for download in process

13

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

During the download, you'll observe the * character position changing between the following -, \,
|, and /. A change from one character to the next occurs with each new packet received by the
Development Board. When the download is complete you will see the following.

PS DI o
d o wnl o

a d
a d

Figure 15 Eval Board display for download complete

Next, observe the results of the checksum calculation covering the entire downloaded contents
as shown below. Of course this was a successful download. This particular display does not
persist, so watch the display intently.

PS DI o a d t e st
¢c h e c ks um g o o d

Figure 16 Eval Board display for checksum validation

j) On the Development Board, place SW-PB3 in the on(up) position. This switch is read when the
board boots and indicates to the software the desired execution location. On(up) indicates the
desire to execute from the main flash area which you just downloaded. Off(down) indicates the
desire to continue executing from the default boot area.

k) Now click the reset button '# and observe the Development board display. The program you
just downloaded to the main flash area will boot showing the displays listed below.

Y o u h av e j us t

=
1
pa >
= T
® T
(<]
®
-
-
°
=

0 W P o weTr cycl e
o f f a nd n t o
s e e t he ne w
p r o g r am e e cut e

G OOD JOB!

Figure 17 Eval Board display sequence for In Application Programming(lAP)

You can cycle power or press the reset button again to see that this code also persists in non volatile
FLASH memory. Note that this code bundle contains less communications capability than the IAP
code run previously.

1) Now, let's reinvoke the original program that was running prior to the IAP download. This is
done by placing SW-PB3 in the off(down) position. Now press the reset button and observe the
original, ISP program execute again.

14

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Using DK900-HC11 as a Development Platform for HC11 MCU users:

Concept
The ST DK900-HC11 Development Board provides the following capabilities
« Demonstrate design concepts early, optimizing “time to market”
¢ Jump start user application with proven framework (hardware and software)
e Substitute for user target system until target prototypes are available
¢ Gives instant platform for testing ISP and IAP demonstration.
e Allows programming the PSD using included Flashlink cable

General Board Description

The DK900-HC11 Development Board is specific to the HC11 microcontroller family. The board
contains an empty socket for the PSD9xx, which can be populated with the included PSD9xx family
component. Programming of the PSD is required since the component provided is blank.

Downloading to the Development Board
Executable code can be downloaded to the Development Board two different ways; via the JTAG

(ISP)or via the UART (IAP). Both methods are described and demonstrated in the Step by Step
demos for ISP and IAP earlier in this manual.

The ISP programming can program all elements within the PSD (PLD, MAIN FLASH, secondary
FLASH memory and all configuration elements) using the 2x7 JTAG connector. That is, all internal
PSD components can be programmed via this channel.

The IAP method uses a standard null modem PC serial cable (F-F) and PSDload PC software
downloaded from the web as well as the UART of the installed MCU. The IAP method allows only
data and executable code to be downloaded over a PC serial link. The PSD, PLD cannot be
updated by the IAP channel.

The IAP method is not restricted in destination to the PSD. The destination can be any resources on
the Board itself; PSD components or the external SRAM (SRAM not supplied, user must solder in
standard 32Kx8 SRAM if you desire more SRAM than is contained in the PSD).

PSDload, a win95/98/NT compatible application for the PC, administers the PC side of the serial link.
The protocol used is described in PSDstep document on the web.

JTAG - ISP

The PSD813F JTAG interface provides the capability of programming all memory within the PSD (
PLD, configuration, MAIN and secondary FLASH memory and BOOT areas). This interface can
also be used to program a completely blank component as JTAG enabled is the default PSD state.
See Application Note 54 (AN054) for further description on our CD or website at

www.st.com/psm

The LCD will be non operational during JTAG - ISP, since the MCU is not operating. During this
interval, the PSD is not connected to the MCU bus.

ST provides a FlashLINK programmer to facilitate this JTAG programming operation. The
FlashLINK programmer connects the PC parallel port to the JTAG connector (2x7) and is driven by
PSDsoft Express, the PSD development tool.

15

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

PC Software

UART Support, PSDload

PSDload is a PC application (WIN95/98/NT) which allows serial communications between the PC
and the ST's series of Development Boards. This application utilizes the microcontroller

UART on the target system side and a standard serial PC channel. The protocol utilizes commands
to perform the following functions on the resident PSD, and potentially, other Development Board
resources.

Read and write registers, memory

Erase and fill memory areas

Write to the LCD display

Download files from the PC to the target system(any system area)

Program the downloaded file into the PSD memory in circuit(MAIN or BOOT areas)
Upload files from the PSD or development board resources

Reset the target system.

Noo~WN=

The primary target of this interface is FLASH based PSD’s from the standpoint of in circuit
programmability. However, the capability is also applicable to the OTP family of PSD’s(note that in
circuit programming is not available due to the OTP families EPROM base).

Definition of Terms

A few term definitions will ease the understandability of the document.
a. PSDLoad is the windows interface running on the PC.
b. PSDSfep is the protocol used to communicate between the PC and the Evaluation board.
(Simple Test and Evaluation Protocol).

Serial Interface

The connection from the PC to the evaluation board is via a standard 9 pin null modem cable(F-F).
The communications parameters are 8 data bits, 1 stop bit and no parity. The interface uses simple
three wire (TX, Rx and GND) RS-232 with full-duplex operations. Flow control is accomplished via
software handshaking incorporated into the protocol (this is not XON XOFF). The baud rate of
PSDload is selectable from 4.8k to 56k but the HC11 board is presently restricted to 19.2kbaud.
Software flow control is used in order to minimize the master/slave physical connections.

Each command sent from PSDIload is intended to elicit a response from the Development Board.
This handshake is used to verify a valid receipt of the transaction. Two methods exist to terminate
this handshake if it should become disrupted for any reason; the first is a hot key inside PSDload,

2% and the second is a communications timeout parameter entered on comm invocation screen.

PSD Architecture

The PSD contains several different blocks of memory which vary within each family and between the
families. These encompass the following memory types; EPROM, FLASH, EEPROM, SRAM, and
registers. Generically these memory blocks are termed a memory “region”. The PSD913 contains
128kx8 FLASH, 32kx8 FLASH and 2kx8 sram.

PSDLoad must be aware of how these regions map into the system memory as all operations occur
based on addresses associated with the system memory. The system memory map is determined
using the development tool, PSDsoft Express. This information is provided in the form of a *.mmf file
automatically generated from PSDsoft Express and requested by PSDload at invocation. PSDload
utilizes this information to portray the system memory map to the user and construct commands to
send to the Eval Board. The *.psd file, once constructed, contains the information in the *.mmf file.

Since the system memory map is utilized to achieve the download, the PLD within the PSD must

have been programmed prior to a serial download attempt. PLD programming is accomplished via

16

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

either the JTAG interface or with a conventional parallel programmer, both of which are external to
PSDstep/PSDload.

Note that the addressing scheme used by PSDload is a different addressing scheme than is used by
PSDPro(parallel programmer) and/or FLASHIink. PSDload uses the system addresses; that is, the
addresses generated by the microcontroller in the system and correlated by the linker. PSDsoft
Express and FLASHIink use direct addresses (flat 24 bit memory space), that are independent of the
PLD and the end system application.

The FLASH region is erased by sector or bulk(entire FLASH) and programmed byte by byte. The
EEPROM region does not require erase and may be written by byte or by page. Which technology
resides in the BOOT area depends on the device you have chosen. For example, the F1 has
EEPROM in the BOOT area. An unambiguous method to determine the BOOT area technology is
by reading the flash ID.

Functions Available

Along with the standard windows controls of save = , open = , hew O , close £ and help ?
and the serial port controls , the following are available. These functions are can be accessed
either fom a pull down menu (Action) or from the shown hot keys.

Function Description

Erase ﬂ Erase FLASH(by segment or bulk)
Fill j;‘{ Fill area

Download =& Download new file to memory
Upload E% Upload file from memory

Read e Read area(restricted to 160 bytes)
Write memory = Write area(restricted to 160 bytes)
Write display NicH Write to display (on dev board)
Reset board . Reset development board

User data e Encapsulate user specific commands
Source file entry Eﬁ Enter source file to be downloaded
Describe memory usage | hee User interface aid

Table 1 PSDload Commands

17

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Memory Map

Before we really get started using PSDload, we should be familiar with the system memory map. Recall that
all PSDload operations occur by using addresses in this map. The application is set up to take advantage of
the entire memory space of the 9xx using paging techniques even though the MAIN FLASH is initially
unpopulated(fs0..7). CSIOP is the base of the register band used to communicate with the PSD using the
microcontroller.

68HC11 boots from the reset
vector stored here

FFFF =

cshoot1
8Kbytes IAP loader code

Secondary Flash gets programmed

here by JTAG-ISP
or a convetional

csboot0 programmer tool.
8Kbytes
COMMON Secondary Flash
REGION €000
(any page)
nothing mapped
A800
rs0, 2Kbytes SRAM
A000
nothing mapped
8400

8300 e Icd , ext chip sel for LCD
8200 csiop, PSD control regs

8000 68HC11 Regs/RAM 8000 8000 200
fs1 fs3
16Kbytes S fss
Main Flash 16Kbytes fs7
Main 16Kb_ytes
Flash Main 16Kbytes
Flash I'gllal:
PAGED as
REGION 4000
4000
fsO fs2 csboot3
16Kbytes S 8Kbytes
Main Iglash 16Kbytes fS4 f56 Secondary
Main 16Kbytes 16Kbytes Flash
Flash Main Main
Flash Fash | csboot2
0000 PAGE 0 PAGE 1 8Kbytes
0000 . PAGE 2 Secd Flash
0000 T PAGE 3
0000 . PAGE 4
0000

Figure 18 Memory Map of Eval Board

Getting started with PSDload

Since you've done this before in the previous step by step demo section, we'll start with PSDload being
active. To establish a baseline communications, write something to the display by selecting the Action
submenu and then Write Display. A dialog will pop up allowing you to enter text. After you have completed
the message, click on the Write button. PSDload will send out the message. After the message has been
received, the development board responds by displaying the message and sending a response back to

18

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

PSDload. This response prompts PSDload to display an “operation completed” dialog to the user on the PC.
All transactions between PSDload and the development board use this handshaking scheme to maintain
continuity of the communications link.

A few reads and writes

Now let’s do a few read/write operations. We want to be careful in the selection of the address that we're
writing to, so we won't interfere with the execution of the present application. Do a read memory of RS0 by
selecting RSO in the Select Segment field. When you select RSO, the start address of 0xA000 is populated
in the start address field. Modify this field to 0xA700 for the purposes of this test and enter a length of 40h in
the Length field. The following figure shows the dialog prior to clicking OK. Click OK.

Read Memory

— Select Segment:

fs0
f51
fs2
fs3
fsd
fsh
;z?_a Start Address [Hex]:
cshootl_b l“"'_
czhoat]_b Aol
cshoot2
_csbootS Length [Bytes in Hex):
cEiop
csled I4U

Ok ! Cancel

Figure 19 Read Memory dialog in PSDload

A dialog will pop up with the contents of the memory in both hex (left side) and asc formats(right side) as
shown below.

Read Memory Data

00004700 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c...eeenanannns
00004710 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 cesvevnnnnvnnnns
00004720 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...vuevenavnnnns
00004730 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...vevecnannnnns

Cancel |

Figure 20 Read Memory Data in PSDload

19

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

The contents appear as zeros as this is initialized volatile memory. Now, do a write of the same locations.
You'll see the same box (read memory data) come up as PSDload always does a read prior to a write, but
now the box is editable. You can edit in either the hex display or the asc display and the conversion to hex
happens automatically as shown below. Try typing your name or something identifiable into the ASC field.
You will notice the hex bytes changing as you type.

Wirite Memory Data

OO00AT700 79 6F 75 72 20 6E 61 6D 65 20 65 65 7Z 65 00 00 your name herel.
O000A710 00 00 00 OO0 OO0 00 00 OO0 00 00 00 00 00 00 00 00 ..oeennnnnnnnnnn
OO00A7Z0 00 00 00 OO0 OO0 00 00 00 00 00 00 00 00 00 00 00 ...eennnnnnnnnnn
00004730 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c...eeecnannnnns

Cancel |

Figure 21 Write Memory Data dialog in PSDload

Click Write. After the response, read it again to see if it's really there. Cycle power and reread. You should
observe the data you entered is no longer there, indicating the fact that the information was stored in volatile
SRAM which is volatile.

Now let’s repeat these operation using FLASH. The dialogs are the same except for the FLASH selection so
they won’t be repeated. Since it's not used in the application yet, no harm will be done. Select Write
Memory and, in the write dialog, select fs7 which stars at 0x0000. Read 40h bytes of the area. You will
notice that instead of the characters you observed in the above example using SRAM, you now get Oxff in all
locations. This is because the FLASH is blank. Type in something and click write. Now do a read to see if
it's there. Type in something else of lesser length than above and read it back again. You will notice that the
entire first message is gone. This is because the FLASH was erased prior to the last write. Also, FLASH is
erased by sector; that is, the entire sector must be erased before you can rewrite the locations of interest.
You can also cycle power on the target to see that the information is held in non volatile form. Also try
ERASE which only works on the non volatile areas.

When you're ready to do a download, one of the operations that's needed is the selection of the source file.

This screen available from the Action submenu or the HEE‘ button. After exiting this screen, the selected hex
file shows up in the main mmf display. The same file and path are stored in the *.psd file when it's saved.

Hez File Selection | %]
Fdemany
Select File Mama
MName

Browse ... I ﬂ
fz1_a l— Browsze. . I
fs2 l— Brawse... I
] l— Browse. . I

Cancel |

Figure 22 Hex File Selection screen, PSDload

fsl_a ORI st U &t hes

20

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Download

You've already done this in the earlier demo portion of this document so lets dig a bit deeper to see what
makes it all work. See the following section.

How does this swapping stuff work anyway?

Macro level

First, let's take a look at how the memory map changes during the transitional operations from one
executable code bundle to the other. The internal PSD resource of the PAGE register is used to affect this
change in addition to the PLD equations described. We will also use a non volatile resource to carry through
a power off condition. This resource will be called NVswap and can consist of any of the following (spare
non volatile segment in the PSD, board level switch, etc). In our case, Nvswap will be the board mounted
DIP switch.

The PAGE register (csiop+0xEO, 8 bits) is traditionally used to control memory paging, but we also use it to
control memory addresses, as presented to the microcontroller, using 1 or more bits. This register can be
read or written by the microcontroller. The initial value of the PAGE register is 0 at power up and is the
register is volatile. The swap bit is the msb of the PAGE register.

Following is a step by step procedure to boot from one code and change, on the fly, to another. Certainly,
there is more setup detail involved (described later under Micro level), but this is the essential procedure.

1. Power up system with default memory map. swap=0 (PAGE register msb)
2. Write swap=1 (PAGE register msb)

These steps are further depicted graphically in the following figures.

21

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Here’'s the memory map at power up. Note that we are executing from CSBOOTO0/1. During the IAP
download, the complete new executable, including the vector table, is copied into FS7. During this time the
swap bit in the PAGE register is 0.

68HC11 boots from the reset
vector stored here

FFFF =

csbhoot1
8Kbytes IAP loader code

Secondary Flash gets programmed

here by JTAG-ISP
or a convetional

csboot0 programmer tool.
8Kbytes
COMMON Secondary Flash
REGION Cooo
(any page)
nothing mapped
A800
rs0, 2Kbytes SRAM
A000
nothing mapped
8400

8300 les Icd , ext chip sel for LCD
8200 csiop, PSD control regs

8000

8000 68HC11 Regs/RAM 8000 5000
fs1 fs3
16Kbytes S fss
Main Flash 16Kbytes fs7
Main 16Kbytes
Flash Main 16Kbytes
Flash 21'3'2
as|
PAGED
REGION 4000
4000
fsO f2 cshoot3
S 8Kbytes
16Kbyt
Main Flash 16Kbytes fsd fs6 Secondary
Main 16Kbytes 16Kbytes Flash
Flash ’L\fai: Main
as Flash
0000 PAGE 0 PAGE 1 CSBEb(y)t:)stz
0000 ¢ T PAGE 2 Secd Flash
0000 T PAGE 3
0000 50001 PAGE 4

Figure 23 Memory map at power up, NVswap=0

Now, let’s set a flag (NVswap) to indicate we want to run the code in FS7 the next time we power up. This
flag is non volatile so that, if power is removed, the system knows how it's desired to power up.

Cycle power to the unit. We have embedded code running in the initialization routine to read the state of
NVswap and to write that value into the PAGE register (msb, swap) at power up. If swap= 0, the code
bundle residing in CSBOOTO0/1 continues to run. If swap = 1, we perform the memory manipulations
depicted in the next figure.

For purposes of this example, let's assume NVswap = 1 indicating the desire to execute from the MAIN
FLASH memory. At this point, the code residing in CSBOOTO0/1 is still running.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Next, we write to the PAGE register. This action changes the system location where the code appears to the
microcontroller moving FS7 to 0xC000 and CSBOOT to 0x4000 as shown below.

FFFF 1) SWAP bit = 1.

2) Now the MCU boot area (C000-FFFF) is
occupied by main flash memory instead of
secondary flash memory.

fs7 3) MCU can download new |IAP loader code
16Kbytes into csbootO/csboot1 if desired after
Main setting the UNLOCK bit = 1.
Flash 4) MCU can use csboot2/csboot3 for general
- data storage.
COMMON
REGION C000
(any page)
nothing mapped
A800
4000 rs0, 2Kbytes SRAM
nothing mapped
8400 -
8300 cs_lcd, ext chip sel for LCD
8200 csiop, PSD control regs
8000 68HC11 Regs/RAM
8000
csboot1
fs1 fs3 8Kbytes 2nd
Flash
16Kbyt
Main Flash 16Kbytes fss i WINLOTE = ©
Main 16&b_ytes
ain
Flash Flash csboot1
PAGED 8Kbytes 2nd
REGION 4000 Fesh
If UNLOCK = 1
4000
fs0 fs2 csboot3
S 8Kbytes
16Kbytes
Main Flash 16Kbytes fS4 f56 Secondary
Main 16Kb_ytes 16Kbytes Flash
Flash Main Main
Flash Flash cshoot2
0000 TAGE 0 PAGE 1 8Kbytes
Secd Flash
0000 2000 L II’AGEZ PAGE 3 ecd Flas
0000 r PAGE 4
0000

Figure 24 Memory locations after step 3 of memory swap

After this write operation is complete, the very next instruction is fetched from FS7. Execution continues
from FS7 until the next time the system is powered down. At the same time, the CSBOOT area is moved.

With the NVswap bit set (SW-PB3 on, up), this sequence will occur every time power is applied.
As a short review, let’s talk about what just transpired. We booted from one memory(CSBOOT), then, at full
speed and without the awareness of the microcontroller, we swapped execution from that memory to FS7.

The new memory contents contained a substantially different set of code that picked up immediately. It
sounds like a stretch, but really isn’t.

23

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

PSDload address translation

If you look closely at the memory map, you will observe that the system addresses are not the same for fs7
and csboot0/1. However, when these respective code bundles execute, they must occupy the same address
range. Else, the mcu could not find the reset vector, boot and execute the code.

More specifically, when a download occurs, the downloaded hexfile contains addresses appropriate for
execution that, in this case is 0xC000-0xFFFF for FS7. However, we download this data to 0x4000 —7FFF.
If the downloaded addresses of the hex file start at 0xC000, how does the data get to 0x4000? Then, after
download is complete , how does the code get in high memory for execution? PSDload does an address
translation on every data byte in the hexfile; that is, it changes the addresses according to the download
destination of 0x4000-7FFF using the following equation.

Destination address = hex file address + destination base — execution base.

For this HC11 family example, code exe(hex file) is 0xC123, dest base = 0x4000, exe base = 0xC000
Download destination = C123 + 4000 — C000 = 0x4123

While this equation may look like overkill for this example, it allows transparent PSDload operation
regardless if the MCU boots from high memory(HC11) or low memory (8031).

Now that we’ve described this level of operation, lets take a bit closer look at the detailed sequence that
occurs between steps 1 and 2; that is, as the memory is physically swapped.

Micro level

You might ask how can this happen without knowledge of the microcontroller? You might be wondering how
can this all happen with the microcontroller running full speed? It all happens due to the chip select
decoding.

Here are the equations that control the memory map before, after and during the transition. For clarity we'll
only consider the segments of interest for this application which are FS7 and CSBOOTO0/1. Certainly the
same techniques apply with paging when using the remaining FLASH segments.

CSBOOTO = ((address >= *hC000) & (address <= *"hDFFF) & Iswap)
((address >= *h4000) & (address >= *h5FFF) & swap);

CSBOOT1 = ((address >= *hE000) & (address <= *hFFFF) & !swap)
((address >= *h6000) & (address >= "h7FFF) & swap);

FS7 = ((address >= "h4000) & (address <= *h7FFF) & Iswap)
((address >= *hC000) & (address <= *hFFFF) & swap);

The above equation tells us that FS7 can show up in either of two places; 0x4000-0x7FFF or OxC000-
OxFFFF. The choice of which location is used is based on the variable swap, a single bit in the PAGE
register. The swap bit is the most significant bit of the PAGE register (csiop+0xEQ). The PAGE register is 0
at power up. So, if swap=0 at power up, then fs7 must appear at 4000-7FFF and CSBOOTO is at C000-
OxDFFF and CSBOOT1 is at 0OXEOOO-FFFF. In this case, code executes from CSBOOTO0 and CSBOOT1 as
a default. See previous figure for a graphical representation.

24

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

After the memory contortions are completed swap=1. We end up with the memory map of Figure 24 with
FS7 at OxC000 (execution position) and CSBOOT at 0x4000.

The location where the vector table is located is generally referred to as the execution location in this
document. That is, this is where code needs to reside so that the microcontroller can find it easily. This
method of hardware relocation is very convenient due to the integrated components within the PSD.
Alternative methods use software relocation to accomplish the same task.

As an overview, consider this. What the microcontroller needs from the memory is really pretty simple. The
memory needs to provide the sequential instructions for the task at hand. The microcontroller generates the
address and the memory provides the instruction. Then the microcontroller executes that instruction. This
occurs over and over again. If a jump needs to occur, the microcontroller provides a new address to the
memory. Same with a subroutine return, the microcontroller gets the return address from the stack.

What really happens

There is a subtlety involved in the transfer of execution described above. This subtlety is because the MCU
really doesn’t know the source of the instruction bytes; boot area or main FLASH. All the MCU knows is that
valid instructions on valid address boundaries are presented on the bus when the MCU needs them. Then
the MCU executes the instruction and generates the next address. The key element involved is the
generation of the address by the MCU.

To understand this critical transfer of control, let's examine the instruction by instruction transition from one
memory to the other. After the reset signal is deasserted, the MCU is executing from the csboot area
normally. This continues until the swap bit is written, moving FS7 into the execution location (0xC000-
OxFFFF). At this same time, csboot area is moved to 0x4000-7FFF. At this point, the MCU is generating the
next address from the instruction received from the csboot area. However, the next instruction will come
from the FS7 area. This next instruction fetch must be appropriate to maintain the program flow. That is, the
next instruction must be received by the MCU on an instruction boundary and be appropriate for the program
flow. In addition, any issues with the stack and stack pointer must be resolved so program flow can continue
(subroutine return addresses, temporary variables, etc.).

The method we’ve used to ensure correct operation is to place identical code at identical locations in both
applications through the point of the swap. After the point of the swap, the code bundles can diverge without
problems.

25

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

A detailed look at the IAP example implementation

The previous example uses two code bundles; IAP_6811 and UART. The discussion will take the same
course as the previous demos and explain what occurs behind the scenes. Let’s take a walk through the
critical code to see how it works.

Top level functional flow

Let’s start with the top level flow. After the reset vector is fetched and executed the routine evl_init.c runs.
This is where the main action occurs (evl_init.c) that resides in both IAP_6811 and UART1 applications.

Evl_init.c contains a routine Run_Execution_Source that determines where execution resides. The flow of
this routine is listed below:

Read_dip switch

If (dip_switch = up)
Execution_Main

If (dip_switch = down)
Execution_Boot

Of course, the execution from main flash will only occur properly if appropriate code is resident in main flash.
For Main flash execution, the swap bit is written and execution continues in the main flash area.

Now, let's assume that we are executing from main flash (DIPSW-PB3 = up) and wish to revert to the original
code for execution. All we need to do is place DIPSW3-PB3 in the down position and hit the reset button.
The csboot0/1 code starts out, then evl_init.c runs, leaving the swap =0 resulting in executing remaining in
the boot area.

As you can observe from the above discussion, the manipulations at the top level to accomplish the
traditional boot loader function using hardware techniques are straightforward.

How to create your own app for UART Download

Typically, getting a single application to run is relatively straightforward since the linker (and user) ensure all
references are resolved when the executable file is created. Setting up your application for UART download
takes only a little more coordination between the two executable files; specifically in the area of code
placement and using the linker. Typically only minor code changes are required.

First, a quick review of what we'’re trying to do. We are attempting to smoothly transition from one running
application to another. The microcontroller will initiate the action, but be substantially unaware of its
occurrence. We are going to accomplish this by manipulation of the code memory presented to the
microcontroller.

Certainly this will take some coordination between the two applications, but probably not as much as you
might initially think. To make things easier, we’ll do this critical transition just after a system reset as
described in “A detailed look at the IAP example implementation” section earlier in this document. This reset
can be initiated either through software or hardware means based on the method(s) available in your system.

You can tailor the scheme as described earlier in this document, or utilize the key generic elements listed
below;
1. Startup routine placed identically in both applications(csrtsi.s)
2. Flag indicating desire to jump from BOOT memory to main memory. This is the variable
(NVswap= 1)described earlier in this document.
3. Method to tell system of desire to return from main memory to BOOT memory. This is the
variable (Nvswap=0) also.

When using a PSD, we recommend the use of our crtsi.s routine or an equivalent included in the code
bundles. The code placement issues are serviced in the *.Ikf file also included in the code bundles.

26

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

The code content and positioning after the initialization code (crtsi.s) need have no correlation between the
two applications. That is, the linker can be allowed to handle post initialization code without ill effects to the
desired swapping operation. This element eases the creation of compatible applications as the critical code
placement is handled by this single file.

27

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

References

IEEE Std 1149.1-1990 IEEE Test Access Port and Boundary Scan Architecture
PSDSoft Express User Manual
Flashlink User Manual

Application notes

ANO054 JTAG Information
ANO067 Design Turorial for 8032/PSD9XX

Downloaded from Elcodis.com electronic components distributor

28

http://elcodis.com/parts/845014/DK900-HC11-220.html

Downloaded from Elcodis.com electronic components distributor

Appendix

29

http://elcodis.com/parts/845014/DK900-HC11-220.html

Appendix A - Jumper configuration on DK900-HC11 eval board

9. PSD’s power consumption measurement point (JP7)

Two pins of this jumper are already connected using copper trace. To measure PSD’s power consumption, connect
DMM to these two pins after cutting pre-connected copper trace on PCB.

The measured PSD’s current will be,
Icc =PSD Icc + PSD Ic (I/0 ports) + MCU Bus leakage Ic

This measurement could be different from result of calculation according to formula in data sheet. To measure
correct value, make sure all of other terms should be zero.

10. PC1 TCK input option (JP8)

Default setting of this jumper is non-buffered

o ce]

1-2 : direct connection to FlashLink TCK output
2-3 : buffered TCK output from HC14 on board

11. PSD SRAM Battery Vstby input to PC2 (JP9)

Default setting of this jumper is weakly pulled up (disabled Vstby input from battery)

oo 0]

1-2 : connect PC2 to battery on board
2-3 : PC2 is weakly pulled up through 100K ohm

30

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

12. SRAM (1M/256Kb) / ST’s TimerKeeper SRAM Expansion

(a) 0.3” pitch 256Kb SRAM expansion site (28PIN)

Al4
Al2
PA7 (A7
PAG (A6
PAS (A5
PA4 (A4
PA3 (A3
PA2 (A2
PAL (Al
PAO (A0
ADO
ADI
AD2
GND

Al4 VC(Q
Al12/WE PBS5
A7 Al3
A6 A8
AS A9
A4 All
A3 /OE PB4
A2 Al10
Al /CS PB6
A0 D7
DO D6
D1 D5
D2 D4
D3

vCe

(/WR)
Al3

A8

A9

All
(/RD)
A10
(/RAM_CS)
AD7
AD6
ADS
AD4
AD3

(b) 0.6” pitch 1IMb/256Kb SRAM or ST’s TimeKeeper SRAM expansion site (32PIN)

N
NC VCC
PB1 Al6 Al15|PB0
JP3 (Al14) | Al4 CS2(JP1 (VCC)
Al2 A12 /WE PB5|(/WR)
PA7 (A7) | A7 Al13 [JP2 (A13)
PA6 (A6) | A6 A8 |A8
PAS5 (A5) | AS A9 |A9
PA4 (A4) | A4 All |All
PA3 (A3) | A3 /OE PB4 | (/RD)
PA2 (A2) | A2 Al10|A10
PA1(Al) | Al CS1(|PB6 (/RAM_CS)
PAO (A0) | AO D7 |AD7
ADO | DO D6 |AD6
AD1 | DI D5 |ADS5
AD2 | D2 D4 |AD4
GND D3 |AD3
*) PBO, 1 can be used for banked SRAM
(c) Jumper settings for 0.6” pitch devices
256Kb IMb ST ST
SRAM SRAM M48T59 M48T129
JP1 ON (VCC) ON (CS2-VCC) ON (VCC) OFF (/IRQ/FT)
JpP2 ON (A13) ON(AlI3) OFF (/IRQ/FT) ON (Al3)
JP3 ON (Al4) ON(Al4) OFF (_/RST) ON ((Al4)

*) Default : All JP1-3 are OFF

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

13. System expansion connectors (J1,J2,J3)

J1 (68HC11Dx) J2 (PSD8/9xx)
1 2 1 2
GND PAO PA1
ADO PA2 PA3
ADI E PA4 PA5
AD2 MODA PA6 PA7
AD3 MODB GND GND
AD4 A8 PB0 PBI
AD5 A9 PB2 PB3
AD Al10 PB4 PB5
AD7 All PB6 PB7
/XIRQ Al2 GND GND
R W Al3 PCO0 PCl1
AS Al4 PC2 PC3
/RESET Al5 PC4 PC5
/IRQ PAO PC6 PC7
PDO PA1 CNTL2 /JEN
PD1 PA2 PD1 PD2
PD2 PA3
PD3 PA5
PD4 PA7 * /JEN is connected to
PD5 JP4 (VCC) FlashLink
* JP4 is OPEN as
default.
3 1 2
PA4
PA5

14. Others

(a) Battery power connector and re-charging circuit
When using re-chargeable battery as power source, you can use prepared normal charging circuit in this kit. To
use this charging circuit, assemble a diode with register that has proper value.
(Recommended battery is NiCD 10.8V)
*) Do not use charging circuit for Manganese, Lithium or Hydrargyrum batteries.

(b) Other power source input connector
To use other power sources (SMPS, Transformer, ...), a connector is prepared in this kit.
(Recommended power source is AC/DC adapter, over 9V, output can be AC or DC)

(c) Re-charging circuit for Vstby Battery
When using re-chargeable battery as Vstby source, you can use prepared normal charging circuit in this kit. To
use this charging circuit, assemble a diode with register that has proper value.
(Recommended battery is NiCD 3.6V)
*) Do not use charging circuit for Manganese, Lithium or Hydrargyrum batteries.

32

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Appendix B Development Board Schematic and parts list

Main Schematic

 E——

(Note)
Reharge = (5-3.6-0.6) /
(Tbat *charges)
Vstby
5 R

1

im _j L 1:'.
e ressT

JP1-4 are soldering jumper on solder side
(*) - not inserted

LGS
AN

H
;i’“‘% (E

bbb
1
W

8|
&

§
+
- ,._§<__IS

H

4
4

[k

MR

i it

EXPANSION

WS1 ASIA Design Center
in 40 e 1512 voos0ony
20
(5 [rede
G L

Downloaded from Elcodis.com electronic components distributor

33

http://elcodis.com/parts/845014/DK900-HC11-220.html

Serial Port Schematic

(.‘[9

Uz

U

1uF/16V

|¢

VXC

— C8
1uF/16V

R5

AAN

|

2
ci+ v+
1uFM6Y . v__ts:L 10K
I 4| CI- c6
F C2+ I 1uF/16V
c1o
1uE/16\ 5 c2 =
1162 14
TXD > 2] Ti TO1 3
RxD <__1 RO1 RI1
10 7
TI2 TO2
ResouT<__| 91 RO2 Ri2 —2
MAX232C

SRIEIRIE:

CONNECTOR DB9

Downloaded from Elcodis.com electronic components distributor

34

http://elcodis.com/parts/845014/DK900-HC11-220.html

Power Supply Schematic

*)
E us
D9 m | M7805

Vbat 1N4001 o VIN

S

S
Rcharge 1N4148

(Note)

Rcharge =(Vdc-Vbat-0.6)/

(Ibat * charge%)

H—

VouT

2 Tvour

[=]
z
[O)
C11
470uF/25V o
vdc
D5 D6
1N4001 1N4001
Jé
DC JACK
D8 D7
1N4001 1N4001
(*)
2 =
1 g -
CON2

Downloaded from Elcodis.com electronic components distributor

35

http://elcodis.com/parts/845014/DK900-HC11-220.html

Eval Board Parts List

No. description part number | Q'ty
1 [MCU 68HC11D0 0
2 |PLCC socket 44P-PLCC 1
3 |PLCC socket 52P-PLCC 1
4 15V regulator KIA7805P 1
5 [Reset comparator KIA7045P 1
6 |[TTL MC74HC14AN| 1
7 232 Driver ICL232CPE 1
8 |[Crystal 9,8304MHz 1
9 [block resister array IAR100K-09P 3
10 [plock resister array IAR100K-05P 2
11 [pblock resister array IAR4K7-05P 1
12 |resister 10M 1/8W 1
13 |resister 10K 1/8W 1
14 Jresister 4.7K 1/8W 2
15 [resister 560 1/8W 3
16 [resister 47 1/8W 1
17 |potentiometer GF06S10K 1
18 |diode (switching) 1N 4148RL 1
19 |diode (rectifier) 1N 4002RL 4
20 |electrolytic capacitor 1TuF/50V EC1U50V 5
21 |electrolytic capacitor 2.2uF/16V EC2.2U16V 1
22 |electrolytic capacitor 470uF/16V EC470U16V 1
23 |electrolytic capacitor 100uF/6.3V EC100U6.3V 1
24 |ceramic capacitor 22pF CC22 2
25 |monolytic capacitor 0.1uF/50V M104 5
26 |LED (green, 3mm) BL-B2141-3D | 3
27 (4 position dip switch KSDO0O4H 1
28 |power switch (slide 3P) 1
29 [reset siwtch 1
30 |SIP 2 pin header 1
31 |SIP 14 pin header (LCD side) 1
32 |SIP 14 pin connector (PCB side) 1
33 [DB-9 connector DB-9SR 1
34 |DC-JACK 1
35 |7x2 pin ribbon cable w/ male con. (150mm 1
36 |7x2 pin connector (angle) 1
37 [standoffs (3 mm x 10 mm) for LCD 2
38 |bolt,nut (2.6 mm x 16mm) for LCD 2
39 |anti-static bag (170 mm x 300 mm) 1
40 [box (110 mm x 150 mm x 24 mm) 1
41 |LCD module 1
42 |standoffs for PCB board 4
43 |PCB board

Downloaded from Elcodis.com electronic components distributor

36

http://elcodis.com/parts/845014/DK900-HC11-220.html

Appendix C: FlashLINK Users Manual

Features

e Allows PC parallel port to communicate with PSD9xx via PSDsoft Express

¢ Provides interface medium for JTAG communications

e Supports basic IEEE 1149.1 JTAG signals (TCK, TMS, TDI, TDO)

¢ Supports additional signals to enhance download speed (TERR, TSTAT)

e Can be used for programming and/or testing

e Wide power supply range of 2.7 to 5.5v

¢ Pinout independent with target side flying leads

¢ Convenient desktop packaging allows varying applications(desk, lab or production)
e Synchronous JTAG interface allows speeds as fast as pc can drive

Overview

Flashlink is a hardware interface from a standard PC parallel port to one or more PSD9xx devices located
within a target PC board as shown below. This interface cable allows the PSD to be exercised for purposes
of programming and/or testing. PSDsoft Express is the source for driving FlashLINK.

Flying lead
cable
Mates with | — FlashLink % WIRES| Target
PC parallel _! e C !_ adapter /:' device
port

— 6 feet — P

&6 inches — P

Figure 25 Typical FLASHIlink application

Operating considerations

Operating power for FlashLLINK is derived from the target system in the range of 2.7 to 5.5 v.
Compatibility over this voltage range is ensured by the design of FlashLINK. No settings are involved.

On a cautionary note, it is recommended that the target system be powered with a well regulated and stable
source of power which is energized at the final value of Vcc. It is not recommended that the input voltage
be varied using the verneer on a regulated power supply, as this may cause the internal FlashLINK IC’s
(74VHC240) to misoperate toward the lower end of the supply range.

Each FLASHLink is packaged with a six-inch "flying lead" cable for maximum adaptability (a ribbon cable
requires the use a certain connector on the target assembly). This flying lead cable mates to the FlashLink

adapter on one end and has loose sockets on the other end to slide onto 0.025 square posts on the target
assembly.

37

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

PIN | SIGNAL | DESCRIPTION Type Flashlink is
NAME JTAG = 1EEE 1149.1 Signal
EJTAG = ST EHANCED JTAG

1 JEN\ Enables JTAG pins on PSD8XXF (optional) 0C,100K Source
2 TRST\ * | JTAG reset on target (optional per 1149.1) OC,10K Source
3 GND Signal ground
4 CNTL * | Generic control signal, (optional) OC,100K Source
5 TDI JTAG serial data input Source
6 TSTAT EJTAG programming status (optional) Destination
7 Vee VDC Source from target (2.7-5.5 VDC)
8 RST\ Target system reset (recommended) OC,10K Source
9 TMS JTAG mode select Source
10 GND Signal ground
11 TCK JTAG clock Source
12 GND Signal ground
13 TDO JTAG serial data output Destination
14 TERR\ EJTAG programming error (optional) Destination
Notes

1. Boldsignals are required connections

2. all signal grounds are connected inside FlashLinkadapter

3. OC = open collector, pulled-up to Vcc inside FlashLink adapter

4. * = Not supported initially by PSDsoft.

5. The target device must supply Vcc to the FlashLink Adapter (2.7 to 5.5 VDC, 15mA

max @ 5.5V).

All 14 signals may not be needed for a given application. Here's how they break down:

Figure 26 Pin descriptions for FlashLink adapter assembly

(6) Core signals that must be connected: TDI, TDO, TMS, TCK, Vcc, GND

(2) Optional signals for enhanced ISP (Option 3 flow control): TSTAT, TERR\

(1) Optional signal to control multiplexing of the JTAG signals: JEN\

(1) Recommended signal to allow FlashLink to reset target system during and

after ISP: RST\

(1) Optional IEEE-1149.1 signal for JTAG chain reset: TRST\

(1) Optional generic control signal from FlashLink to target system: CNTL

(2) Two additional ground lines to help reduce EMI if a ribbon cable is used.
These ground lines "sandwich" the TCK signal in the ribbon cable. These

lines are not needed for use with the flying lead cable, that is why the

flying lead cable has only 12 of 14 wires populated.

Downloaded from Elcodis.com electronic components distributor

38

http://elcodis.com/parts/845014/DK900-HC11-220.html

FLASHIink pinouts

There is no "standard" JTAG connector. Each manufacturer differs. ST has a specific connector and
pinout for the FlashLink programmer adapter. The connector scheme on the FlashLink adapter can accept a
standard 14 pin ribbon connector (2 rows of 7 pins on 0.1" centers, standard keying) or any other user
specific connector that can slide onto 0.025" square posts. The pinout for the FlashLink adapter connector
is shown in figure 4.

A standard ribbon cable is good way to quickly connect to the target circuit board. If a ribbon cable is used,
then the receiving connector on the target system should be the same connector type with the same pinout
as the FlashLink adapter shown in Figure 4. Keep in mind that the JTAG signal TDI is sourced from the
FlashLink adapter and should be routed on the target circuit card so that it connects to the TDI input pin of
the PSD device. Although the name "TDI" infers "Data In" by convention, it is an output from FlashLink
and an input to the PSD device. Also keep in mind that the JTAG signal TDO is an input received by the
FlashLink adapter and is sourced by the PSD device on the TDO output pin. Use Figures 1, 2, 3, and 6 as a
guide.

ST ENHANCED JTAG ISP CONNECTOR DEFINITION

VIEW: LOOKING INTO FACE OF
SHROUDED MALE CONNECTOR.

14 X X 13 0.025" POSTS ON 0.1" CENTERS.

TERR TDO
12 R® X 11 Connector reference: Molex 70247-1401
GND TCK Recommended ribbon cable for quick
10 ® K 9 connection of FlashLink adapter to end
GND TMS product:
i KEY Samtec: HCSD-07-D-06.00-01-S-N
8 ® B 7 |lway - X
RST VCC Digikey: M3CCK-14065-ND
6 X R 5 Note:
TDI is a signal source on the Flashlink
TSTAT TDI and a signal destination on the target
4 R X 3 board.
CNTL GND TDO is a signal destination on the
) ® X 1 FlashLink and a signal source on the
—_— —— target board.
TRST JEN

Figure 27 Pinout for FlashLink Adapter and Target System

39

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

S
! Target System, 3v or 5v Vee
FlashLink
7 7
Adapter Vee ?
Conncetor
recommended 1
™S 9 9 buffering ™S
Tek |11 11 {bo_lbc TeK
‘ TDI| 5 5 oI
TDO
TSTAT[6 _ optional 6 TSTAT
ITERR| 14 optional 14 TERR\
< TDO| 13 13 PSD8XXF
1JEN 1 optional 1 ™S 2
ITRST |_2__optional 2 TCK
GND*|—3 i 3
CNTL 4 optional 4 TDI
IRST |—8.recommended | 8 L TDO
GND*| 10 10 Any JTAG
GND* [12 12 Device in
* all ground pins are — ByPass Mode
L [}
connected together inside ' ™S
flashlink assembly ! n
H TCK
[}
straight through ' DI
ribbon cable : - TDO
2 row, 7 position ' System
)
N ' Reset TSTAT
JTAG Chaining Example, 1 | Circuitry TERR\ bspexxF
PSD8XXF and other JTAG H
compatible devices. btecccccaa coccccsccccncnad

Figure 28 JTAG Chaining Example

Downloaded from Elcodis.com electronic components distributor

40

http://elcodis.com/parts/845014/DK900-HC11-220.html

TR 317

001F_||c:
JsoLoERING 2D PATTERN —H—o cc
cBLY

DOTCKYDB? red AT ANARL
IS Des oty TAAREL
2100 D64 R 7 s
DN e vellor A A YTT]
|—uiesmas green L AANE.
DAEST (7 STarTzr Z rm
ACKN DB10 ooy TARATL
P — Dot Rlact NS AFE
ERR DBIS ro A B Y
SER—TE brot
b v his AN
T N FFFOATE SAAKAL
3PP cos
vge 2B ,\
3 4

702471401
MOLEX

RS 4ACOS]_m&v\(
vzc B2 200K A p]
10K 5 6

| Ancos s 1

vee
R29S, R28S, R43 74AC05
476 478 47K
5, 5

-
D4
i PN w
8, 9] VN INS817
=N UEA KA
vge

im—ovcc —o vco
(FOR U2) (FOR U3)

<
8

Rso 10
VS
ot
at 50 s2v | cst Rst
2N3g04 = =
Rt 47K UF 100K
001UF
3
UE 74ACOS
10 10K R36
7ancos
ur
12 10K R
7anC05
Uz
k7280 Kato Road
TaAC05 [Fremont. CA 84538
3
FlashLink Schematic
e
B

7
Packre nes [

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Loop back connector schematic

J
1=
£
28
GND GND
3 - 1
4 ~ CON2
to flash 5 | H
link 6 Voo vee
assy g e 1
9 TMS CON1
19 1ok
12 (8
13 T
12 TERR
CON14
PC output PC 1ntput PC connector
signal signal line
14 pin dual row 0.025 sg
receptacle (polarized, same as cable 5) TDI I'TSTAT ACKN (8)
TMS !TERR ERRN (10)
TCK ! TDO PAP (9)

Figure 29 Loop Back Tester, Passive, FLASHIlink

Downloaded from Elcodis.com electronic components distributor

42

http://elcodis.com/parts/845014/DK900-HC11-220.html

Appendix D crtsi.s routine

; crtsi.s

C STARTUP FOR MC68HCI11

WITH AUTOMATIC DATA INITIALISATION
Copyright (c) 1995 by COSMIC Software

xdef exit, stext
xref _main, memory, idesc , stack
xref evl optn

s

switch .bss
__sbss:
SVX:

dc.w 0
sve:

dc.w 0

>

switch .text

__stext:
ldx # idesc__ ; descriptor address
Idy 0,x ; start address of prom data
inx ; skip address
inx
ibel:
Idaa 0,x ; test flag byte
beq zbss ; N0 more segment
bpl nobk ; skip bank
inx ; info
inx ; if any
nobk:
StX svX ; save pointer
Idd 3,x ; end address
std sve ; in memory
Idx 1,x ; destination address
dbel:
1dab0,y ; copy from prom
stab 0,x ;to ram
inx ; next byte
iny
cpy sve ; last one ?
bne dbcl ; no, loop again
ldx svx ; reload pointer to desc
ldab#5 ; size of one entry
abx ; point to next entry
bra ibcl ; and loop
zbss:
ldx #_sbss ; start of bss
bra loop ; start loop
zbcl:
staa 0,x ; clear byte
inx ; next byte
loop:
cpx # memory ; up to the end
bne zbcl ; and loop
lds #__stack; re-initialize stack pointer
jsr _main ; execute main
_exit:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

bra _exit ; and stay here
; Special routines for non-stop concurrnet swap & execute
; both boot and main code must have identical following routines
xdef EXECUTE_SOURCE
xdef Execute Main, Execute Boot, Return Boot
xref PSD8xx reg
xref PSDload init, PSDload

switch .text
>
; swap to main flash and execute main code

>

_Execute_Main:

cli ; disable all interrupts
ldaa #$80

Idy # PSD8xx_reg

oraa$EQ,y ; set SWAP in PAGE to 1
staa $EO0,y ; now in main flash

jmp _ stext ; jump to Cstarup of main

; hell option setting is not allowed
; swap to boot flash and execute boot code

_Execute_Boot:

cli ; disable all interrupts

ldaa #$7F

Idy # PSD8xx reg

anda $EO,y ; clear SWAP in PAGE to 0
staa $EO0,y ; now in boot flash

jmp _ stext ; jump to Cstarup of boot

; hell option setting is not allowed

s

; swap to boot flash and execute PSDload with message in boot

s

_Return_Boot:

cli ; disable all interrupts

ldaa #$7F

Idy # PSD8xx reg

anda $EO,y ; clear SWAP in PAGE to 0
staa $EQ,y ; now in boot flash

lds #_ stack ; initialize stack pointer before

; calling PSDload subroutine(s) written in C
jsr _PSDload init
jsr_PSDload ; loop forever in C

" EXECUTE_SOURCE:
dc.b'PSDload'
dc.b'V1.0',0

end

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

Appendix E evl_init.c routine

void evl_init(void)

{
psd_init(); // initialize PSD
// if any PSD port(s) is/are used for
// latched address output for external data memory,
// the PSD port must be initialized in "evl optn.c"
// to guarantee initialization of data segment.
Run_Execution_Source(); // check & run execution source
// EXECUTE_SOURCE]] containes this information
PSDload _init(); // initialize other 1/Os for PSDload function
H
// This is for checking setting of execution source and running
extern void Execute Main(void); // to ensure, same code in both BOOT and MAIN
extern void Return_Boot(void); // these functions are in Cstartup(crtsi.s)

extern void Execute Boot(void);

extern const char EXECUTE_SOURCE(]; // this data storage also in Cstartup(crtsi.s)

void Run_Execution_Source(void)

{

char *copy_loc;

if (Iread_dipsw(DIP_SW3)) {

// current execution location is BOOT

/ && same Cstartup code may be in MAIN
copy_loc = (char *)(((uint)EXECUTE_SOURCE - boot_mem_start_addr) + unswapped_Fseg_addr);
page_set (unswapped Fseg page);

if (!page_get(SWAP) && !stremp(EXECUTE_SOURCE, copy_loc))

Execute Main();

!
I

else
// current execution location is MAIN
// && execution source setting is BOOT
if (page_get(SWAP))
Execute Boot();

// This is initialization for only direct PSDload running
//" this can be called from STARTUP.AS51
void PSDload _init(void)

{
com_initialize(); // initialize UART buffer.
init_message level(); // initialize message level variables
timer_initialize(); // initialize real time interrupt,
led_init(); // initialize LCD. 8 bits, 2 lines, 5x7 font,
// no blink, cursor off, clear
b

Downloaded from Elcodis.com electronic components distributor

45

http://elcodis.com/parts/845014/DK900-HC11-220.html

DK9_HC11 - USER MANUAL

Table 1. Document Revision History

Date Rev. Description of Revision
1.0 [Document written in the WSI format
DK9_HC11: DK900-HC11 Development Kit For PSD9XX Family of Flash PSDs
30-Jan-2002 | 1.1 Front page, and back two pages, in ST format, added to the PDF file
' Any references to Waferscale, WSI, EasyFLASH and PSDsoft 2000
updated to ST, ST, Flash+PSD and PSDsoft Express

2/3

J

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

DK9_HC11 - USER MANUAL

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psm

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)
ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -

India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
www.st.com

573 313

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/845014/DK900-HC11-220.html

