## On-Board Type (DC) EMI Suppression Filters (EMIFIL ${ }^{\circledR}$ ) for Automotive



## for EU RoHS Compliant

All the products in this catalog comply with EU RoHS.

- EU RoHS is "the European Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment". For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/info/rohs.html).
Product Guide/Effective Frequency Range ..... 2
1 Chip Ferrite Beads Part Numbering ..... 3
-BLM15A/18A/21A/31A 4 - BLM18P/21P/31P/41P ..... 25
-BLM15B/18B/21B 12 - For GHz Range Noise Suppression BLM18H/18E ..... 33
- Specifications and Test Methods ..... 38
2 Chip EMIFIL ${ }^{\circledR}$
Part Numbering ..... 42
Chip EMIFIL ${ }^{\circledR}$ Capacitor Type NFM21H Series ..... 43
- Specifications and Test Methods ..... 44
Chip EMIFIL ${ }^{\circledR}$ LC Combined Type for Large Current NFE61H Series ..... 47
- Specifications and Test Methods ..... 48
3 Chip Common Mode Choke Coils
Part Numbering ..... 50
Chip Common Mode Choke Coil DLW 31S/ 43S Series ..... 51
- Specifications and Test Methods ..... 54
4 Block Type EMIFIL ${ }^{\circledR}$
Block Type EMIFIL ${ }^{\circledR}$ SMD Type BNX024H/ 025H Series ..... 57
Block Type EMIFIL ${ }^{\circledR}$ Lead Type BN X012H Series ..... 58
- Specifications and Test Methods ..... 60
$\triangle$ Caution/Notice ..... 64
Soldering and Mounting ..... 67
Package ..... 76
Design Kits ..... 78
Outlines of Major Noise Regulation Standards ..... 82
Principles of Noise Suppression by DC EMIFIL ${ }^{\circledR}$ ..... 87


## Product Guide/Effective Frequency Range

Product Guide


## Chip Ferrite Beads Part Numbering

Chip Ferrite Beads for Automotive


[^0]*2 Except BLM21BD222SH1/BLM21BD272SH1

## Chip Ferrite Beads BLM15/18/21/31/41 Series

## BLM15A Series

## ■ Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted. BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM_A series generates an impedance from the relatively low frequencies. Therefore BLM_A series is effective in noise suppression in a wide frequency range $(30 \mathrm{MHz}$ to several hundred MHz$)$.

| Part Number | Impedance (at $100 \mathrm{MHz} / 20^{\circ} \mathrm{C}$ ) $(0 \mathrm{hm})$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| BLM15AG100SH1 | 10 (Typ.) | 1000 | 0.05 | -55 to +125 |
| BLM15AG700SH1 | 70 (Typ.) | 500 | 0.15 | -55 to +125 |
| BLM15AG121SH1 | $120 \pm 25 \%$ | 500 | 0.25 | -55 to +125 |
| BLM15AG221SH1 | $220 \pm 25 \%$ | 300 | 0.35 | -55 to +125 |
| BLM15AG601SH1 | $600 \pm 25 \%$ | 300 | 0.6 | -55 to +125 |
| BLM15AG102SH1 | $1000 \pm 25 \%$ | 200 | 1.0 | -55 to +125 |

## Equivalent Circuit



Impedance - Frequency (Typical)


BLM15AG100SH1


BLM15AG121SH1


BLM15AG601SH1


BLM15AG700SH1



BLM15AG102SH1


## BLM18A Series

## Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM_A series generates an impedance from the relatively low frequencies. Therefore BLM_A series is effective in noise suppression in a wide frequency range ( 30 MHz to several hundred MHz ).

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } \left.100 \mathrm{MHz} / 20^{\circ} \mathrm{C}\right) \\ (0 \mathrm{hm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| BLM18AG121SH1 | $120 \pm 25 \%$ | 500 | 0.18 | -55 to +125 |
| BLM18AG151SH1 | $150 \pm 25 \%$ | 500 | 0.25 | -55 to +125 |
| BLM18AG221SH1 | $220 \pm 25 \%$ | 500 | 0.25 | -55 to +125 |
| BLM18AG331SH1 | $330 \pm 25 \%$ | 500 | 0.30 | -55 to +125 |
| BLM18AG471SH1 | $470 \pm 25 \%$ | 500 | 0.35 | -55 to +125 |
| BLM18AG601SH1 | $600 \pm 25 \%$ | 500 | 0.38 | -55 to +125 |
| BLM18AG102SH1 | $1000 \pm 25 \%$ | 400 | 0.50 | -55 to +125 |

## ■ Equivalent Circuit



Impedance - Frequency Characteristics


Impedance - Frequency (Typical)
BLM18A Series


$\searrow$ Continued from the preceding page.

- Impedance - Frequency Characteristics

B LM18AG221SH1


BLM18AG471SH1


BLM18AG331SH1




## BLM18A Series Conductive Glue Applicable Type

## Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
BLM_A series generates an impedance from the relatively low frequencies. Therefore BLM_A series is effective in noise suppression in a wide frequency range ( 30 MHz to several hundred MHz ). BLM18A_WH series is designed for conductive glue mounting method, not for normal soldering method. Please contact us for applicable mounting method for BLM18A_WH series.

| Part Number | Impedance <br> (at $\mathbf{1 0 0 \mathbf { M H z } / \mathbf { 2 0 } \mathbf { C } )}$ <br> $(\mathbf{o h m})$ | Rated Current <br> $(\mathbf{m A})$ | DC Resistance (max.) <br> (ohm) | Operating <br> Temperature Range <br> $\left({ }^{\circ} \mathbf{C}\right)$ |
| :--- | :---: | :---: | :---: | :---: |
| BLM18AG471WH1 | $470 \pm 25 \%$ | 200 | 0.20 | -55 to +150 |
| BLM18AG102WH1 | $1000 \pm 25 \%$ | 200 | 0.70 | -55 to +150 |

## Equivalent Circuit



Impedance - Frequency Characteristics
BLM18AG471WH1


BLM18AG 102WH1


## BLM21A Series

## Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM_A series generates an impedance from the relatively low frequencies. Therefore BLM_A series is effective in noise suppression in a wide frequency range ( 30 MHz to several hundred MHz ).

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } \left.100 \mathrm{MHz} / 20^{\circ} \mathrm{C}\right) \\ (\mathrm{ohm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| BLM21AG121SH1 | $120 \pm 25 \%$ | 200 | 0.15 | -55 to +125 |
| BLM21AG151SH1 | $150 \pm 25 \%$ | 200 | 0.15 | -55 to +125 |
| BLM21AG221SH1 | $220 \pm 25 \%$ | 200 | 0.20 | -55 to +125 |
| BLM21AG331SH1 | $330 \pm 25 \%$ | 200 | 0.25 | -55 to +125 |
| BLM21AG471SH1 | $470 \pm 25 \%$ | 200 | 0.25 | -55 to +125 |
| BLM21AG601SH1 | $600 \pm 25 \%$ | 200 | 0.30 | -55 to +125 |
| BLM21AG102SH1 | $1000 \pm 25 \%$ | 200 | 0.45 | -55 to +125 |

## ■ Equivalent Circuit



Impedance - Frequency Characteristics
BLM21AG121SH1


Impedance - Frequency (Typical)
blM21A Series



## - Impedance - Frequency Characteristics







## BLM31A Series

## Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM_A series generates an impedance from the relatively low frequencies. Therefore BLM_A series is effective in noise suppression in a wide frequency range ( 30 MHz to several hundred MHz ).


| Part Number | Impedance <br> (at$\left.\mathbf{1 0 0 M H z / 2 0}{ }^{\circ} \mathbf{C}\right)$ <br> $(\mathbf{o h m})$Rated Current <br> $(\mathbf{m A})$ | DC Resistance (max.) <br> (ohm) | Operating <br> Temperature Range <br> $\left({ }^{\circ} \mathbf{C}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: |
| BLM31AJ601SH1 | $600 \pm 25 \%$ | 200 | 0.90 | -55 to +125 |

■ Equivalent Circuit


Impedance - Frequency Characteristics


## BLM15B Series

## Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance.
 BLM_B series can minimize attenuation of the signal waveform due to its sharp impedance characteristics. Various impedances are available to match signal frequency.

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } 100 \mathrm{MHz} / 20^{\circ} \mathrm{C} \text { ) } \\ (\mathrm{ohm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| BLM15BB050SH1 | $5 \pm 25 \%$ | 500 | 0.08 | -55 to +125 |
| BLM15BB100SH1 | $10 \pm 25 \%$ | 300 | 0.10 | -55 to +125 |
| BLM15BB220SH1 | $22 \pm 25 \%$ | 300 | 0.20 | -55 to +125 |
| BLM15BB470SH1 | $47 \pm 25 \%$ | 300 | 0.35 | -55 to +125 |
| BLM15BB750SH1 | $75 \pm 25 \%$ | 300 | 0.40 | -55 to +125 |
| BLM15BB121SH1 | $120 \pm 25 \%$ | 300 | 0.55 | -55 to +125 |
| BLM15BB221SH1 | $220 \pm 25 \%$ | 200 | 0.80 | -55 to +125 |
| BLM15BD471SH1 | $470 \pm 25 \%$ | 200 | 0.60 | -55 to +125 |
| BLM15BD601SH1 | $600 \pm 25 \%$ | 200 | 0.65 | -55 to +125 |
| BLM15BD102SH1 | $1000 \pm 25 \%$ | 200 | 0.90 | -55 to +125 |
| BLM15BD182SH1 | $1800 \pm 25 \%$ | 200 | 1.40 | -55 to +125 |

## Equivalent Circuit



■ Impedance - Frequency (Typical)
bLM15bB Series


BLM15BD Series


■ Impedance - Frequency Characteristics


BLM15BB220SH1


BLM15BB750SH1


BLM15BB100SH1


BLM15BB470SH1


BLM15BB121SH1


BLM15BB221SH1


BLM15BD601SH1


BLM15BD471SH1



## BLM18B Series

## - Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM_B series can minimize attenuation of the signal waveform due to its sharp impedance characteristics. Various impedances are available to match signal frequency.

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } \left.100 \mathrm{MHz} / 20^{\circ} \mathrm{C}\right) \\ (0 \mathrm{hm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| BLM18BA050SH1 | $5 \pm 25 \%$ | 500 | 0.20 | -55 to +125 |
| BLM18BB050SH1 | $5 \pm 25 \%$ | 700 | 0.05 | -55 to +125 |
| BLM18BA100SH1 | $10 \pm 25 \%$ | 500 | 0.25 | -55 to +125 |
| BLM18BB100SH1 | $10 \pm 25 \%$ | 700 | 0.10 | -55 to +125 |
| BLM18BA220SH1 | $22 \pm 25 \%$ | 500 | 0.35 | -55 to +125 |
| BLM18BB220SH1 | $22 \pm 25 \%$ | 600 | 0.20 | -55 to +125 |
| BLM18BA470SH1 | $47 \pm 25 \%$ | 300 | 0.55 | -55 to +125 |
| BLM18BB470SH1 | $47 \pm 25 \%$ | 550 | 0.25 | -55 to +125 |
| BLM18BD470SH1 | $47 \pm 25 \%$ | 500 | 0.30 | -55 to +125 |
| BLM18BB600SH1 | $60 \pm 25 \%$ | 550 | 0.25 | -55 to +125 |
| BLM18BA750SH1 | $75 \pm 25 \%$ | 300 | 0.70 | -55 to +125 |
| BLM18BB750SH1 | $75 \pm 25 \%$ | 500 | 0.30 | -55 to +125 |
| BLM18BA121SH1 | $120 \pm 25 \%$ | 200 | 0.90 | -55 to +125 |
| BLM18BB121SH1 | $120 \pm 25 \%$ | 500 | 0.30 | -55 to +125 |
| BLM18BD121SH1 | $120 \pm 25 \%$ | 200 | 0.40 | -55 to +125 |
| BLM18BB141SH1 | $140 \pm 25 \%$ | 450 | 0.35 | -55 to +125 |
| BLM18BB151SH1 | $150 \pm 25 \%$ | 450 | 0.37 | -55 to +125 |
| BLM18BD151SH1 | $150 \pm 25 \%$ | 200 | 0.40 | -55 to +125 |
| BLM18BB221SH1 | $220 \pm 25 \%$ | 450 | 0.45 | -55 to +125 |
| BLM18BD221SH1 | $220 \pm 25 \%$ | 200 | 0.45 | -55 to +125 |
| BLM18BB331SH1 | $330 \pm 25 \%$ | 400 | 0.58 | -55 to +125 |
| BLM18BD331SH1 | $330 \pm 25 \%$ | 200 | 0.50 | -55 to +125 |
| BLM18BD421SH1 | $420 \pm 25 \%$ | 200 | 0.55 | -55 to +125 |
| BLM18BB471SH1 | $470 \pm 25 \%$ | 300 | 0.85 | -55 to +125 |
| BLM18BD471SH1 | $470 \pm 25 \%$ | 200 | 0.55 | -55 to +125 |
| BLM18BD601SH1 | $600 \pm 25 \%$ | 200 | 0.65 | -55 to +125 |
| BLM18BD102SH1 | $1000 \pm 25 \%$ | 100 | 0.85 | -55 to +125 |
| BLM18BD152SH1 | $1500 \pm 25 \%$ | 50 | 1.20 | -55 to +125 |
| BLM18BD182SH1 | $1800 \pm 25 \%$ | 50 | 1.50 | -55 to +125 |
| BLM18BD222SH1 | $2200 \pm 25 \%$ | 50 | 1.50 | -55 to +125 |
| BLM18BD252SH1 | $2500 \pm 25 \%$ | 50 | 1.50 | -55 to +125 |

## Equivalent Circuit



■ Impedance - Frequency (Typical)






BLM18BA050SH1



BLM18BA220SH1


BLM18BA470SH1


BLM18BB050SH1




BLM18BB470SH1


Continued on the following page. 7

## $\triangle$ Continued from the preceding page.

BLM18BD470SH1



BLM18BA121SH1



BLM18BB600SH1




BLM18BB141SH1


Continued on the following page. $\nearrow$

BLM18BB151SH1


BLM18BB221SH1


BLM18BB331SH1


BLM18BD421SH1


BLM18B D151SH1




BLM18BB471SH1

## $\checkmark$ Continued from the preceding page

■ Impedance - Frequency Characteristics
BLM18BD471SH1



BLM18BD182SH1





## BLM21B Series

## Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance.
 BLM_B series can minimize attenuation of the signal waveform due to its sharp impedance characteristics. Various impedances are available to match signal frequency.

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } \left.100 \mathrm{MHz} / 20^{\circ} \mathrm{C}\right) \\ (\mathrm{ohm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| BLM21BB050SH1 | $5 \pm 25 \%$ | 500 | 0.07 | -55 to +125 |
| BLM21BB600SH1 | $60 \pm 25 \%$ | 200 | 0.20 | -55 to +125 |
| BLM21BB750SH1 | $75 \pm 25 \%$ | 200 | 0.25 | -55 to +125 |
| BLM21BB121SH1 | $120 \pm 25 \%$ | 200 | 0.25 | -55 to +125 |
| BLM21BD121SH1 | $120 \pm 25 \%$ | 200 | 0.25 | -55 to +125 |
| BLM21BB151SH1 | $150 \pm 25 \%$ | 200 | 0.25 | -55 to +125 |
| BLM21BD151SH1 | $150 \pm 25 \%$ | 200 | 0.25 | -55 to +125 |
| BLM21BB201SH1 | $200 \pm 25 \%$ | 200 | 0.35 | -55 to +125 |
| BLM21BB221SH1 | $220 \pm 25 \%$ | 200 | 0.35 | -55 to +125 |
| BLM21BD221SH1 | $220 \pm 25 \%$ | 200 | 0.25 | -55 to +125 |
| BLM21BB331SH1 | $330 \pm 25 \%$ | 200 | 0.40 | -55 to +125 |
| BLM21BD331SH1 | $330 \pm 25 \%$ | 200 | 0.30 | -55 to +125 |
| BLM21BD421SH1 | $420 \pm 25 \%$ | 200 | 0.30 | -55 to +125 |
| BLM21BB471SH1 | $470 \pm 25 \%$ | 200 | 0.45 | -55 to +125 |
| BLM21BD471SH1 | $470 \pm 25 \%$ | 200 | 0.35 | -55 to +125 |
| BLM21BD601SH1 | $600 \pm 25 \%$ | 200 | 0.35 | -55 to +125 |
| BLM21BD751SH1 | $750 \pm 25 \%$ | 200 | 0.40 | -55 to +125 |
| BLM21BD102SH1 | $1000 \pm 25 \%$ | 200 | 0.40 | -55 to +125 |
| BLM21BD152SH1 | $1500 \pm 25 \%$ | 200 | 0.45 | -55 to +125 |
| BLM21BD182SH1 | $1800 \pm 25 \%$ | 200 | 0.50 | -55 to +125 |
| BLM21BD222TH1 | $2200 \pm 25 \%$ | 200 | 0.60 | -55 to +125 |
| BLM21BD222SH1 | 2250 (Typ.) | 200 | 0.60 | -55 to +125 |
| BLM21BD272SH1 | $2700 \pm 25 \%$ | 200 | 0.80 | -55 to +125 |

## Equivalent Circuit



Impedance - Frequency (Typical)
BLM21BB Series


BLM21BD Series



BLM21BD121SH1


BLM21BB121SH1


BLM21BB151SH1








Continued on the following page. 7

■ Impedance - Frequency Characteristics




BLM21BD222TH1


BLM21BD601SH1




BLM21BD222SH1


BLM21BD272SH1


## BLM18P Series

## ■ Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance.


BLM_P series can be used in high current circuits due to its low DC resistance.

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } \left.100 \mathrm{MHz} / 20^{\circ} \mathrm{C}\right) \\ (\mathrm{ohm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| BLM18PG300SH1 | 30 (Typ.) | 1000 | 0.05 | -55 to +125 |
| BLM18PG330SH1 | $33 \pm 25 \%$ | 3000 | 0.025 | -55 to +125 |
| BLM18PG600SH1 | 60 (Typ.) | 500 | 0.10 | -55 to +125 |
| BLM18PG121SH1 | $120 \pm 25 \%$ | 2000 | 0.05 | -55 to +125 |
| BLM18PG181SH1 | $180 \pm 25 \%$ | 1500 | 0.09 | -55 to +125 |
| BLM18PG221SH1 | $220 \pm 25 \%$ | 1400 | 0.10 | -55 to +125 |
| BLM18PG331SH1 | $330 \pm 25 \%$ | 1200 | 0.15 | -55 to +125 |
| BLM18PG471SH1 | $470 \pm 25 \%$ | 1000 | 0.20 | -55 to +125 |

For the items of rated current higher than 1200 mA , derating is required.
Please refer to p.32, "Derating of Rated Current".

## Equivalent Circuit



Impedance - Frequency (Typical)
BLM18P Series

Impedance - Frequency Characteristics
BLM18PG300SH1


BLM18PG600SH1


BLM18PG181SH1


BLM18PG331SH1


BLM18PG330SH1




BLM18PG471SH1


## - Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM_P series can be used in high current circuits due to its low DC resistance.

| Part Number | Impedance <br> $(\mathbf{a t ~} \mathbf{1 0 0 \mathbf { M H z / 2 0 } \mathbf { C } )}$ <br> $\mathbf{( 0 h m})$ | Rated Current <br> $\mathbf{( m A )}$ | DC Resistance (max.) <br> $(\mathbf{o h m})$ | Operating <br> Temperature Range <br> $\left({ }^{\circ} \mathbf{C}\right)$ |
| :--- | :---: | :---: | :---: | :---: |
| BLM21PG220SH1 | $22 \pm 25 \%$ | 6000 | 0.01 | -55 to +125 |
| BLM21PG300SH1 | $30(\mathrm{Typ})$. | 3000 | 0.015 | -55 to +125 |
| BLM21PG600SH1 | $60 \pm 25 \%$ | 3000 | 0.025 | -55 to +125 |
| BLM21PG221SH1 | $220 \pm 25 \%$ | 2000 | 0.050 | -55 to +125 |
| BLM21PG331SH1 | $330 \pm 25 \%$ | 1500 | 0.09 | -55 to +125 |

For the items of rated current higher than 1500 mA , derating is required.
Please refer to p.32, "Derating of Rated Current".

Equivalent Circuit


Impedance - Frequency Characteristics
BLM21PG220SH1


■ Impedance - Frequency (Typical)



# $\searrow$ Continued from the preceding page. 

BLM21PG600SH1


BLM21PG331SH1


BLM21PG221SH1


## Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted.
BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM_P series can be used in high current circuits due to its low DC resistance.

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } 100 \mathrm{MHz} / 20^{\circ} \mathrm{C} \text { ) } \\ (\mathrm{ohm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| BLM31PG330SH1 | $33 \pm 25 \%$ | 6000 | 0.01 | -55 to +125 |
| BLM31PG500SH1 | 50 (Typ.) | 3000 | 0.025 | -55 to +125 |
| BLM31PG121SH1 | $120 \pm 25 \%$ | 3000 | 0.025 | -55 to +125 |
| BLM31PG391SH1 | $390 \pm 25 \%$ | 2000 | 0.05 | -55 to +125 |
| BLM31PG601SH1 | $600 \pm 25 \%$ | 1500 | 0.09 | -55 to +125 |

For the items of rated current higher than 1500 mA , derating is required.
Please refer to p.32, "Derating of Rated Current".

Equivalent Circuit


Impedance - Frequency Characteristics
BLM31PG330SH1


■ Impedance - Frequency (Typical)



Continued on the following page

Impedance - Frequency Characteristics
BLM31PG121SH1



## BLM41P Series

## Features

The chip ferrite beads BLM series is designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted. BLM series is effective in circuits without stable ground lines because BLM series does not need a connection to ground.
The nickel barrier structure of the external electrodes provides excellent solder heat resistance. BLM_P series can be used in high current circuits due to its low DC resistance.


Frequency (MHz)

(in mm)

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } \left.100 \mathrm{MHz} / 20^{\circ} \mathrm{C}\right) \\ (\mathrm{ohm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| BLM41PG600SH1 | 60 (Typ.) | 6000 | 0.01 | -55 to +125 |
| BLM41PG750SH1 | 75 (Typ.) | 3000 | 0.025 | -55 to +125 |
| BLM41PG181SH1 | $180 \pm 25 \%$ | 3000 | 0.025 | -55 to +125 |
| BLM41PG471SH1 | $470 \pm 25 \%$ | 2000 | 0.05 | -55 to +125 |
| BLM41PG102SH1 | $1000 \pm 25 \%$ | 1500 | 0.09 | -55 to +125 |

For the items of rated current higher than 1500 mA , derating is required.
Please refer to p.32, "Derating of Rated Current".
(Resistance element becomes dominant
at high frequencies.)

■ Impedance - Frequency (Typical)


■ Impedance - Frequency Characteristics
BLM41PG600SH1







## Notice (Rating)

In operating temperatures exceeding $+85^{\circ} \mathrm{C}$, derating of current is necessary for chip Ferrite Beads for which rated current is 1200 mA or over. Please apply the derating curve shown in chart according to the operating temperature.

## BLM18H Series

BLM18H series has a modified internal electrode structure, that minimizes stray capacitance and increases the effective frequency range.

## Features

1. BLM18H series realizes high impedance at 1 GHz and is suitable for noise suppression from 500 MHz to GHz range. The impedance value of $\mathrm{HG} / \mathrm{HD}$-type is about three times as large as that of $A / B$-type at 1 GHz though the impedance characteristic of HG/HD-type is similar to A/B-type at 100 MHz or less.
2. HG-type is effective in noise suppression in wide frequency range (several MHz to several GHz ). HD-type for high-speed signal line provides a sharper roll-off after the cut off frequency.
3. The magnetic shielded structure minimizes cross talk.

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } \left.100 \mathrm{MHz} / 20^{\circ} \mathrm{C}\right) \\ (0 \mathrm{hm}) \end{gathered}$ | $\begin{gathered} \text { Impedance } \\ \text { (at } \left.1 \mathrm{GHz} / 20^{\circ} \mathrm{C}\right) \\ (\mathrm{ohm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BLM18HG471SH1 | $470 \pm 25 \%$ | 600 (Тур.) | 200 | 0.85 | -55 to +125 |
| BLM18HG601SH1 | $600 \pm 25 \%$ | 700 (Тур.) | 200 | 1.00 | -55 to +125 |
| BLM18HG102SH1 | $1000 \pm 25 \%$ | 1000 (Typ.) | 100 | 1.60 | -55 to +125 |
| BLM18HD471SH1 | $470 \pm 25 \%$ | 1000 (Typ.) | 100 | 1.20 | -55 to +125 |
| BLM18HD601SH1 | $600 \pm 25 \%$ | 1200 (Typ.) | 100 | 1.50 | -55 to +125 |
| BLM18HD102SH1 | $1000 \pm 25 \%$ | 1700 (Typ.) | 50 | 1.80 | -55 to +125 |

## ■ Equivalent Circuit



Impedance - Frequency (Typical)



Impedance - Frequency Characteristics


BLM18HG102SH1






## BLM18E Series

BLM18E series has a modified internal electrode structure, that minimizes stray capacitance and increases the effective frequency range.


## Features

1. Low DC Resistance and a large Rated Current are suitable for noise suppression of the driver circuit.
2. Excellent direct current characteristics.
3. Thin type ( $\mathrm{t}=0.5 \mathrm{~mm}$ ) is suitable for small and
 low profile equipment such as ETC, RKE.

| Part Number | $\begin{gathered} \text { Impedance } \\ \text { (at } 100 \mathrm{MHz} / 20^{\circ} \mathrm{C} \text { ) } \\ (\mathrm{ohm}) \end{gathered}$ | $\begin{gathered} \text { Impedance } \\ \left(\mathrm{at} 1 \mathrm{GHz} / 20^{\circ} \mathrm{C}\right) \\ (\mathrm{ohm}) \end{gathered}$ | Rated Current (mA) | DC Resistance (max.) (ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BLM18EG101TH1 | $100 \pm 25 \%$ | 140 (Тур.) | 2000 | 0.045 | -55 to +125 |
| BLM18EG121SH1 | $120 \pm 25 \%$ | 145 (Тур.) | 2000 | 0.04 | -55 to +125 |
| BLM18EG181SH1 | $180 \pm 25 \%$ | 260 (Тур.) | 2000 | 0.05 | -55 to +125 |
| BLM18EG221TH1 | $220 \pm 25 \%$ | 300 (Typ.) | 1000 | 0.15 | -55 to +125 |
| BLM18EG331TH1 | $330 \pm 25 \%$ | 450 (Тур.) | 500 | 0.21 | -55 to +125 |
| BLM18EG391TH1 | $390 \pm 25 \%$ | 520 (Typ.) | 500 | 0.30 | -55 to +125 |
| BLM18EG471SH1 | $470 \pm 25 \%$ | 550 (Тур.) | 500 | 0.21 | -55 to +125 |
| BLM18EG601SH1 | $600 \pm 25 \%$ | 700 (Typ.) | 500 | 0.35 | -55 to +125 |

For the items of rated current higher than 2000 mA , derating is required.
Please refer to p.37, "Derating of Rated Current".

## ■ Equivalent Circuit



## Impedance - Frequency (Typical)




Impedance - Frequency Characteristics



BLM18EG331TH1



BLM18EG121SH1



BLM18EG391TH1


BLM18EG601SH1

$\searrow$ Continued from the preceding page.

Notice (Rating)
In operating temperatures exceeding $+85^{\circ} \mathrm{C}$, derating of current is necessary for chip Ferrite Beads for which rated current is 1200 mA or over. Please apply the derating curve shown in chart according to the operating temperature.


Specifications and Test Methods

## Test and Measurement Conditions

<Unless otherwise specified>
Temperature: Ordinary Temp. 15 to $35^{\circ} \mathrm{C}$
Humidity: Ordinary Humidity 25 to $85 \%$ (RH)
<In case of doubt>
Temperature: $20 \pm 2^{\circ} \mathrm{C}$
Humidity: 60 to $70 \%$ (RH)
Atmospheric Pressure: 86 to 106 kPa

## Specifications

## 1. Electrical Performance

| No. | Item | Specifications | Test Methods |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Impedance | Within the specified tolerance. Impedance Frequency Characteristics (Typical): See the appendix. | Measuring Frequency |  |
|  |  |  | BLM15/18/21/31/41 series | $100 \pm 1 \mathrm{MHz}$ |
|  |  |  | BLM18HG/HD type | $100 \pm 1 \mathrm{MHz}, 1 \mathrm{GHz} \pm 1 \mathrm{MHz}$ |
|  |  |  | Measuring Equipment: Agilent 4291A or the equivalent Test Fixture |  |
|  |  |  | BLM15/18/21/31/41 series Agilent 16192A or the equivalent |  |
| 2 | DC Resistance | Meet specifications. | Measuring Equipment: Digital m | multi-meter |

## 2. Mechanical Performance

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | Appearance and Dimensions | Meet dimensions. | Visual Inspection and measured with micrometer. |
| 2 | Solderability*1 | The electrodes should be at least $95 \%$ covered with new solder coating. | Flux: Ethanol solution of rosin, $25 \mathrm{wt} \%$ <br> Pre-heating: $150 \pm 10^{\circ} \mathrm{C}, 60$ to 90 s <br> Solder: (1) $\mathrm{Sn} / \mathrm{Pb}=60 / 40$ <br> (2) $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder <br> Solder Temperature: (1) $230 \pm 5^{\circ} \mathrm{C}$ $\text { (2)240 } \pm 5^{\circ} \mathrm{C}$ <br> Immersion Time: © $4 \pm 1 \mathrm{~s}$ <br> ${ }^{2} 3 \pm 1$ s (BLM15/18 series) <br> (2) $4 \pm 1 \mathrm{~s}$ (BLM21/31/41 series) <br> Immersion and emersion rates: $25 \mathrm{~mm} / \mathrm{s}$ |
| 3 | Resistance to Soldering Heat* ${ }^{* 1}$ |  | Flux: Ethanol solution of rosin, 25wt\% <br> Pre-heating: $150 \pm 10^{\circ} \mathrm{C}, 60$ to 90 s <br> Solder: $\mathrm{Sn} / \mathrm{Pb}=60 / 40$ or $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder <br> Solder Temperature: $270 \pm 5^{\circ} \mathrm{C}$ <br> Immersion Time: $10 \pm 0.5 \mathrm{~s}$ <br> Immersion and emersion rates: $25 \mathrm{~mm} / \mathrm{s}$ <br> Then measured after exposure to room conditions for $48 \pm 4 \mathrm{hrs}$. |
| 4 | Bonding Strength $\mathrm{I}^{* 1}$ | Meet Table 1, two pages ahead. | It should be soldered on the substrate. Applying Force (F): 4.9N (BLM15 series) <br> 6.8 N (BLM18 series) <br> 9.8 N (BLM21/31/41 series) <br> Applying Time: $5 \pm 1$ s |
| 5 | B onding Strength II *2 |  | It should be mounting with conductive glue on the substrate. <br> Applying Force (F): 8 N <br> Applying Time: $5 \pm 1 \mathrm{~s}$ <br> Applying Direction as shown below. |
| *1 Except BLM18AG $\square \square$ WH1 <br> *2 BLM18AG $\square \square \square W H 1$ only. |  |  |  |

Specifications and Test Methods

Continued from the preceding page.

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 6 | Bending Strength*1 | Meet Table 1, next page. | It should be soldered on the glass-epoxy substrate. <br> Substrate: $100 \times 40 \times 1.6 \mathrm{~mm}$ <br> (BLM15 series: $100 \times 40 \times 0.8 \mathrm{~mm}$ ) <br> (BLM18H series: $100 \times 40 \times 1.0 \mathrm{~mm}$ ) <br> Deflection (n): 1.0 mm <br> (BLM15 series: 2.0 mm ) <br> (BLM18H series: 2.0 mm ) <br> Speed of Applying Force: $0.5 \mathrm{~mm} / \mathrm{s}$ Keeping Time: 30s |
| 7 | Vibration I *1 |  | It should be soldered on the substrate. <br> Oscillation Frequency: 10 to 2000 to 10 Hz for 20 min . <br> Total Amplitude: 1.5 mm or Acceleration amplitude $49 \mathrm{~m} / \mathrm{s}^{2}$ <br> whichever is smaller. <br> Testing Time: A period of 2 hours in each of 3 mutually perpendicular directions. (Total 6 hrs.) |
| 8 | Vibration II *2 |  | It should be mounted with conductive glue on the substrate. Oscillation Frequency: 10 to 2000 to 10 Hz for 20 min . <br> Total Amplitude: 1.5 mm or Acceleration amplitude $49 \mathrm{~m} / \mathrm{s}^{2}$ whichever is smaller. <br> Testing Time: A period of 2 hours in each of 3 mutually perpendicular directions. (Total 6 hrs.) |
| *1 Except BLM18AG $\square \square \square W H 1$ <br> *2 BLM18AG $\square \square \square W$ H1 only. |  |  |  |

3. Environmental Performance (It should be soldered on the substrate.)

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | Humidity | Meet Table 1, next page. | Temperature: $70 \pm 2^{\circ} \mathrm{C}$ <br> Humidity: 90 to $95 \%$ (RH) <br> Time: 1000 hrs . $\pm{ }^{48} \mathrm{hrs}$.) <br> Then measured after exposure to room conditions for $48 \pm 4 \mathrm{hrs}$. |
| 2 | Heat Life |  | Temperature: $150 \pm 3^{\circ} \mathrm{C}$ (BLM18AG $\square \square \square \mathrm{WH} 1$ only) $125 \pm 3^{\circ} \mathrm{C}$ (BLM15/18/21/31 series) ${ }^{* 1}$ <br> $85 \pm 3^{\circ} \mathrm{C}$ (BLM18PG330/121/181/221/331 type <br> BLM21PG/31PG/41PG series) <br> Applying Current: Rated Current <br> Time: 1000 hrs . $\pm{ }^{48} \mathrm{hrs}$.) <br> Then measured after exposure to room conditions for $48 \pm 4 \mathrm{hrs}$. |
| 3 | Cold Resistance |  | Temperature: $-55 \pm 2^{\circ} \mathrm{C}$ <br> Time: 1000 hrs . $\left( \pm^{48} \mathrm{hrs}\right.$.) <br> Then measured after exposure to room conditions for $48 \pm 4 \mathrm{hrs}$. |
| 4 | Temperature Cycle |  | 1 Cycle <br> 1 step: $-55 \pm_{3}^{0{ }^{\circ}} \mathrm{C} / 30 \pm 3 \mathrm{~min}$. <br> 2 step: Room Temperature/within 5 min. <br> 3 step: $+125 \pm_{0}^{3 \circ} \mathrm{C} / 30 \pm 3 \mathrm{~min}$. <br> 4 step: Room Temperature/within 5 min. <br> Total of 1000 cycles <br> Then measured after exposure to room conditions for $48 \pm 4$ hrs. |

## Specifications and Test Methods

Continued from the preceding page.

## 4. Other Performance

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | ESD Test I *1 |  | The products are adhered on the substrate with the conductive glue and tested under the condition in Table, and then measured after exposure in room condition for 1 or 2 hours. Please refer to the figure about the equivalent circuit. |
|  |  |  | Capacitance for Charging and <br> Discharging 150 pF |
|  |  |  | Resistance for Discharging R1 $330 \Omega$ |
|  |  |  | Resistance for <br> Charge R2 50 to $100 \mathrm{M} \Omega$ |
|  |  |  | Applying Method |
|  |  | eot Table 1 below. |  |

The products are adhered on the substrate with the conductive glue and tested under the condition of Table, and then measured after exposure in room condition for 1 or 2 hours.

|  | Machine <br> Model <br> (MM) | Human <br> Body Model <br> (HBM) |
| :--- | :---: | :---: |
| Capacitance for Charging <br> and Discharging | 200 pF | 100 pF |
| Resistance for <br> Discharging R1 | $0 \Omega$ | $1500 \Omega$ |
| Resistance for <br> Charge R2 | $1 \mathrm{M} \Omega$ | $1 \mathrm{M} \Omega$ |
| Applying Method | $\pm 10$ times | $\pm 5$ times |
| Applying Voltage | 300 V | 2 kV |

*1 BLM18AG $\square \square \square$ WH1 only.

Table 1.

| Appearance | No damage |
| :---: | :---: |
| Impedance Change (at 100MHz) | within $\pm 30 \%$ |
| DC Resistance | Meet Table 2, next page. |

Continued from the preceding page.
Table 2.

| Part Number | $\begin{array}{\|c\|} \hline \text { DC Resistance } \\ \text { (ohm max.).) } \\ \text { Values After Testing } \\ \hline \end{array}$ | Part Number | $\begin{array}{\|c\|} \hline \text { DC Resistance } \\ \text { (ohm max.).) } \\ \text { Values After Testing } \\ \hline \end{array}$ | Part Number | $\begin{array}{\|c\|} \hline \text { DC Resistance } \\ \text { (ohm max.).) } \\ \text { Values After Testing } \end{array}$ | Part Number | DC Resistance (ohm max.). Values After Testing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BLM15AG100SH1 | 0.10 | BLM18BA470SH1 | 0.65 | BLM18HG601SH1 | 1.10 | BLM21BD421SH1 | 0.40 |
| BLM15AG700SH1 | 0.20 | BLM18BB470SH1 | 0.35 | BLM18HG102SH1 | 1.70 | BLM21BB471SH1 | 0.55 |
| BLM15AG121SH1 | 0.35 | BLM18BD470SH1 | 0.40 | BLM18HD471SH1 | 1.30 | BLM21BD471SH1 | 0.45 |
| BLM15AG221SH1 | 0.45 | BLM18BB600SH1 | 0.35 | BLM18HD601SH1 | 1.60 | BLM21BD601SH1 | 0.45 |
| BLM15AG601SH1 | 0.70 | BLM18BA750SH1 | 0.80 | BLM18HD102SH1 | 1.90 | BLM21BD751SH1 | 0.50 |
| BLM15AG102SH1 | 1.10 | BLM18BB750SH1 | 0.40 | BLM18EG101TH1 | 0.07 | BLM21BD102SH1 | 0.50 |
| BLM15BB050SH1 | 0.15 | BLM18BA121SH1 | 1.00 | BLM18EG121SH1 | 0.06 | BLM21BD152SH1 | 0.55 |
| BLM15BB100SH1 | 0.15 | BLM18BB121SH1 | 0.40 | BLM18EG181SH1 | 0.08 | BLM21BD182SH1 | 0.60 |
| BLM15BB220SH1 | 0.30 | BLM18BD121SH1 | 0.50 | BLM18EG221TH1 | 0.21 | BLM21BD222SH1 | 0.70 |
| BLM15BB470SH1 | 0.45 | BLM18BB141SH1 | 0.45 | BLM18EG331TH1 | 0.30 | BLM21BD222TH1 | 0.70 |
| BLM15BB750SH1 | 0.50 | BLM18BB151SH1 | 0.47 | BLM18EG391TH1 | 0.40 | BLM21BD272SH1 | 0.90 |
| BLM15BB121SH1 | 0.65 | BLM18BD151SH1 | 0.50 | BLM18EG471SH1 | 0.30 | BLM21PG220SH1 | 0.02 |
| BLM15BB221SH1 | 0.90 | BLM18BB221SH1 | 0.55 | BLM18EG601SH1 | 0.45 | BLM21PG300SH1 | 0.03 |
| BLM15BD471SH1 | 0.70 | BLM18BD221SH1 | 0.55 |  |  | BLM21PG600SH1 | 0.05 |
| BLM15BD601SH1 | 0.75 | BLM18BB331SH1 | 0.68 |  |  | BLM21PG221SH1 | 0.10 |
| BLM15BD102SH1 | 1.00 | BLM18BD331SH1 | 0.60 | BLM21AG121SH1 | 0.25 | BLM21PG331SH1 | 0.18 |
| BLM15BD182SH1 | 1.50 | BLM18BD421SH1 | 0.65 | BLM21AG151SH1 | 0.25 |  |  |
|  |  | BLM18BB471SH1 | 0.95 | BLM21AG221SH1 | 0.30 |  |  |
|  |  | BLM18BD471SH1 | 0.65 | BLM21AG331SH1 | 0.35 | BLM31AJ601SH1 | 0.10 |
| BLM18AG121SH1 | 0.28 | BLM18BD601SH1 | 0.75 | BLM21AG471SH1 | 0.35 | BLM31PG330SH1 | 0.02 |
| BLM18AG151SH1 | 0.35 | BLM18BD102SH1 | 0.95 | BLM21AG601SH1 | 0.40 | BLM31PG500SH1 | 0.05 |
| BLM18AG221SH1 | 0.35 | BLM18BD152SH1 | 1.30 | BLM21AG102SH1 | 0.55 | BLM31PG121SH1 | 0.05 |
| BLM18AG331SH1 | 0.40 | BLM18BD182SH1 | 1.60 | BLM21BB050SH1 | 0.14 | BLM31PG391SH1 | 0.10 |
| BLM18AG471SH1 | 0.45 | BLM18BD222SH1 | 1.60 | BLM21BB600SH1 | 0.25 | BLM31PG601SH1 | 0.18 |
| BLM18AG601SH1 | 0.48 | BLM18BD252SH1 | 1.60 | BLM21BB750SH1 | 0.35 |  |  |
| BLM18AG102SH1 | 0.60 | BLM18PG300SH1 | 0.10 | BLM21BB121SH1 | 0.35 |  |  |
| BLM18AG471WH1 | 0.26 | BLM18PG330SH1 | 0.05 | BLM21BD121SH1 | 0.35 | BLM41PG600SH1 | 0.02 |
| BLM18AG102WH1 | 0.80 | BLM18PG600SH1 | 0.20 | BLM21BB151SH1 | 0.35 | BLM41PG750SH1 | 0.05 |
| BLM18BA050SH1 | 0.30 | BLM18PG121SH1 | 0.10 | BLM21BD151SH1 | 0.35 | BLM41PG181SH1 | 0.05 |
| BLM18BB050SH1 | 0.10 | BLM18PG181SH1 | 0.18 | BLM21BB201SH1 | 0.45 | BLM41PG471SH1 | 0.10 |
| BLM18BA100SH1 | 0.35 | BLM18PG221SH1 | 0.14 | BLM21BB221SH1 | 0.45 | BLM41PG102SH1 | 0.18 |
| BLM18BB100SH1 | 0.15 | BLM18PG331SH1 | 0.195 | BLM21BD221SH1 | 0.35 |  |  |
| BLM18BA220SH1 | 0.45 | BLM18PG471SH1 | 0.26 | BLM21BB331SH1 | 0.50 |  |  |
| BLM18BB220SH1 | 0.30 | BLM18HG471SH1 | 0.95 | BLM21BD331SH1 | 0.40 |  |  |

## On-Board Type (DC) EMI Suppression Filters (EMIFIL®) for Automotive

## miPrita

## Chip EMIFIL ${ }^{\circledR}$ Part Numbering



| 6Characteristics |  |
| :--- | :---: |
| Code |  |
| C Capacitance Change (Temperature Characteristics) |  |
| D |  |
| F |  |
| R |  |
| U |  |
| Z |  |
| $+20 \%, \pm 22 \%$ |  |
| 7Rated Voltage |  |
| Code |  |
| 1A |  |


| 8Electrode/Others |
| :--- |
| Code |
| $\mathbf{3}$ | Electrode


| 9Packaging |  |  |
| :--- | :---: | :--- |
| Code | Packaging | Series |
| $\mathbf{L}$ | Embossed Taping (ø180mm Reel) | NFE |
| K | Embossed Taping (ø330mm Reel) |  |
| B | Bulk | All series |
| D | Paper Taping (ø180mm Reel) | NFM |

## On-Board Type (DC) EMI Suppression Filters (EMIFIL®) for Automotive

murata

## Chip EMIFIL ${ }^{\circledR}$ Capacitor Type NFM21H Series

The chip "EMIFIL" NFM21H series is a chip type three terminal EMI suppression filter. It can reduce residual inductance to an extremely low level making it excellent for noise suppression at high frequencies.

## Features

1. Wide operating temperature range $(-55$ to +125 degrees C)
2. Three terminal structure enables high performance in high frequency range.

3. Uses original electrode structure which realizes excellent solderability.
4. An electrostatic capacitance range of 22 to $470,000 \mathrm{pF}$ enables suppression of noise at specific frequencies.

## ■ Applications

Severe EMI suppression and high impedance circuits such as digital circuits.

| Part Number | Capacitance ( pF ) | Rated Voltage (Vdc) | Rated Current (mA) | Insulation Resistance (min.) (M ohm) | Operating Temperature Range ( ${ }^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NFM21HC220U1H3 | $22+20 \%,-20 \%$ | 50 | 700 | 1000 | -55 to +125 |
| NFM21HC470U1H3 | $47+20 \%,-20 \%$ | 50 | 700 | 1000 | -55 to +125 |
| NFM21HC101U1H3 | 100 +20\%,-20\% | 50 | 700 | 1000 | -55 to +125 |
| NFM21HC221R1H3 | $220+20 \%,-20 \%$ | 50 | 700 | 1000 | -55 to +125 |
| NFM21HC471R1H3 | $470+20 \%,-20 \%$ | 50 | 1000 | 1000 | -55 to +125 |
| NFM21HC102R1H3 | $1000+20 \%$,-20\% | 50 | 1000 | 1000 | -55 to +125 |
| NFM21HC222R1H3 | $2200+20 \%$,-20\% | 50 | 1000 | 1000 | -55 to +125 |
| NFM21HC223R1H3 | $22000+20 \%,-20 \%$ | 50 | 2000 | 1000 | -55 to +125 |
| NFM21HC104R1A3 | 100000 +20\% ,-20\% | 10 | 2000 | 1000 | -55 to +125 |
| NFM21HC224R1A3 | $220000+20 \%,-20 \%$ | 10 | 2000 | 1000 | -55 to +125 |
| NFM21HC474R1A3 | $470000+20 \%$,-20\% | 10 | 2000 | 1000 | -55 to +125 |

## Equivalent Circuit



## Specifications and Test Methods

## Test and Measurement Conditions

<Unless otherwise specified>
Temperature: Ordinary Temp. 15 to $35^{\circ} \mathrm{C}$
Humidity: Ordinary Humidity 25 to $85 \%$ (RH)
<In case of doubt>
Temperature: $20 \pm 2^{\circ} \mathrm{C}$
Humidity: 60 to $70 \%$ (RH)
Atmospheric Pressure: 86 to 106 kPa

## Specifications

## 1. Electrical Performance

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | Capacitance (Cap.) | Within the specified tolerance. | Frequency <br> Voltage: $1 \pm 0.2 \mathrm{Vrms}$ |
| 2 | Insulation Resistance (I.R.) | $1000 \mathrm{M} \Omega \mathrm{min}$. | Voltage: Rated Voltage Charging Time: 2 minutes max. |
| 3 | Withstanding Voltage | Products should not be damaged. | Test Voltage <br> Testing Time: 1 to 5 s Charge/Discharge Current: 50mA max. |
| 4 | DC Resistance (Rdc1, 2) | 22 to $2200 \mathrm{pF}: 0.3 \Omega$ max. <br> 22000 to $470000 \mathrm{pF}: 0.03 \Omega$ max. | Measured with 100 mA max. <br> Rdc1: between signal terminals <br> Rdc2: between ground terminals |

## 2. Mechanical Performance

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | Appearance and Dimensions | Meet dimensions. | Visual Inspection and measured with micrometer. |
| 2 | Solderability | Electrodes should be at least $90 \%$ covered with new solder coating. | Flux: Ethanol solution of rosin, $25 \mathrm{wt} \%$ <br> Pre-heating: $150 \pm 10^{\circ} \mathrm{C}, 60$ to 90 s <br> Solder: (1)Sn/Pb=60/40 <br> (2) $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder <br> Solder Temperature: (1) $230 \pm 5^{\circ} \mathrm{C}$ <br> (2) $240 \pm 3^{\circ} \mathrm{C}$ <br> Immersion Time: $\begin{aligned} & \text { (1) } 2 \pm 0.5 \mathrm{~s} \\ & \text { (2) } 3 \pm 1 \mathrm{~s} \end{aligned}$ <br> Immersion and emersion rates: $25 \mathrm{~mm} / \mathrm{s}$ |
| 3 | Resistance to Soldering Heat | Meet Table 1. <br> Table 1 | Flux: Ethanol solution of rosin, 25wt\% <br> Pre-heating: $150 \pm 10^{\circ} \mathrm{C}, 60$ to 90 s <br> Solder: $\mathrm{Sn} / \mathrm{Pb}=60 / 40$ or $\mathrm{Sn}-30 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder <br> Solder Temperature: $270 \pm 5^{\circ} \mathrm{C}$ <br> Immersion Time: $10 \pm 1 \mathrm{~s}$ <br> Immersion and emersion rates: $25 \mathrm{~mm} / \mathrm{s}$ <br> Initial values: About 220 to 470000 pF , measured after heat <br> treatment ( $150 \pm_{10}^{0}{ }^{\circ} \mathrm{C}, 1$ hour) and exposure in the room <br> condition for $48 \pm 4$ hrs. <br> Then measured after exposure in room conditions for the following hours. <br> 22 to 100 pF : $24 \pm 2$ hrs. <br> 220 to 470000 pF : $48 \pm 4$ hrs. |
| 4 | Bonding Strength | The electrodes should show no failure after testing. | It should be soldered on the glass-epoxy substrate. <br> Applying Force: 17.6 N Applying Time: 60s |

Specifications and Test Methods

Continued from the preceding page.

| No. | Item | Specifications |  |  | Test Methods |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | Bending Strength | Meet Table 2. <br> Table 2 |  |  | It should be soldered on the glass-epoxy substrate ( $\mathrm{t}=1 \mathrm{~mm}$ ). Deflection: 2.0 mm Keeping Time: 30s |
|  |  | Appearance | No damage |  |  |
|  |  | Cap. Change (\% $\Delta$ C) | Within $\pm 12.5 \%$ |  |  |
|  |  | Rdc1, 2 | 22 to 2200pF | $0.5 \Omega$ max. |  |
|  |  |  | 22000 to 470000 pF | $0.05 \Omega$ max. |  |
| 6 | Vibration | Meet Table 3. <br> Table 3 |  |  | It should be soldered on the glass-epoxy substrate. Oscillation Frequency: 10 to 55 to 10 Hz for 1 min . <br> Total Amplitude: 1.5 mm <br> Testing Time: A period of 2 hrs. in each of 3 mutually perpendicular directions. (Total 6 hrs.) <br> About 220 to 470000 pF : heat treatment $\left(150 \pm_{10}^{0}{ }^{\circ} \mathrm{C}, 1 \mathrm{hr}\right.$.) |
|  |  | Appearance | No damage |  |  |
|  |  | Capacitance | Within the specified tolerance. |  |  |
|  |  | Rdc1, 2 | 22 to 2200pF | $0.5 \Omega$ max. |  |
|  |  |  | 22000 to 470000pF | $0.05 \Omega$ max. |  |

## 3. Environment Performance (It should be soldered on the glass-epoxy substrate.)



## Specifications and Test Methods

| No. | Item | Specifications |  |  | Test Methods |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Temperature Cycle | Meet Table 5. <br> Table 5 |  |  | 1 Cycle <br> 1 step: $-55 \pm_{3}^{0}{ }^{\circ} \mathrm{C} / 30 \pm 3$ minutes <br> 2 step: Room Temperature/within 5 minutes <br> 3 step: $+125 \pm_{0}^{3}{ }^{\circ} \mathrm{C} / 30 \pm 3$ minutes <br> 4 step: Room Temperature/within 5 minutes <br> Total of 1000 cycles <br> Initial values: About 220 to 470000 pF , measured after heat treatment ( $150 \pm_{10}^{0}{ }^{\circ} \mathrm{C}, 1 \mathrm{hr}$.) and exposure in room condition for $48 \pm 4$ hrs. <br> Then measured after exposure to room conditions for the following hours. <br> 22 to 100 pF : $24 \pm 2$ hrs. <br> 220 to 470000 pF : $48 \pm 4$ hrs. |
|  |  | Appearance | No damage |  |  |
|  |  | $\begin{gathered} \text { Cap. Change } \\ (\% \Delta \mathrm{C}) \\ \hline \end{gathered}$ | Within $\pm 7.5 \%$ |  |  |
|  |  | I.R. | $1000 \mathrm{M} \Omega$ min. |  |  |
|  |  | Rdc1, 2 | 22 to 2200pF | $0.5 \Omega \mathrm{max}$. |  |
|  |  |  | 22000 to 470000 pF | $0.05 \Omega$ max. |  |
|  |  |  |  |  |  |

## On-Board Type (DC) EMI Suppression Filters (EMIFIL®) for Automotive

## Chip EMIFIL ${ }^{\circledR}$ LC Combined Type for Large Current NFE61H Series

The T-type chip EMI Filter NFE61H series consists of a feedthrough capacitor and ferrite beads.

## - Features

1. Its large rated current of 2 A and low voltage drop due to small DC resistance are suitable for DC power line use.
2. The feedthrough capacitor realizes excellent high frequency characteristics.
3. The structure incorporates built-in ferrite beads which minimize resonance with surrounding circuits.
4. 33 to $3,300 \mathrm{pF}$ lineups can be used in signal lines.

| Part Number | Capacitance <br> $\mathbf{( p F )}$ | Rated Voltage <br> $\mathbf{( V d c )}$ | Rated Current <br> $(\mathbf{A})$ | Insulation Resistance <br> $(\mathbf{m i n})$. <br> $(\mathbf{M} \mathbf{o h m})$ | Operating Temperature Range <br> $\left({ }^{\circ} \mathbf{C}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| NFE61HT330U2A9 | $33+30 \%,-30 \%$ | 100 | 2 | 1000 | -55 to +125 |
| NFE61HT680R2A9 | $68+30 \%,-30 \%$ | 100 | 2 | 1000 | -55 to +125 |
| NFE61HT101Z2A9 | $100+30 \%,-30 \%$ | 100 | 2 | 1000 | -55 to +125 |
| NFE61HT181C2A9 | $180+30 \%,-30 \%$ | 100 | 2 | 1000 | -55 to +125 |
| NFE61HT361C2A9 | $360+20 \%,-20 \%$ | 100 | 2 | 1000 | -55 to +125 |
| NFE61HT681D2A9 | $680+30 \%,-30 \%$ | 100 | 2 | 1000 | -55 to +125 |
| NFE61HT102F2A9 | $1000+80 \%,-20 \%$ | 100 | 2 | 1000 | -55 to +125 |
| NFE61HT332Z2A9 | $3300+80 \%,-20 \%$ | 100 | 2 | 1000 | -55 to +125 |

## Equivalent Circuit



Insertion Loss Characteristics


## Specifications and Test Methods

## Test and Measurement C onditions

<Unless otherwise specified>
Temperature: Ordinary Temp. 15 to $35^{\circ} \mathrm{C}$
Humidity: Ordinary Humidity 25 to $85 \%$ (RH)
<In case of doubt>
Temperature: $20 \pm 2^{\circ} \mathrm{C}$
Humidity: 60 to $70 \%$ (RH)
Atmospheric Pressure: 86 to 106 kPa

## Specifications

## 1. Electrical Performance

| No. | Item | Specifications |  |  | Test Methods |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Capacitance (Cap.) | Within the specified tolerance. |  |  | Table 1 |  |  |
|  |  |  |  |  | Capacitance | Voltage | Frequency |
|  |  |  |  |  | 33, 68, 100 (pF) | 1 to 5Vrms | 1MHz $\pm 10 \%$ |
|  |  |  |  |  | 180, 360, 680, 1000, 3300 (pF) | $1 \pm 0.2 \mathrm{Vrms}$ | 1kHz $\pm 10 \%$ |
| 2 | Insulation Resistance (I.R.) | $1000 \mathrm{M} \Omega \mathrm{min}$. |  |  | Voltage: 100 Vdc <br> Charging Time: 60 $\pm 5 \mathrm{~s}$ |  |  |
| 3 | Withstanding Voltage | Products should not be damaged. |  |  | Test Voltage: 250 Vdc Testing Time: 1 to 5 s Charge/Discharge Current: 10 mA max. |  |  |
| 4 | Resistance to Surge Voltage | Meet Table 2. <br> Table 2 |  |  | Attenuating transient voltage of exponential function should be applied to products in the following conditions. <br> Peak Voltage: 400V <br> Force Period: 1s <br> The number of Surges: $10^{5}$ |  |  |
|  |  | Appearance | No damage |  |  |  |  |
|  |  | Cap. Change | $\begin{array}{r} 33,68,100,180 \\ 360,680(\mathrm{pF}) \\ \hline \end{array}$ | within $\pm 15 \%$ |  |  |  |
|  |  |  | 1000, 3300 (pF) | within $\pm 30 \%$ |  |  |  |
|  |  | I.R. | 1000M | min. |  |  |  |
|  |  | Withstanding Voltage | No d | age |  |  |  |

## 2. Mechanical Performance



## 3. Environment Performance (It should be soldered on the substrate.)

| No. | Item | Specifications |  |  | Test Methods |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Humidity | Meet Table 4. <br> Table 4 |  |  | Temperature: $85 \pm 2^{\circ} \mathrm{C}$ <br> Humidity: $85 \%$ (RH) <br> Time: 1000 hrs. ( $\pm{ }_{0}^{48}$ hrs.) <br> Then measured after exposure in room condition for 4 to 48 hrs . |
| 2 | Heat Life | Appearance | No d |  | Temperature: $125 \pm 2^{\circ} \mathrm{C}$ <br> Test Voltage: <br> 33 to $680(\mathrm{pF})$ : Rated Voltage $\times 200 \%$ <br> 1000 to 3300 (pF): Rated Voltage $\times 150 \%$ <br> Time: 1000 hrs . $\pm{ }^{48} \mathrm{hrs}$.) <br> Then measured after exposure in room condition for 4 to 48 hrs . |
|  |  | Cap. Change | $\begin{gathered} 33,68,100,180 \\ 360,680(\mathrm{pF}) \\ \hline \end{gathered}$ | within $\pm 15 \%$ |  |
|  |  |  | 1000, 3300 (pF) | within $\pm 30 \%$ |  |
|  |  | I.R. <br> Withstanding Voltage | No damage |  |  |
|  |  |  |  |  |  |
| 3 | Cold Resistance |  |  |  | Temperature: $-55 \pm 2^{\circ} \mathrm{C}$ <br> Time: 500hrs. ( $\pm{ }_{0}^{24}$ hrs.) <br> Then measured after exposure in room condition for 4 to 48 hrs . |
| 4 | Temperature Cycle | Meet Table 2, previous page. |  |  | 1 Cycle <br> 1 step: $-55 \pm_{3}^{0}{ }^{\circ} \mathrm{C} / 30 \pm 3$ minutes <br> 2 step: Room Temperature/within 5 minutes <br> 3 step: $+125 \pm_{0}^{3 \circ} \mathrm{C} / 30 \pm 3$ minutes <br> 4 step: Room Temperature/within 5 minutes <br> Total of 500 cycles <br> Then measured after exposure in room condition for 4 to 48 hrs . |

## On-Board Type (DC) EMI Suppression Filters (EMIFILI ) for Automotive

mintatn

## Chip Common Mode Choke Coils Part Numbering

## Chip Common Mode Choke Coils for Automotive



## 6Impedance (DLW31S)

Typical impedance at 100 MHz is expressed by three figures. The unit is in ohm ( $\Omega$ ). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

6Inductance (DLW43S)
Expressed by three-figures. The unit is micro-henry $(\mu \mathrm{H})$. The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

## On-Board Type (DC) EMI Suppression Filters (EMIFIL®) for Automotive

## Chip Common Mode Choke Coil DLW31S/43S Series

## DLW31S Series

DLW31S series is a high performance wound type chip common mode choke coil.

## ■ Features

1. DLW31S is the small size ( $3.2 \times 1.6 \times 1.9 \mathrm{~mm}$ ).
2. Suitable for noise suppression at car area networks like CAN (Controller Area Network) bus.
3. DLW31S has high common mode impedance so it is suitable for noise suppression through wide frequency range.
4. Wide operating temperature range $(-40$ to +125
 degrees C)

## $\square$ Applications

Noise suppression at car area networks like CAN bus or car navigation system.

| Part Number | (at $100 \mathrm{MHz/20}$ Impedance (omm) (ohm) | Rated Current (mA) | Rated Voltage (Vdc) | Insulation Resistance (min.) (M ohm) | Withstand Voltage (Vdc) | DC Resistance (ohm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DLW31SH222SQ2 | $2200 \pm 25 \%$ | 80 | 32 | 10 | 80 | $1.6 \pm 20 \%$ |

Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

## Equivalent Circuit




## DLW43S_XK Series

## Features

1. Small size: L4.5xW3.2xT2.6mm (EIA code: 1812) Tolerance: +/-0.2mm
2. It realized common mode inductance of 100 microH (at 1 MHz ) though it is small size.
3. Common mode inductance items of 100 microH and 51 microH , and they can be used for each applications.


## Applications

For Automotive.
Common mode noise suppression of automotive LAN for Flex Ray, CANBUS.

| Part Number | Common Mode Inductance ( $\mu \mathrm{H}$ ) | Rated Current (mA) | Rated Voltage (Vdc) | Insulation Resistance (min.) (M ohm) | Withstand Voltage (Vdc) | DC Resistance (ohm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DLW43SH510XK2 | $51-30 \% /+50 \%$ (at 1MHz) | 230 | 50 | 10 | 125 | 1.0 max. |
| DLW43SH101XK2 | 100-30\%/+50\% (at 1MHz) | 200 | 50 | 10 | 125 | 2.0 max. |

Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Equivalent Circuit



## DLW43S_XP Series

## Features

1. Small size: L4.5xW3.2xT2.7mm (EIA code: 1812) Tolerance: +/-0.2mm
2. It realized common mode inductance of 100 microH (at 0.1 MHz ) though it is small size.
3. Suitable for noise suppression from low frequency range $(0.1 \mathrm{MHz})$.

## $\square$ Applications

For Automotive.


Common mode noise suppression of automotive LAN for Flex Ray etc.

| Part Number | Common Mode Inductance ( $\mu \mathrm{H}$ ) | Rated Current (mA) | Rated Voltage (Vdc) | Insulation Resistance (min.) (M ohm) | Withstand Voltage (Vdc) | DC Resistance (ohm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DLW43SH101XP2 | $100-30 \% /+80 \%$ (at 0.1M Hz) | 170 | 50 | 10 | 125 | 2.0 max. |

[^1]
## Equivalent Circuit



■ Impedance - Frequency Characteristics


## Specifications and Test Methods

## Test and Measurement C onditions

<Unless otherwise specified>
Temperature: Ordinary Temp. 15 to $35^{\circ} \mathrm{C}$
Humidity: Ordinary Humidity 25 to $85 \%$ (RH)
<In case of doubt>
Temperature: $20 \pm 2^{\circ} \mathrm{C}$
Humidity: 60 to $70 \%$ (RH)
Atmospheric Pressure: 86 to 106 kPa

## Specifications

## 1. Electrical Performance

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | Common Mode Impedance (Zc)*1 | Within the specified tolerance. | Measuring Equipment: Agilent 4291A or the equivalent Measuring Frequency: $100 \pm 1 \mathrm{MHz}$ |
| 2 | Common Mode Inductance (Lc) *2 |  | Measuring Equipment: Agilent 4294A or the equivalent Measuring Frequency: 1 MHz or 0.1 MHz (DLW43SH101XP2) |
| 3 | Insulation Resistance (I.R.) | $10 \mathrm{M} \Omega \mathrm{min}$. | Measuring Voltage: Rated Voltage Charging Time: 1 minute max. |
| 4 | Withstanding Voltage | Products should not be damaged. | Test Voltage: 2.5 times for Rated Voltage Tsting Time: 1 to 5 s Charge/Discharge Current: 1mA max. |
| 5 | DC Resistance | Meet the initial value specification. | Measuring Current: 10 mA max. <br> (In case of doubt in the above mentioned standard conditions, measure by 4 terminal methods.) |

*1 DLW31S only.
*2 DLW43S only.

## 2. Mechanical Performance

| No. | Item | Specifications | Test Methods |
| :---: | :--- | :--- | :--- |

Continued on the following page.

Specifications and Test Methods
Continued from the preceding page.

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 5 | Bending Strength | Meet Table 1, below. | It should be soldered on the Glass-epoxy substrate. ( $\mathrm{t}=1.0 \mathrm{~mm}$ DLW31S Series) ( $\mathrm{t}=1.6 \mathrm{~mm}$ DLW43S Series) <br> Deflection (n): 2.0 mm <br> Keeping time: 5s (DLW31S Series) <br> 60s (DLW43S Series) <br> Speed of Applying Force: $0.5 \mathrm{~mm} / \mathrm{s}$ |
| 6 | Vibration |  | It should be soldered on the substrate. <br> Oscillation Frequency: 10 to 2000 to 10 Hz for 20 min . <br> Total Amplitude 1.5 mm or acceleration amplitude $49 \mathrm{~m} / \mathrm{s}^{2}$ whichever is smaller. (DLW31S Series) <br> Total Amplitude 3.0 mm or acceleration amplitude $245 \mathrm{~m} / \mathrm{s}^{2}$ whichever is smaller. (DLW43S Series) <br> Testing Time: A period of 4 hrs. in each of 3 mutually perpendicular directions. (Total 12 hrs .) |

## 3. Environmental Performance (It should be soldered on the substrate.)

| No. | Item | Specifications | Test Methods |
| :---: | :--- | :--- | :--- |

Table 1

| Appearance | No damage |
| :---: | :---: |
| Common Mode <br> Impedance Change | within $\pm 20 \%$ (DLW31S Series) |
| Common Mode <br> Inductance | Meet the initial value specification. <br> (DLW $43 S$ Series) |
| Insulation Resistance | $10 M \Omega$ min. |
| DC Resistance | Meet the initial value specification. <br> (DLW $43 S$ Series) |
| Withstanding Voltage | No damage |

## Specifications and Test Methods

Continued from the preceding page.
4. Test Terminal (When measuring and supplying the voltage, the following terminal is applied.)

| No. | Item | Terminal to be Tested |
| :---: | :---: | :---: |
| 1 | Common Mode Impedance (Measurement Terminal) Common Mode Inductance (Measurement Terminal) | Terminal 0 |
| 2 | Withstanding Voltage (Measurement Terminal) | Terminal o |
| 3 | DC Resistance (Measurement Terminal) |  |
| 4 | Insulation Resistance (Measurement Terminal) |  |
| 5 | Heat Life (Supply Terminal) |  |

## Measuring Method for Common Mode Impedance

Measured common mode impedance may include measurement error due to stray capacitance, residual inductance of test fixture.
To correct this error, the common mode impedance should be calculated as follows;
(1) Measure admittance of the fixture (opened), Go Bo.
(2) Measure impedance of the fixture (shorted), Rs Xs.
(3) Measure admittance of the specimen, Gm Bm .
(4) Calculate corrected impedance $|\mathrm{Z}|$ using the formula below.
$|Z|=\left(R x^{2}+X x^{2}\right)^{1 / 2}$
Where

$$
\begin{aligned}
& R x=\frac{G m-G o}{(G m-G o)^{2}+(\mathrm{Bm}-\mathrm{Bo})^{2}}-\mathrm{Rs} \\
& \mathrm{Xx}=\frac{-(\mathrm{Bm}-\mathrm{Bo})}{(\mathrm{Gm}-\mathrm{Go})^{2}+(\mathrm{Bm}-\mathrm{Bo})^{2}}-\mathrm{Xs}
\end{aligned}
$$

## On-Board Type (DC) EMI Suppression Filters (EMIFIL®) for Automotive

## Block Type EMIFIL ${ }^{\circledR}$ BNX024H/025H/012H Series

## Block Type EMIFIL ${ }^{\circledR}$ SMD Type

BNX024H/025H (Block Type EMIFIL for automotive) is
EMI suppression filter suppporting large cuurent, wide frequency.
And it also support SMD mounting.
This product is effective for noise suppression

for DC switching line of automotive device and FA/OA device, because it covers wide temperature range from -55C degrees to 125 C degrees.

## ■ Features

1. Supporting large current (15A)
2. Supporting wide frequency range

From 50 kHz to $1 \mathrm{GHz}: 35 \mathrm{~dB}$ min.(BNX025)
3. Suitable for miniaturization with SMD shape.

## Applications

Automotive devices/Displays (PDP/LCD-TV)/ Digital AV equipments/Amusement equipments/ PC peripheral equipments/Industry equipments/
Measurement equipments/Power supplies

| Part Number | Rated <br> Voltage <br> (Vdc) | Withstand <br> Voltage <br> (Vdc) | Rated <br> Current <br> (A) | Insulation <br> Resistance (min.) <br> (M ohm) | Insertion Loss |
| :--- | :---: | :---: | :---: | :---: | :---: |
| BNX024H01 | 50 | 125 | 15 | 100 | 100 kHz to $1 \mathrm{GHz}: 35 \mathrm{~dB}$ min. (20 to 25 degrees C line impedance $=50$ ohm) |
| BNX025H01 | 25 | 62.5 | 15 | 50 | 50 kHz to $1 \mathrm{GHz}: 35 \mathrm{~dB}$ min. (20 to 25 degrees C line impedance= $=50$ ohm) |

Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

## Equivalent Circuit



## Insertion Loss Characteristics



## ■ Insertion Loss Characteristics

BNX025H01


## Derating of Rated C urrent

In operating temperatures exceeding $+85^{\circ} \mathrm{C}$, derating of current is necessary for BNX024H/025H series. Please apply the derating curve shown in chart according to the operating temperature.


## Block Type EMIFIL ${ }^{\circledR}$ Lead Type

$\mathrm{BNX012H}$ series is noise suppression filter and ESD surge protection filter for Automotive.
Suitable for the power supply circuits which is large current and wide frequency range.

## - Features

1. Large rated current(15A) and Low DC Resistance (0.8m ohm-Typ.)
2. High insertion loss characteristic over a wide frequency range of 1 MHz to 1 GHz .
3. Low profile (height: 8.0 mm except lead terminal)


## Applications

Noise suppression and ESD surge protection for power lines such as ECU, DC-DC Converters, and Inverter circuits.

| Part Number | Rated <br> Voltage <br> (Vdc) | Withstand <br> Voltage <br> (Vdc) | Rated <br> Current <br> (A) | Insulation <br> Resistance (min.) <br> (M ohm) | Insertion Loss |
| :--- | :---: | :---: | :---: | :---: | :---: |
| BNX012H01 | 50 | 125 | 15 | 500 | 1 MHz to $1 \mathrm{GHz}: 40 \mathrm{~dB}$ min. (20 to 25 degrees C line impedance=50 ohm) |

Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

## Equivalent Circuit



## Derating of Rated Current

## - Rating

In operating temperatures exceeding $+85^{\circ} \mathrm{C}$, derating of current is necessary for BNX012H series. Please apply the derating curve shown in chart according to the operating temperature.

## - Insertion Loss C haracteristics




## BNX024H/025H series Specifications and Test Methods

## Test and Measurement C onditions

<Unless otherwise specified>
Temperature: Ordinary Temp. 15 to $35^{\circ} \mathrm{C}$
Humidity: Ordinary Humidity 25 to $85 \%$ (RH)
<In case of doubt>
Temperature: $20^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Humidity: 60 to $70 \%$ (RH)
Atmospheric pressure: 86 to 106 kPa

## - Specifications

## 1. Electrical Performance

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | Insulation Resistance | BNX024H01: $100 \mathrm{M} \Omega$ min. <br> BNX025H01: $50 \mathrm{M} \Omega \mathrm{min}$. | Measured at DC rated voltage between terminal (1)(2) and (3)(4). <br> Time: 60s max. <br> Charging Current: 50mA max. <br> Measuring Equipment: R8340A or the equivalent |
| 2 | Dielectric Strength | Filter should not fail. | Withstanding voltage shall be applied between terminal (1)(2) and (3)(4). <br> Test Voltage: BNX024H01 125V (DC) <br> BNX025H01 62.5V (DC) <br> Time: $5 \pm 1$ s <br> Charging current: 50mA max. |
| 3 | DC Resistance | $0.43 \pm 0.20 \mathrm{~m} \Omega$ | Measured by the way of 4 terminal method between (1) and (2) and between (3) and (4). |
| 4 | Capacitance | $\begin{aligned} & \mathrm{BNX} 024 \mathrm{H} 01: 4.7 \mu \mathrm{~F} \pm 15 \% \\ & \text { BNX025H01: } 10 \mu \mathrm{~F} \pm 15 \% \end{aligned}$ | Measured by the follwing condition between Terminal (1)(2) and (3)(4). <br> Frequency: $1 \pm 0.1 \mathrm{kHz}$ <br> Voltage: 1V (rms) max. <br> Measuring Equipment: HP4278A or the equivalent |
| 5 | Insertion Loss | BNX024H01: 35 dB min. ( 100 kHz to 1 GHz ) <br> BNX025H01: 35 dB min. ( 50 kHz to 1 GHz ) | Insertion Loss $=-20 \log \mathrm{E}_{1} / \mathrm{E}_{0}(\mathrm{~dB})$ <br> $\mathrm{E}_{0}$ : Level without FILTER (short) <br> $\mathrm{E}_{1}$ : Level with FILTER |
| 6 | Voltage Drop | 45 mV max. | After soldering the part on the test substrate, measure the voltage with passing the rated current as shown in the schematic below. <br> Where the terminals of the part shall be connected as follows: Referring to the terminal No. shown in item 5, connect terminal No. (2) and (4) by soldering copper wire with diameter more than 1 mm / length less than 6 mm . <br> Then connect terminal No. (1) as (i) and terminal No. (3) as (ii) the measurement circuit as mentioned above. <br> The probe for measuring the voltage shall be touched on the solder fillet of (1)(3). |

BNX024H/025H series Specifications and Test Methods
Continued from the preceding page.
2. Mechanical Performance

| No. | Item | Specifications |  | Test Methods |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Appearance and Dimensions | Meet dimensions. |  | Visual Inspection and measured with micrometer caliper and slid caliper. |
| 2 | Marking | Marking can be read easily. |  | It is inspected Visually. |
| 3 | Reflow Solderability | Appropriate solder fillet is formed. |  | Comfirm the solder mounting condition after mounting based on standard solder mounting method. |
| 4 | Resistance to Soldering Heat |  |  | Soldering Iron: 100W max. <br> Tip Temperature: $450 \pm 5^{\circ} \mathrm{C}$ <br> Soldering Time: 5 s , 2 times <br> Do not touch the products directly with the tip of the soldering iron. |
| 5 | Bending Strength | Table 1 <br> Appearance <br> Insulation Resistance <br> Dielectric Strength <br> Capacitance Change | No damaged <br> BNX024H01: $100 \mathrm{M} \Omega$ min. <br> BNX025H01: $50 \mathrm{M} \Omega$ min. <br> No failure <br> Within $\pm 7.5 \%$ | It shall be soldered on the glass-epoxy substrate. <br> ( $100 \mathrm{~mm} \times 40 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ ) <br> Deflection: 2mm <br> Keeping Time: 30s <br> Speed: $0.5 \mathrm{~mm} / \mathrm{s}$ |
| 6 | Drop | Meet Table 2. <br> Table 2 |  | It shall be dropped on concrete or steel board. <br> Method: free fall <br> Height: 1m <br> The Number of Time: 10 times |
| 7 | Vibration |  |  | It shall be soldered on the glass-epoxy substrate. Oscillation Frequency: 10 to 2000 to 10 Hz for 20 minutes Total amplitude 3.0 mm or Acceleration amplitude $196 \mathrm{~m} / \mathrm{s}^{2}$ whichever is smaller. <br> Time: A period of 3 hours in each of 3 mutually perpendicular directions. (Total 9 hours) |
|  |  | Appearance | No damaged |  |
|  |  | Insulation Resistance | BNX024H01: $100 \mathrm{M} \Omega \mathrm{min}$. BNX025H01: $50 \mathrm{M} \Omega \mathrm{min}$. |  |
| 8 | Shock | Capacitance Change | Within $\pm 15 \%$ | It shall be soldered on the glass-epoxy substrate. <br> Acceleration: $14700 \mathrm{~m} / \mathrm{s}^{2}$ <br> Normal duration: 0.5 ms <br> Waveform: Half-sine wave <br> Direction: 6 direction <br> Testing Time: 3 times for each direction |

## 3. Environmental Performance (It should be soldered on the substrate.)

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | Biased Humidity | Meet Table 3. <br> Table 3 | Temperature: $85 \pm 2^{\circ} \mathrm{C}$ <br> Humidity: 80 to $85 \%$ (RH) <br> Voltage: Rated Voltage <br> Time: $1000 \pm{ }^{48} \mathrm{hrs}$. <br> Then measure values after exposure in room condition for $48 \pm 4$ hours. |
| 2 | Heat Life | Meet Table 4. <br> Table 4 | Temperature: $125 \pm 2^{\circ} \mathrm{C}$ <br> Voltage: Rated Voltage x 2 <br> Time: $1000 \pm{ }^{48} \mathrm{hrs}$. <br> Then measure values after exposure in room condition for $48 \pm 4$ hours. |
| 3 | Heat Shock | Meet Table 4. | 1 Cycle: <br> 1 step: $-55 \pm_{3}^{0}{ }^{\circ} \mathrm{C} / 30 \pm_{3}^{3} \mathrm{~min}$. <br> 2 step: Room Temperature/within 0.5 min . <br> 3 step: $+125 \pm_{0}^{3 \circ} \mathrm{C} / 30{ }^{3}{ }_{0}^{3} \mathrm{~min}$. <br> 4 step: Room Temperature/within 0.5 min . <br> Total Cycles: 1000 cycles <br> Then measure values after exposure in room condition for $48 \pm 4$ hours. |

## BNX012H series Specifications and Test Methods

## Test and Measurement Conditions

<Unless otherwise specified>
Temperature: Ordinary Temp. 15 to $35^{\circ} \mathrm{C}$
Humidity: Ordinary Humidity 25 to $85 \%$ (RH)
Humidity: Ordinary Humidity 25 to $85 \%$ (RH)
<In case of doubt>
Temperature: $20^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Humidity: 60 to $70 \%$ (RH)
Atmospheric pressure: 86 to 106 kPa

## Specifications

## 1. Electrical Performance

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | Insulation Resistance | $500 \mathrm{M} \Omega \mathrm{min}$. | Measured at DC rated voltage between terminal (1)(2) and (3)(4). <br> Voltage: 50 Vdc <br> Charging time: 2 minutes <br> Suitable resistor: $1 \mathrm{M} \Omega$ |
| 2 | Dielectric Strength | Filter should not fail. | Test voltage should be applied between terminal (1)(2) and (3)(4). <br> Test Voltage: 125Vdc <br> Testing Time: 1 to 5 s <br> Charge/Discharge Current: 50mA max. |
| 3 | Capacitance | $1.0 \mu \mathrm{~F} \pm 15 \%$ | Measured at the following conditions between terminal (1)(2) and (3)(4). <br> Frequency: $1.0 \pm 0.1 \mathrm{kHz}$ <br> Voltage: 1Vrms max. |
| 4 | Insertion Loss | 40 dB min. ( 1 MHz to 1 GHz ) | Measured by the following circuit. Measuring Equipment: R3767 C (manufactured by ADVANTEST) or the equivalent. <br> Sample: build product into Balun. <br> $\left(^{*}\right)$ : It uses the Balun or 1 to 1 transformer. |
| 5 | Voltage Drop | 35 mV max. | Rated Current: 15 A <br> Substrate: $100 \times 100 \times 1.6 \mathrm{~mm}$ (paper-phenol) <br> Soldering: Insert the terminals into the holes on P.C. board completely. <br> Voltage Drop Value: V1+V2 <br> Probe of each voltmeter should contact the center of soldering parts as shown in the following figure. |

BNX012H series Specifications and Test Methods
Continued from the preceding page.
2. Mechanical Performance

| No. | Item | Specifications | Test Methods |
| :---: | :---: | :---: | :---: |
| 1 | Appearance and Dimensions | Meet dimensions. | Visual Inspection and measured with micrometer. |
| 2 | Marking | Marking can be read easily. | It is inspected Visually. |
| 3 | Solderability | The lead is covered with a new solder coating at least $95 \%$ of the total surface of the immersed part. | Flux: Ethanol solution of rosin, 25(wt)\% <br> Pre-Heating: $150 \pm 10^{\circ} \mathrm{C}, 60$ to 90 s <br> Solder: Sn-3.0Ag-0.5Cu <br> Solder Temperature: $235 \pm^{0}{ }^{\circ} \mathrm{C}$ <br> Immersion Time: $5 \pm 0.5 \mathrm{~s}$ |
| 4 | Resistance to Soldering Heat | Meet Table 1. <br> Table 1 | Flux: Ethanol solution of rosin, 25(wt)\% <br> Pre-Heating: $150 \pm 10^{\circ} \mathrm{C}, 60$ to 90 s <br> Solder: Sn-3.0Ag-0.5Cu <br> Solder Temperature: $270 \pm 10^{\circ} \mathrm{C}$ <br> Immersion Time: $10 \pm{ }_{0}^{2} \mathrm{~S}$ <br> Then measure values after exposure in room condition for 24 to 48 hrs . |
| 5 | Vibration | Meet Table 2. <br> Table 2 | It should be soldered on the substrate. <br> Oscillation Frequency: 10 to 2000 to 10 Hz for 20 min . <br> Testing Time: A period of 3 hours in each of 3 mutually perpendicular directions. (Total 9 hrs.) <br> Total amplitude 1.5 mm or Acceleration amplitude $196 \mathrm{~m} / \mathrm{s}^{2}$ whichever is smaller. <br> Then measure values after exposure in room condition for 4 to 24 hrs. |

## 3. Environmental Performance (It should be soldered on the substrate.)

| No. | Item | Specifications |  | Test Methods |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Humidity | Meet Table 1. |  | Temperature: $85 \pm 2^{\circ} \mathrm{C}$ <br> Humidity: 80 to $85 \%$ (RH) <br> Time: $1000 \pm{ }^{48} \mathrm{hrs}$. <br> Remove the drops and then measure values after exposure in room condition for 24 to 48 hrs . |
| 2 | Biased Humidity | Meet Table 3. <br> Table 3 |  | Temperature: $85 \pm 2^{\circ} \mathrm{C}$ <br> Humidity: 80 to $85 \%$ (RH) <br> Test Voltage: 50Vdc <br> Time: $1000 \pm{ }^{48} \mathrm{hrs}$. <br> Remove the drops and then measure values after exposure in room condition for 24 to 48 hrs . |
| 3 | Heat Life | Table 3 <br> Appearance <br> Insulation Resistance <br> Capacitance Change | $\begin{gathered} \hline \text { No damage } \\ 50 \mathrm{M} \Omega \text { min. } \\ \hline \text { Within } \pm 12.5 \% \\ \hline \end{gathered}$ | Temperature: $125 \pm 2^{\circ} \mathrm{C}$ <br> Test Voltage: 100Vdc <br> Time: $1000 \pm{ }^{48} \mathrm{hrs}$. <br> Then measure values after exposure in room condition for 24 to 48 hrs . |
| 4 | Cold Resistance |  |  | Temperature: $-55 \pm 2^{\circ} \mathrm{C}$ <br> Time: $1000 \pm{ }^{48} \mathrm{hrs}$. <br> Then measure values after exposure in room condition for 24 to 48 hrs . |
| 5 | Temperature Cycle | Meet Table 1. |  | 1 Cycle: <br> 1 step: $-55 \pm_{3}^{0}{ }^{\circ} \mathrm{C} / 30$ minutes <br> 2 step: Room Temperature/within 1 minute <br> 3 step: $+125 \pm_{0}^{3}{ }^{\circ} \mathrm{C} / 30$ minutes <br> 4 step: Room Temperature/within 1 minute <br> Total of 1000 cycles <br> Then measure values after exposure in room condition for 24 to 48 hrs . |

## Chip EMIFIL®@Caution/Notice

## ©Caution (Rating)

1. Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.
2. Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure our product.

## - © Caution (Soldering and Mounting)

1. Self-heating

Please provide special attention when mounting chip
"EMIFIL" (BLM_P) series in close proximity to other products that radiate heat.
The heat generated by other products may deteriorate the insulation resistance and cause excessive heat in this component.
2. Mounting Direction

Mount Chip Common Mode Choke Coils (DLW31S/43S) in right direction. Wrong direction, which is 90 degrees rotated from right direction, causes not only open or short circuit but also flames or other serious trouble.

## Notice (Storage and Operating Condition)

< Operating Environment >
Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
< Storage and Handling Requirements >

1. Storage Period

BLM series should be used within 6 months, the other series should be used within 12 months. Products to be used after this period should be checked for solderability or bondability with glue.

## ■ Notice (Soldering and Mounting)

1. Washing

Failure and degradation of a product are caused by the washing method. When you wash in conditions that are not in mounting information, please contact Murata engineering.
2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in mounting information.
3. Mounting on-boad with Conductive Glue BLM18AG_WH is designed for conductive glue mounting method. Please refer to Mounting infomation.

right direction

wrong direction

## 2. Storage Conditions

(1) Storage temperature: -10 to 40 degrees C Relative humidity: 30 to $70 \%$
Avoid sudden changes in temperature and humidity.
(2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
4. Other

Noise suppression levels resulting from Murata's EMI suppression filters "EMIFIL" may vary, depending on the circuits and ICs used, type of noise, mounting pattern, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

## ■ Notice (Handling)

1. Resin coating (DLW31S)

Do not make any resin coating DLW31S series.
The impedance value may change due to high cure-stress of resin to be used for coating/ molding products.
An open circuit issue may occur by mechanical stress caused by the resin, amount/ cured shape of resin, or operating condition etc. Some resin contains some impurities or chloride possible to generate chlorine by hydrolysis under some operating condition may cause corrosion of wire of coil, leading to open circuit.
So, please pay your careful attention in selecting resin in case of coating/ molding the products with the resin.
2. Resin coating (DLW43S)

The inductance value may change due to high cure-stress of resin to be used for coating/ molding products.
An open circuit issue may occur by mechanical stress caused by the resin, amount/ cured shape of resin, or operating condition etc. Some resin contains some impurities or chloride possible to generate chlorine by hydrolysis under some operating condition may cause corrosion of wire of coil, leading to open circuit.

So, please pay your careful attention in selecting resin in case of coating/ molding the products with the resin. Prior to use the coating resin, please make sure no reliability issue is observed by evaluating products mounted on your board.
3. Resin coating (Except DLW31S/43S)

It may affect the product's performance when using resin for coating/ molding products, except DLW31S/43S.
So please pay careful attention in selecting resin. Prior to use, please evaluate reliability with the product mounted in your application set.
4. Caution for use (DLW31S/43S)

Sharp material, such as a pair of tweezers, should not touch the winding portion to prevent breaking the wire.
Mechanical shock should not be applied to the products mounted on the board to prevent breaking the core.

## Lead Type EMIFIL®@Caution/Notice

## ■ Notice (Rating)

Do not use products beyond the rated current and rated voltage as this may create excessive heat and deteriorate the insulation resistance.

## ■ Notice (Soldering and Mounting)

Mounting holes should be designed as specified in these specifications. Other designs than shown in these specifications may cause cracks in ceramics which may lead to smoking or firing.

## ■ Notice (Storage and Operating Condition)

<Operating Environment>

1. Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
2. Do not use products near water, oil or organic solvents. Avoid environment where dust or dirt may adhere to product.
<Storage and Handling Requirements>
3. Storage Period

Used the products within 12 months after delivery. Solderability should be checked if this period is exceeded.

## ■ Notice (Soldering and Mounting)

1. Washing

Failure and degradation of a product are caused by the washing method. When you wash in conditions that are not in mounting information, please contact Murata engineering.
2. Soldering

Reliability decreases with improper soldering methods. Please solder by the standard soldering conditions shown in mounting information.
2. Storage Conditions
(1) Storage temperature: -10 to 40 degrees C Relative humidity: 30 to 70\%
Avoid sudden changes in temperature and humidity.
(2) Do not store products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.
3. Other

Noise suppression levels resulting from Murata's EMI suppression filters "EMIFIL" may vary, depending on the circuits and ICs used, type of noise, mounting pattern, mounting location, and other operating conditions. Be sure to check and confirm in advance the noise suppression effect of each filter, in actual circuits, etc. before applying the filter in a commercial-purpose equipment design.

## 1. Standard Land Pattern Dimensions



## Chip EMIFIL ${ }^{\circledR}$ (Soldering and Mounting)

Continued from the preceding page.


| DLW31S | $\bullet$ Reflow Soldering |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 1 : If the pattern is made with wider than 1.6 mm (DLW31S) it may result in components turning around, because melting speed is different. In the worst case, short circuit between lines may occur. <br> * 2 : If the pattern is made with less than 0.4 mm , in the worst ase, short circuit between lines may occur due to spread of soldering paste or mount placing accuracy. <br> * 3 : If the pattern is made with wider than 1.6 mm (DLW31S), the bending strength will be reduced. <br> Do not use gilded pattern; excess soldering heat may dissolve |
|  | Series | 16 | ${ }^{\text {b }}$ | 0 | d |  |
|  | DLW31S | 1.6 | 3.7 | 0.4 | 1.6 |  |
| DLw43S | $\bullet$ Reflow Soldering |  |  |  |  |  |
|  |  | $\pm=$ |  |  |  | * 1 : If the pattern is made with wider than 3.4 mm , it may result in components turning around, because melting speed is different. In th <br> * 2 : If the pattern is made with less than 1.6 mm , in the worst case, short circuit between lines may occur due to the spread of soldering paste or mount placing accuracy. <br> * 3 : If the pattern is made with wider, the strength of bending |
|  | Series |  |  |  |  | Do mil be ereicued. |
|  | DLW43SH510XK2 |  | . 0 |  |  | meat of coopere wire. |
|  | DIW43SH101XP2 |  | 3. 2 |  |  |  |

## 2. Solder Paste Printing and Adhesive Application

When reflow soldering the chip EMI suppression filter, the printing must be conducted in accordance with the following cream solder printing conditions. If too much solder is applied, the chip will be prone to damage by mechanical and thermal stress from the PCB and may crack. In contrast, if too little solder is applied, there is the potential that the termination strength will be insufficient, creating the potential for detachment.
Standard land dimensions should be used for resist and
copper foil patterns.
When flow soldering the EMI suppression filter, apply the adhesive in accordance with the following conditions. If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering process.
(in mm)

| Series | Solder Paste Printing | Adhesive Application |
| :---: | :---: | :---: |
| BLM15 | Ensure that solder is applied smoothly to a |  |
| BLM18 |  |  |
| BLM21 | minimum height of 0.2 mm to 0.3 mm at the end | Coating amount is illustrated in the <br> BLM31 <br> BLM41 |
| following diagram. |  |  |

Continued on the following page.

Chip EMIFIL ${ }^{\circledR}$ (Soldering and Mounting)
Continued from the preceding page.
(in mm)

| Series | Solder Paste Printing | Adhesive Application |
| :---: | :---: | :---: |
| NFM21H | -Use $\mathrm{Sn} / \mathrm{Pb}=60 / 40$ or $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder for pattern printing. Use of $\mathrm{Sn}-\mathrm{Zn}$ based solder will deteriorate performance of products. If using $\mathrm{Sn}-\mathrm{Zn}$ based solder, please contact Murata in advance. <br> - Coat the solder paste a thickness: $100-150 \mu \mathrm{~m}$ |  |
| NFE61H | -Use $\mathrm{Sn} / \mathrm{Pb}=60 / 40$ or $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder for pattern printing. <br> Coat the solder paste a thickness: $150-200 \mu \mathrm{~m}$ | Apply 1.0 mg of bonding agent at each chip. <br> *Except NFE61HT332 |
| DLW31S | -Use $\mathrm{Sn} / \mathrm{Pb}=60 / 40$ or $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder for pattern printing. <br> - Coat the solder paste a thickness: $100-150 \mu \mathrm{~m}$ *Solderability is subject to reflow condition and thermal conductivity. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product. |  |
| DLW43S | -Use $\mathrm{Sn} / \mathrm{Pb}=60 / 40$ or $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder for pattern printing. <br> -Coat the solder paste a thickness: $150 \mu \mathrm{~m}$ *Solderability is subject to reflow condition and thermal conductivity. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product. |  |

Continued on the following page. 7

## Chip EMIFIL ${ }^{\circledR}$ (Soldering and Mounting)

Continued from the preceding page.

## 3. Standard Soldering Conditions

(1) Soldering Methods

Use flow and reflow soldering methods only.
Use standard soldering conditions when soldering chip
EMI suppression filters.
In cases where several different parts are soldered, each having different soldering conditions, use those conditions requiring the least heat and minimum time.

Solder: H60A H63A solder (JIS Z 3238)
In case of lead-free solder, use $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder. Use of Sn -Zn based solder will deteriorate performance of products. If using NFM series with $\mathrm{Sn}-\mathrm{Zn}$ based solder, please contact Murata in advance.

## (2) Soldering Profile

Flow Soldering profile
(Eutectic solder, Sn-3.0Ag-0.5Cu solder)


| Series | Pre-heating |  | Standard Profile |  |  | Limit Profile |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Heating |  | Cycle <br> of flow | Heating |  | Cycle of flow |
|  | Temp. (T1) | Time. (ti) | Temp. (T2) | Time. (t2) |  | Temp. (T3) | Time. (2) |  |
| BLM <br> (Except BLM15) | $150^{\circ} \mathrm{C}$ | $\begin{aligned} & 60 \mathrm{~s} \\ & \mathrm{~min} . \end{aligned}$ | $250^{\circ} \mathrm{C}$ | 4 to 6s | $\begin{gathered} 2 \\ s \text { times } \\ \text { max. } \end{gathered}$ | $\begin{gathered} 265 \\ \pm 3^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} 5 \mathrm{~s} \\ \max . \end{gathered}$ | $\begin{aligned} & 2 \\ & \text { times } \\ & \text { max. } \end{aligned}$ |
| NFE61H* |  |  |  |  |  |  |  |  |

*Except NFE61HT332

Reflow Soldering profile
(1)Soldering profile for Lead-free solder (Sn-3.0Ag-0.5Cu)


| Series | Standard Profile |  |  |  | Limit Profile |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Heating |  | $\begin{array}{\|c\|c} \hline \text { Peak } \\ \text { tempenarere } \\ (\mathrm{T} 2) \end{array}$ | Cycle of reflow | Heating |  | $\begin{gathered} \text { Peak } \\ \text { temperature } \\ \text { (T4) } \end{gathered}$ | Cycle of reflow |
|  | Temp. (T1) | Time. (ti) |  |  | Temp. (T3) | Time. (t2) |  |  |
| BLM, NFE NFM, DLW31S | $\begin{gathered} 220^{\circ} \mathrm{C} \\ \mathrm{~min} . \end{gathered}$ | $\begin{array}{\|c} 30 \text { to } \\ 60 \mathrm{~s} \end{array}$ | $\begin{array}{r} 245 \\ \pm 3^{\circ} \mathrm{C} \end{array}$ | $\begin{gathered} 2 \text { times } \\ \text { max. } \end{gathered}$ | $\begin{gathered} 230^{\circ} \mathrm{C} \\ \mathrm{~min} . \end{gathered}$ | $\begin{gathered} \text { 60s } \\ \text { max. } \end{gathered}$ | $\begin{gathered} 260^{\circ} \mathrm{C} \\ 110 \mathrm{~s} \end{gathered}$ | $\begin{aligned} & 2 \text { times } \\ & \text { max. } \end{aligned}$ |
| DLW43S |  |  |  |  | $\begin{gathered} 240^{\circ} \mathrm{C} \\ \text { min. } \end{gathered}$ | $\begin{gathered} \text { 30s } \\ \max . \end{gathered}$ | $260^{\circ} \mathrm{C}$ |  |

(2)Soldering profile for Eutectic solder (Limit profile: refer to (1))


| Series | Pre-heating |  | Standard Profile |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Heating |  | Peak <br> temparaure <br> (T3) | Cycle <br> of reflow |  |  |
|  | Temp. (T1) | Time. (t1) | Temp. (T2) | Time. (t2) | ( |  |
| BLM, NFE <br> NFM, DLW | $150^{\circ} \mathrm{C}$ | 60 s <br> min. | $183^{\circ} \mathrm{C}$ <br> min. | 60 s <br> max. | $230^{\circ} \mathrm{C}$ | 2 times <br> max. |

Continued on the following page.

Continued from the preceding page．
（3）Reworking with Soldering Iron
The following conditions must be strictly followed when
using a soldering iron．
Pre－heating： $150^{\circ} \mathrm{C} 60 \mathrm{~s} \mathrm{~min}$ ．
Soldering iron power output：30W max．
Temperature of soldering iron tip／Soldering time：
BLM／NFM21H／DLW31S／DLW43S － $350^{\circ} \mathrm{C}$ max．／3s max．（2 Times max．）
Do not allow the tip of the soldering iron to directly contact the chip．
For additional methods of reworking with a soldering iron， please contact Murata engineering．

## 4．Mounting on－board with Conductive Glue of BLM18AG＿WH1

Please adhere rigidly to the condition below which shows the method of mounting with conductive glue．
Please coat print pads with conductive glue using metal mask and metal squeegee，and then mount our products on the substrates with a mount machine or human hand．
Please put the substrates into a oven（ 140 to $150^{\circ} \mathrm{C}$ ） for 30 minutes in order to cure the adhesive．
Please check whether the chips and the substrates are connected with the conductive glue or not and there is no electrical short of the conductive glue．

## 5．Cleaning

Following conditions should be observed when cleaning chip EMI filter．
（1）Cleaning Temperature： $60^{\circ} \mathrm{C}$ max．$\left(40^{\circ} \mathrm{C}\right.$ max．for alcohol type cleaner）
（2）Ultrasonic
Output：20W／liter max．
Duration： 5 minutes max．
Frequency： 28 to 40 kHz
（3）Cleaning agent
The following list of cleaning agents have been tested on the individual components．Evaluation of final assembly should be completed prior to production．


| 1．Board | Ceramic Board or Alumina Board |
| :--- | :--- |
| 2．Thickness of Glue | 30 to $50 \mu \mathrm{~m}$ |
| 3．Recommended Conductive <br> Glue | PC 3000 <br> （Manufactured by Heraeus） |

Do not clean BLM18AGロロロWH1／DLW31S／43S series． Before cleaning，please contact Murata engineering．
（a）Alcohol cleaning agent
Isopropyl alcohol（IPA）
（b）Aqueous cleaning agent
Pine Alpha ST－100S
（4）Ensure that flux residue is completely removed． Component should be thoroughly dried after aqueous agent has been removed with deionized water．
For additional cleaning methods，please contact Murata engineering．

## Block Type EMIFIL ${ }^{\circledR}$ SMD Type (Soldering and Mounting)

## 1. Standard Land Pattern Dimensions


2. Solder Paste Printing and Adhesive Application
(in mm)

| Series | Solder Paste Printing | Adhesive Application |
| :---: | :---: | :---: |
| BNX024H BNX025H | -Use $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ pattern printing solder. <br> - Coat with solder paste to the following thickness: 150-200 $\mu \mathrm{m}$ |  |

## 3. Standard Soldering Conditions

(1) Soldering Methods

BNX024H/025H is only for reflow soldering.

Solder: Use $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder.
Flux:

- Use Rosin-based flux.
- Do not use strong acidic flux (with chlorine content exceeding $0.20 \mathrm{wt} \%$ )
- Do not use water-soluble flux.

For additional mounting methods, please contact Murata.

## Block Type EMIFIL® ${ }^{\circledR}$ SMD Type (Soldering and Mounting)

Continued from the preceding page.
(2) Soldering profile

## -Reflow Soldering profile

(1)Soldering profile for Lead-free solder (Sn-3.0Ag-0.5Cu)


| Series | Standard Profile |  |  |  | Limit Profile |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Heating |  | Peaktemperature(T2) | Cycle of reflow | Heating |  | Peak temperature (T4) | Cycle of reflow |
|  | Temp. (T1) | Time. (t1) |  |  | Temp. (T3) | Time. (t2) |  |  |
| BNX024H/025H | $220^{\circ} \mathrm{C}$ min. | 30 to 60s | $250 \pm 3^{\circ} \mathrm{C}$ | 2 times max. | $230^{\circ} \mathrm{Cmin}$. | 60s max. | $260^{\circ} \mathrm{C} / 10 \mathrm{~s}$ | 2 times max. |

(3) Reworking with Solder Iron

The following conditions must be strictly followed when using a soldering iron.
Pre-heating: $150^{\circ} \mathrm{C} 60 \mathrm{~s}$ min.
Soldering iron power output: 100W max.
Temperature of soldering iron tip / Soldering time: BNX024H/025H: $450^{\circ} \mathrm{C}$ max./5s max.

Do not allow the tip of the soldering iron to directly contact the chip.
For additional methods of reworking with a soldering iron, please contact Murata engineering.
4. Cleaning

Do not clean BNX024H/025H.
Before cleaning, please contact Murata engineering.

## Block Type EMIFIL ${ }^{\circledR}$ Lead Type (Soldering and Mounting)

## 1. Mounting Hole

Mounting holes should be designed as specified below.

| Part Number | Bulk Type (in mm) |  |
| :---: | :---: | :---: |
| BNX012H | Component Side | TERMINAL LAYOUT (Bottom figure) |
|  |  |  |

## 2. Using The Block Type EMIFIL ${ }^{\circledR}$ Effectively

## (1) How to use effectively

This product effectively prevents undesired radiation and external noise from going out / entering the circuit by grounding the high frequency components which cause noise problems. Therefore, grounding conditions may affect the performance of the filter and attention should be paid to the following for effective use.
(a) Design maximized grounding area in the P.C. board, and grounding pattern for all the grounding terminals of the product to be connected. (Please follow the specified recommendations.)
(b) Minimize the distance between ground of the P.C. board and the ground plate of the product. (Recommended to use through-hole connection between grounding area both of component side and bottom side.)
(c) Insert the terminals into the holes on P.C. board completely.
(d) Don't connect PSG terminal with CG terminal directly. (See the item 1. TERMINAL LAYOUT)

## (2) Self-heating

Though this product has a large rated current, localized selfheating may be caused depending on soldering conditions. To avoid this, attention should be paid to the following:
(a) Use P.C. board with our recommendation on hole diameter / land pattern dimensions, mentioned in the right hand drawing, especially for 4 terminals which pass current.
(b) Solder the terminals to the P.C. board with soldercover area at least $90 \%$. Otherwise, excess selfheating at connection between terminals and P.C. board may lead to smoke and / or fire of the product even when operating at rated current.
(c) After installing this product in your product, please make sure of the self-heating with the rated current.

## P. C. BOARD PATTERNS

Use a bilateral P.C. board. Insert the BNX into the P.C.board until the root of the terminal is secured, then solder.
(1) COMPONENT SIDE VIEW

(2) BOTTOM VIEW

$\square$ Copper foil pattern

Recommended Land Pattern


Continued on the following page.

Continued from the preceding page.

## 3. Soldering

(1) Solder: H60A, H63A solder (JIS Z 3238)

In case of lead-free solder, use $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder.
(2) Use Rosin-based flux. Do not use strong acidic flux with halide content exceeding $0.2 \mathrm{wt} \%$ (chlorine conversion value).
(3) Products and the leads should not be subjected to any mechanical stress during the soldering process, or while subjected to the equivalent high temperatures.
(4) Standard flow soldering profile

## 4. Cleaning Conditions

Following conditions should be observed when cleaning BNX012H series.
(1) Cleaning temperature should be limited to $60^{\circ} \mathrm{C}$ max. ( $40^{\circ} \mathrm{C}$ max for alcohol type cleaner.)
(2) Ultrasonic cleaning should comply with the following conditions, avoiding the resonance phenomenon at the mounted products and P.C.B.
Power: $20 \mathrm{~W} / \mathrm{I}$ max. Frequency: 28 to 40 kHz
Time: 5 min. max.
(3) Cleaner
(a) Alcohol type cleaner

Isopropyl alcohol (IPA)


| Solder | Soldering temperature | Soldering time |
| :--- | :---: | :---: |
| $\mathrm{Sn} / \mathrm{Pb}=60 / 40, \mathrm{Sn} / \mathrm{Pb}=63 / 37$ | 240 to $260^{\circ} \mathrm{C}$ | 5 s max. |
| $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder | 250 to $260^{\circ} \mathrm{C}$ | 4 to 6 s |

(b) Aqueous agent PINE ALPHA ST-100S
(4) There should be no residual flux or residual cleaner left after cleaning.
In the case of using aqueous agent, products should be dried completely after rinsing with de-ionized water in order to remove the cleaner.
(5) The surface of products may become dirty after cleaning, but there is no deterioration on mechanical, electrical characteristics and reliability.
(6) Other cleaning: Please contact us.

## Package

## ■ Minimum Quantity and Dimensions of 8mm Width Paper / Embossed Tape



| Part Number | Cavity Size (in mm) |  |  |  | Minimum Qty. (pcs.) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | ø180mm reel |  | ø330mm reel |  | Bulk |
|  | a | b | c | d | Paper Tape | Embossed Tape | Paper Tape | Embossed Tape |  |
| BLM15 | 1.15 | 0.65 | 0.8 max. | - | 10000 | - | 50000 | - | 1000 |
| BLM18 | 1.85 | 1.05 | 1.1 max. | - | 4000 | - | 10000 | - | 1000 |
| BLM21 | 2.25 | 1.45 | 1.1 max. | - | 4000 | - | 10000 | - | 1000 |
| BLM21BD222SH1/272SH1 | 2.25 | 1.45 | 1.3 | 0.2 | - | 3000 | - | 10000 | 1000 |
| BLM31 | 3.5 | 1.9 | 1.3 | 0.2 | - | 3000 | - | 10000 | 1000 |
| NFM21 | 2.3 | 1.55 | 1.1 max. | - | 4000 | - | - | - | 500 |
| DLW31S | 3.6 | 2.0 | 2.1 | 0.3 | - | 2000 | - | - | 500 |

- Please contact us for BLM15/18 in bulk case.


## Minimum Quantity and Dimensions of 12mm Width Embossed Tape



Minimum Quantity and Dimensions of 24mm Width Embossed Tape


## Design Kits

OEKEMAT15B (Chip Ferrite Beads 0402 Size for Automotive)

| No. | Part Number | Quantity (pcs.) | Impedance typ. (at $\mathbf{1 0 0 M H z}, \mathbf{2 0}^{\circ} \mathrm{C}$ ) <br> ( $\Omega$ ) | Rated Current (mA) | DC Resistance $(\Omega)$ max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | BLM15AG100SH1 | 10 | 10 (Typ.) | 1000 | 0.05 |
| 2 | BLM15AG700SH1 | 10 | 70 (Typ.) | 500 | 0.15 |
| 3 | BLM15AG121SH1 | 10 | $120 \pm 25 \%$ | 500 | 0.25 |
| 4 | BLM15AG221SH1 | 10 | $220 \pm 25 \%$ | 300 | 0.35 |
| 5 | BLM15AG601SH1 | 10 | $600 \pm 25 \%$ | 300 | 0.6 |
| 6 | BLM15AG102SH1 | 10 | $1000 \pm 25 \%$ | 200 | 1.0 |
| 7 | BLM15BB050SH1 | 10 | $5 \pm 25 \%$ | 500 | 0.08 |
| 8 | BLM15BB100SH1 | 10 | $10 \pm 25 \%$ | 300 | 0.1 |
| 9 | BLM15BB220SH1 | 10 | $22 \pm 25 \%$ | 300 | 0.2 |
| 10 | BLM15BB470SH1 | 10 | $47 \pm 25 \%$ | 300 | 0.35 |
| 11 | BLM15BB750SH1 | 10 | $75 \pm 25 \%$ | 300 | 0.4 |
| 12 | BLM15BB121SH1 | 10 | $120 \pm 25 \%$ | 300 | 0.55 |
| 13 | BLM15BB221SH1 | 10 | $220 \pm 25 \%$ | 200 | 0.8 |
| 14 | BLM15BD471SH1 | 10 | $470 \pm 25 \%$ | 200 | 0.6 |
| 15 | BLM15BD601SH1 | 10 | $600 \pm 25 \%$ | 200 | 0.65 |
| 16 | BLM15BD102SH1 | 10 | $1000 \pm 25 \%$ | 200 | 0.9 |
| 17 | BLM15BD182SH1 | 10 | $1800 \pm 25 \%$ | 200 | 1.4 |

## OEKEMAT18C (Chip Ferrite Beads 0603 Size for Automotive)

| No. | Part Number | Quantity (pcs.) | Impedance typ. (at $100 \mathrm{MHz}, 20^{\circ} \mathrm{C}$ ) <br> ( $\Omega$ ) | Impedance typ. (at $1 \mathrm{GHz}, \mathbf{2 0}^{\circ} \mathrm{C}$ ) ( $\Omega$ | Rated Current (mA) | DC Resistance $(\Omega)$ max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | BLM18AG121SH1 | 10 | $120 \pm 25 \%$ | - | 500 | 0.18 |
| 2 | BLM18AG151SH1 | 10 | $150 \pm 25 \%$ | - | 500 | 0.25 |
| 3 | BLM18AG221SH1 | 10 | $220 \pm 25 \%$ | - | 500 | 0.25 |
| 4 | BLM18AG331SH1 | 10 | $330 \pm 25 \%$ | - | 500 | 0.30 |
| 5 | BLM18AG471SH1 | 10 | $470 \pm 25 \%$ | - | 500 | 0.35 |
| 6 | BLM18AG601SH1 | 10 | $600 \pm 25 \%$ | - | 500 | 0.38 |
| 7 | BLM18AG102SH1 | 10 | $1000 \pm 25 \%$ | - | 400 | 0.50 |
| 8 | BLM18BA050SH1 | 10 | $5 \pm 25 \%$ | - | 500 | 0.2 |
| 9 | BLM18BA100SH1 | 10 | $10 \pm 25 \%$ | - | 500 | 0.25 |
| 10 | BLM18BA220SH1 | 10 | $22 \pm 25 \%$ | - | 500 | 0.35 |
| 11 | BLM18BA470SH1 | 10 | $47 \pm 25 \%$ | - | 300 | 0.55 |
| 12 | BLM18BA750SH1 | 10 | $75 \pm 25 \%$ | - | 300 | 0.7 |
| 13 | BLM18BA121SH1 | 10 | $120 \pm 25 \%$ | - | 200 | 0.9 |
| 14 | BLM18BB050SH1 | 10 | $5 \pm 25 \%$ | - | 700 | 0.05 |
| 15 | BLM18BB100SH1 | 10 | $10 \pm 25 \%$ | - | 700 | 0.10 |
| 16 | BLM18BB220SH1 | 10 | $22 \pm 25 \%$ | - | 600 | 0.20 |
| 17 | BLM18BB470SH1 | 10 | $47 \pm 25 \%$ | - | 550 | 0.25 |
| 18 | BLM18BB600SH1 | 10 | $60 \pm 25 \%$ | - | 550 | 0.25 |
| 19 | BLM18BB750SH1 | 10 | $75 \pm 25 \%$ | - | 500 | 0.30 |

Continued from the preceding page.

| No. | Part Number | Quantity (pcs.) | Impedance typ. (at $100 \mathrm{MHz}, 20^{\circ} \mathrm{C}$ ) ( $\Omega$ ) | Impedance typ. (at $1 \mathrm{GHz}, 20^{\circ} \mathrm{C}$ ) $(\Omega)$ | Rated Current (mA) | DC Resistance $(\Omega)$ max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | BLM18BB121SH1 | 10 | $120 \pm 25 \%$ | - | 500 | 0.30 |
| 21 | BLM18BB141SH1 | 10 | $140 \pm 25 \%$ | - | 450 | 0.35 |
| 22 | BLM18BB151SH1 | 10 | $150 \pm 25 \%$ | - | 450 | 0.37 |
| 23 | BLM18BB221SH1 | 10 | $220 \pm 25 \%$ | - | 450 | 0.45 |
| 24 | BLM18BB331SH1 | 10 | $330 \pm 25 \%$ | - | 400 | 0.58 |
| 25 | BLM18BB471SH1 | 10 | $470 \pm 25 \%$ | - | 300 | 0.85 |
| 26 | BLM18BD470SH1 | 10 | $47 \pm 25 \%$ | - | 500 | 0.30 |
| 27 | BLM18BD121SH1 | 10 | $120 \pm 25 \%$ | - | 200 | 0.4 |
| 28 | BLM18BD151SH1 | 10 | $150 \pm 25 \%$ | - | 200 | 0.4 |
| 29 | BLM18BD221SH1 | 10 | $220 \pm 25 \%$ | - | 200 | 0.45 |
| 30 | BLM18BD331SH1 | 10 | $330 \pm 25 \%$ | - | 200 | 0.5 |
| 31 | BLM18BD421SH1 | 10 | $420 \pm 25 \%$ | - | 200 | 0.55 |
| 32 | BLM18BD471SH1 | 10 | $470 \pm 25 \%$ | - | 200 | 0.55 |
| 33 | BLM18BD601SH1 | 10 | $600 \pm 25 \%$ | - | 200 | 0.65 |
| 34 | BLM18BD102SH1 | 10 | $1000 \pm 25 \%$ | - | 100 | 0.85 |
| 35 | BLM18BD152SH1 | 10 | $1500 \pm 25 \%$ | - | 50 | 1.2 |
| 36 | BLM18BD182SH1 | 10 | $1800 \pm 25 \%$ | - | 50 | 1.5 |
| 37 | BLM18BD222SH1 | 10 | $2200 \pm 25 \%$ | - | 50 | 1.5 |
| 38 | BLM18BD252SH1 | 10 | $2500 \pm 25 \%$ | - | 50 | 1.5 |
| 39 | BLM18HG471SH1 | 10 | $470 \pm 25 \%$ | 600 (Тур.) | 200 | 0.85 |
| 40 | BLM18HG601SH1 | 10 | $600 \pm 25 \%$ | 700 (Тур.) | 200 | 1.0 |
| 41 | BLM18HG102SH1 | 10 | $1000 \pm 25 \%$ | 1000 (Typ.) | 100 | 1.6 |
| 42 | BLM18HD471SH1 | 10 | $470 \pm 25 \%$ | 1000 (Typ.) | 100 | 1.2 |
| 43 | BLM18HD601SH1 | 10 | $600 \pm 25 \%$ | 1200 (Typ.) | 100 | 1.5 |
| 44 | BLM18HD102SH1 | 10 | $1000 \pm 25 \%$ | 1700 (Typ.) | 50 | 1.8 |
| 45 | BLM18EG101TH1 | 10 | $100 \pm 25 \%$ | 140 (Тур.) | 2000 | 0.04 |
| 46 | BLM18EG121SH1 | 10 | $120 \pm 25 \%$ | 145 (Тур.) | 2000 | 0.04 |
| 47 | BLM18EG181SH1 | 10 | $180 \pm 25 \%$ | 260 (Typ.) | 2000 | 0.05 |
| 48 | BLM18EG221TH1 | 10 | $220 \pm 25 \%$ | 300 (Typ.) | 1000 | 0.15 |
| 49 | BLM18EG331TH1 | 10 | $330 \pm 25 \%$ | 450 (Тур.) | 500 | 0.21 |
| 50 | BLM18EG391TH1 | 10 | $390 \pm 25 \%$ | 520 (Тур.) | 500 | 0.30 |
| 51 | BLM18EG471SH1 | 10 | $470 \pm 25 \%$ | 550 (Тур.) | 500 | 0.21 |
| 52 | BLM18EG601SH1 | 10 | $600 \pm 25 \%$ | 700 (Тур.) | 500 | 0.35 |

OEKEMAT21A (Chip Ferrite Beads 0805 / 1206 Size for Automotive)

| No. | Part Number | Quantity <br> (pcs.) | Impedance typ. (at 100MHz, 20C) <br> $(\Omega)$ | Rated Current <br> (mA) | DC Resistance <br> $(\Omega)$ max. |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | BLM21AG121SH1 | 10 | $120 \pm 25 \%$ | 200 | 0.15 |
| 2 | BLM21AG151SH1 | 10 | $150 \pm 25 \%$ | 200 | 0.15 |
| 3 | BLM21AG221SH1 | 10 | $220 \pm 25 \%$ | 200 | 0.2 |
| 4 | BLM21AG331SH1 | 10 | $330 \pm 25 \%$ | 200 | 0.25 |
| 5 | BLM21AG471SH1 | 10 | $470 \pm 25 \%$ | 200 | 0.25 |
| 6 | BLM21AG601SH1 | 10 | $600 \pm 25 \%$ | 200 | 0.3 |
| 7 | BLM21AG102SH1 | 10 | $1000 \pm 25 \%$ | 200 | 0.45 |
| 8 | BLM31AJ601SH1 | 10 | $600 \pm 25 \%$ | 200 | 0.9 |
| 9 | BLM21BB050SH1 | 10 | $5 \pm 25 \%$ | 200 | 0.07 |
| 10 | BLM21BB600SH1 | 10 | $60 \pm 25 \%$ | 200 | 0.2 |
| 11 | BLM21BB750SH1 | 10 | $75 \pm 25 \%$ | 200 | 0.25 |
| 12 | BLM21BB121SH1 | 10 | $120 \pm 25 \%$ | 200 | 0.25 |
| 13 | BLM21BB151SH1 | 10 | $150 \pm 25 \%$ | 200 | 0.25 |
| 14 | BLM21BB201SH1 | 10 | $200 \pm 25 \%$ | 200 | 0.35 |
| 15 | BLM21BB221SH1 | 10 | $220 \pm 25 \%$ | 0.35 |  |

## Design Kits

Continued from the preceding page.

| No. | Part Number | Quantity <br> (pcs.) | Impedance typ. (at 100MHz, 20C) <br> $(\Omega)$ | Rated Current <br> (mA) | DC Resistance <br> $(\Omega) \mathbf{m a x}$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 16 | BLM21BB331SH1 | 10 | $330 \pm 25 \%$ | 200 | 0.4 |
| 17 | BLM21BB471SH1 | 10 | $470 \pm 25 \%$ | 200 | 0.45 |
| 18 | BLM21BD121SH1 | 10 | $120 \pm 25 \%$ | 200 | 0.25 |
| 19 | BLM21BD151SH1 | 10 | $150 \pm 25 \%$ | 200 | 0.25 |
| 20 | BLM21BD221SH1 | 10 | $220 \pm 25 \%$ | 200 | 0.25 |
| 21 | BLM21BD331SH1 | 10 | $330 \pm 25 \%$ | 200 | 0.3 |
| 22 | BLM21BD421SH1 | 10 | $420 \pm 25 \%$ | 200 | 0.3 |
| 23 | BLM21BD471SH1 | 10 | $470 \pm 25 \%$ | 200 | 0.35 |
| 24 | BLM21BD601SH1 | 10 | $600 \pm 25 \%$ | 200 | 0.35 |
| 25 | BLM21BD751SH1 | 10 | $750 \pm 25 \%$ | 200 | 0.4 |
| 26 | BLM21BD102SH1 | 10 | $1000 \pm 25 \%$ | 200 | 0.4 |
| 27 | BLM21BD152SH1 | 10 | $1500 \pm 25 \%$ | 200 | 0.45 |
| 28 | BLM21BD182SH1 | 10 | $1800 \pm 25 \%$ | 200 | 0.5 |
| 29 | BLM21BD222TH1 | 10 | $2200 \pm 25 \%$ | 200 | 0.6 |
| 30 | BLM21BD222SH1 | 10 | $2250(T y p)$. | 0.6 |  |
| 31 | BLM21BD272SH1 | 10 | $2700 \pm 25 \%$ |  |  |

## -EKEMATPWA (Chip EMIFIL ${ }^{\circledR}$ for Automotive / for Power Supplies)

| No. | Part Number | Quantity (pcs.) | Impedance typ. (at $100 \mathrm{MHz}, 20^{\circ} \mathrm{C}$ ) <br> $(\Omega)$ | Rated Current (mA) | DC Resistance <br> $(\Omega)$ max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | BLM18PG300SH1 | 10 | 30 (Typ.) | 1000 | 0.05 |
| 2 | BLM18PG330SH1 | 10 | $33 \pm 25 \%$ | 3000 | 0.025 |
| 3 | BLM18PG600SH1 | 10 | 60 (Typ.) | 500 | 0.10 |
| 4 | BLM18PG121SH1 | 10 | $120 \pm 25 \%$ | 2000 | 0.05 |
| 5 | BLM18PG181SH1 | 10 | $180 \pm 25 \%$ | 1500 | 0.09 |
| 6 | BLM18PG221SH1 | 10 | $220 \pm 25 \%$ | 1400 | 0.1 |
| 7 | BLM18PG331SH1 | 10 | $330 \pm 25 \%$ | 1200 | 0.15 |
| 8 | BLM18PG471SH1 | 10 | $470 \pm 25 \%$ | 1000 | 0.2 |
| 9 | BLM21PG220SH1 | 10 | $22 \pm 25 \%$ | 6000 | 0.01 |
| 10 | BLM21PG300SH1 | 10 | 30 (Typ.) | 3000 | 0.015 |
| 11 | BLM21PG600SH1 | 10 | $60 \pm 25 \%$ | 3000 | 0.025 |
| 12 | BLM21PG221SH1 | 10 | $220 \pm 25 \%$ | 2000 | 0.050 |
| 13 | BLM21PG331SH1 | 10 | $330 \pm 25 \%$ | 1500 | 0.09 |
| 14 | BLM31PG330SH1 | 10 | $33 \pm 25 \%$ | 6000 | 0.01 |
| 15 | BLM31PG500SH1 | 10 | 50 (Typ.) | 3000 | 0.025 |
| 16 | BLM31PG121SH1 | 10 | $120 \pm 25 \%$ | 3000 | 0.025 |
| 17 | BLM31PG391SH1 | 10 | $390 \pm 25 \%$ | 2000 | 0.05 |
| 18 | BLM31PG601SH1 | 10 | $600 \pm 25 \%$ | 1500 | 0.09 |
| 19 | BLM41PG600SH1 | 10 | 60 (Typ.) | 6000 | 0.01 |
| 20 | BLM41PG750SH1 | 10 | 75 (Typ.) | 3000 | 0.025 |
| 21 | BLM41PG181SH1 | 10 | $180 \pm 25 \%$ | 3000 | 0.025 |
| 22 | BLM41PG471SH1 | 10 | $470 \pm 25 \%$ | 2000 | 0.05 |
| 23 | BLM41PG102SH1 | 10 | $1000 \pm 25 \%$ | 1500 | 0.09 |


| No. | Part Number | Quantity <br> (pcs.) | Capacitance <br> $\mathbf{( p F )}$ | Rated Voltage <br> (Vdc) | Rated Current <br> (mA) | Insulation Resistance <br> (M $\Omega$ ) $\mathbf{m i n}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | NFM21HC220U1H3 | 10 | $22 \pm 20 \%$ | 50 | 700 | 1000 |
| 25 | NFM21HC470U1H3 | 10 | $47 \pm 20 \%$ | 50 | 700 | 1000 |
| 26 | NFM21HC101U1H3 | 10 | $100 \pm 20 \%$ | 50 | 700 | 1000 |
| 27 | NFM21HC221R1H3 | 10 | $220 \pm 20 \%$ | 50 | 700 | 1000 |
| 28 | NFM21HC471R1H3 | 10 | $470 \pm 20 \%$ | 50 | 1000 | 1000 |
| 29 | NFM21HC102R1H3 | 10 | $1000 \pm 20 \%$ | 50 | 1000 | 1000 |

## Continued from the preceding page.

| No. | Part Number | Quantity <br> (pcs.) | Capacitance <br> $\mathbf{( p F )}$ | Rated Voltage <br> (Vdc) | Rated Current <br> (mA) | Insulation Resistance <br> (M $\Omega$ ) $\mathbf{m i n}$. |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 30 | NFM21HC222R1H3 | 10 | $2200 \pm 20 \%$ | 50 | 1000 | 1000 |
| 31 | NFM21HC223R1H3 | 10 | $22000 \pm 20 \%$ | 50 | 2000 | 1000 |
| 32 | NFM21HC104R1A3 | 10 | $100000 \pm 20 \%$ | 10 | 2000 | 1000 |
| 33 | NFM21HC224R1A3 | 10 | $220000 \pm 20 \%$ | 10 | 2000 | 1000 |
| 34 | NFM21HC474R1A3 | 10 | $470000 \pm 20 \%$ | 10 | 2000 | 1000 |
| 35 | NFE61HT330U2A9 | 10 | $33 \pm 30 \%$ | 100 | 2000 | 1000 |
| 36 | NFE61HT680R2A9 | 10 | $68 \pm 30 \%$ | 100 | 100 | 2000 |
| 37 | NFE61HT101Z2A9 | 10 | 10 | $360 \pm 20 \%$ | 100 | 2000 |
| 38 | NFE61HT181C2A9 | 10 | $680 \pm 30 \%$ | 100 | 2000 | 1000 |
| 39 | NFE61HT361C2A9 | 10 | 10 | $1000+80 \%,-20 \%$ | 100 | 1000 |
| 40 | NFE61HT681D2A9 | 10 |  | 100 | 2000 |  |
| 41 | NFE61HT102F2A9 | 10 |  | 100 | 2000 |  |
| 42 | NFE61HT332Z2A9 | 10 |  |  | 2000 | 1000 |

## Outlines of Major Noise Regulation Standards

## 1. EMI Regulations

| Equipment Countries |  | Information Regulation | J apan | USA | Europe |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Generic Standard | CISPR61000-6-3 <br> (Residential, Commercial and Light Industry) IEC61000-6-4 (Industrial) |  |  | EN50081-1 <br> (Residential, Commercial and Light Industry) EN50081-2 (Industrial) |
|  | ITE : Information Technology Equipment <br> Printer, Personal computer <br> Word processor, Display | CISPR 22 | $\begin{gathered} \mathrm{VCCI} \\ * 1 \end{gathered}$ | FCC Part 15 Subpart B | EN55022 |
|  | ISM equipment, Microwave | CISPR 11 | *1 | FCC Part 18 | EN55011 |
|  | Igniter <br> (Automobile, Motorboat) | CISPR 12 | JASO | FCC Part 15 Subpart B | Automotive Directive |
|  | TV, Radio, Audio, VTR | CISPR 13 | *1 | FCC Part 15 Subpart B | EN55013 |
|  | Household electrical equipment <br> Portable tool | CISPR 14 | *1 |  | EN55014 |
|  | Fluorescent Lamp, Luminary | CISPR 15 | *1 | FCC Part 18 | EN55015 |
|  | Transceiver | ITU-T | Radio Act <br> ARIB <br> (Voluntary Regulation) | $\begin{gathered} \text { FCC Part } 15 \\ \text { Subpart C } \\ \text { FCC Part } 22 \end{gathered}$ | ETS300 Series |
|  | (Reference) Power Supply Higher Harmonic | IEC61000-3 | Industrial Voluntary Regulation |  | EN61000-3 |
|  | Basic Standard | IEC61000-4 | JIS C 61000-4 |  | EN61000-4 Series |
|  | Generic Standard | IEC61000-6-1 <br> (Residential, Commercial and Light Industry) <br> IEC61000-6-2 <br> (Industrial) | JIS C 61000-6-1 <br> (Residential, Commercial and Light Industry) JIS C 61000-6-2 (Industrial) |  | EN50082-1 <br> (Residential, Commercial and Light Industry) EN50082-2 (Industrial) |
|  | Industrial Process Measurement and Control Equipment |  | Industrial Voluntary Action |  |  |
|  | Radio, TV | CISPR 20 |  |  | EN55020 |
|  | ITE : Information Technology Equipment | CISPR 24 |  |  | EN55024 |

*1 Electrical Appliance and Material Safety Law
There are EMI regulations in each country to meet EMI noise levels emitted from digital equipment. In the countries which regulate EMI, equipment which does not satisfy regulations is not allowed to be sold.

Outlines of Major Noise Regulation Standards
Continued from the preceding page.

## 2. Measurement Point and Noise Detection

| Regulation | Measuring Item | Polarization and Measuring Point | Frequency (Hz) | Detection | Measuring Devices |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CISPR 22/ <br> EN55022 | Radiated Interference | Horizontal Pol. Vertical Pol. | 30 M to 1 GHz | Quasi-Peak Detection | Antenna |
|  | Main Interference Voltage | AC Main Ports | 150 k to 30 MHz | Quasi-Peak Detection Mean Detection | Artificial Main Network |
| VCCI | Radiated Interference | Horizontal Pol. Vertical Pol. | 30 M to 1 GHz | Quasi-Peak Detection | Dipole Antenna |
|  | Main Interference Voltage | AC Main Ports | 150 k to 30 MHz | Quasi-Peak Detection Mean Detection | Artificial Main Network |
| FCC Part 15 | Radiated Interference | Horizontal Pol. Vertical Pol. | 30 M to 40 GHz | Quasi-Peak Detection Mean Detection | Antenna |
|  | Main Interference Voltage | AC Main Ports | 150 k to 30 MHz | Quasi-Peak Detection | Artificial Main Network |



## 3. Limits of CISPR 22/EN55022

(1) CISPR 22 recommends measurement at 10 m distance. However, other distance is acceptable if the limitation is converted according to the following calculation. Limitation shown left is converted to limitation for 3m distance.


Main Terminal Interference Voltage (Power Supply)


Radiated Interference


On the border frequency, lower limit should be applied.

Class A Equipment: The equipment which is used in light industrial commercial areas.
Class B Equipment: The equipment which is used in residential areas.

## Outlines of Major Noise Regulation Standards

Continued from the preceding page.
(2) Scope of CISPR 22 Regulation

This regulation applies to information technology equipment (ITE) which are defined as:
(a) Equipment that receives data from external signal sources;
(b) Equipment that processes received data;
(c) Equipment that outputs data; and
(d) Equipment that has less than 600 V rated voltage in power supply.

## CISPR Regulations

CISPR 10 Organization, Regulations and Procedures of CISPR CISPR 11 Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment
CISPR 12 Vehicles, Motor Boats and Spark-Ignited Engine driven CISPR 13 Sound and Television Receivers
CISPR 14 Household Electrical Appliances, Portable Tools and Similar Electrical Apparatus
CISPR 15 Fluorescent Lamps and luminaries
CISPR 16 Radio Interference Measuring Apparatus and Measurement Methods
CISPR 17 Passive Radio Interference Filters and Suppression Components
CISPR 18 Power Transmission Cables and High Voltage equipment CISPR 19 Microwave Ovens for Frequencies above 1GHz
CISPR 20 Immunity of Sound and TV Broadcast Receivers and Associated Equipment
CISPR 21 Interference to Mobile Radio Communications in the Presence of Impulsive Noise
CISPR 22 Information Technology Equipment
CISPR 23 Industrial Scientific and Medical (ISM) Equipment CISPR 24 Immunity Regulation of Information Technology Equipment CISPR 25 Receiver used onboard vehicles, boats, and on devices

Main Terminal Interference Voltage (Power Supply)


Radiated Interference


On the border frequency, lower limit should be applied.

Class B ITE: Equipment that is designed to be used at home. Class A ITE: Equipment that does not meet interference limits of class $B$ equipment, but satisfies interference limits of class $A$ equipment.

Outlines of Major Noise Regulation Standards

Continued from the preceding page.

## 5. Limits of FCC Part 15 Subpart B

(1) Class A recommended to be measured with 10 m distance. Class B recommended to be measured with 3 m distance.
(2) The FCC Part 15 regulation controls radiated interference by establishing quasi-peak and mean value limits for frequencies ranging from 30 MHz to 40 GHz (or maximum frequency's fifth harmonic, whichever is lower).
For AC main ports, the FCC Part 15 regulation controls main terminal interference voltage by establishing quasipeak value limits for frequencies ranging from 450 kHz to 30MHz.

Measurement Frequency Range for Radiated Interference

| Maximum Frequency <br> the Equipment Internally <br> Generates, Uses or Operates <br> or Synchronizes (MHz) | Upper End of Measurement <br> Frequency Range <br> (MHz) |
| :---: | :---: |
| Less than 1.705 | 30 |
| 1.705 to 108 | 1000 |
| 108 to 500 | 2000 |
| 500 to 1000 | Maximum Frequency's Fifth <br> Harmonic or 40GHz, <br> Whichever is Lower |
| Over 1000 |  |

(3)There is no regulation on power interference.

Main Terminal Interference Voltage (Power Supply)


Radiated Interference


On the border frequency, lower limit should be applied.
Class A Equipment: The digital equipment that is sold for commercial, industrial and office use.
Class B Equipment: The digital equipment that is sold to be used in residential areas.

## FCC Regulations

Part 1 Procedures
Part 2 Frequency Division and Radio Wave Treaty Issues and General Rules
Part 15 Radio Wave Equipment

- Intentionally electromagnetic radiation equipment
- Non-intentionally electromagnetic radiation equipment
- Incidentally electromagnetic radiation equipment

Part 18 Industrial, Scientific and Medical Equipment
Part 22 Public Mobile Wireless Operations
Part 68 Connecting Terminal Equipment to Telephone Circuit Network Part 76 Cable Television

## Outlines of Major Noise Regulation Standards

Continued from the preceding page.

## 6. Immunity Regulations in the European Union

All electric/electronic equipment cannot be sold in Europe without CE marking. To use CE marking, they must satisfy related EC directives such as EMC directives. For Information Technology Equipment, in EMC directive, emission regulations are integrated, and immunity regulations are applied. Although these immunity regulations are prepared by CENELEC, almost all contents are same as standards issued by IEC or CISPR.

All products which are sold in EU must satisfy EC directive which contains immunity regulation.

| Principal EC Directive |  |
| :---: | :---: |
| EMC Directive | $89 / 336 / E E C$ <br> $92 / 31 / E E C$ |
| Low-Voltage Electrical <br> Products Directive | $73 / 23 / E E C$ |
| Machines Directive | $89 / 392 / E E C$ |

## 7. Immunity Regulations in J apan

| Equipment |  |
| :--- | :--- |
| TV, Radio, Audio | Association |
| ITE |  |
| Office Machine | JBMIA (J apan Business Machine and Information System Industries Association) |
| Mi | CIAJ (Communication and Information Network Association of J apan) <br> ARIB (Association of Radio Industries and Business) |
| Machine To Builders | JMTBA (J apan Machine Tool Builders' Association) |
| Industrial Measuring Control Equipment | JEMIMA (J apan Electric Measuring Instruments Manufacturers' Association) |
| Industrial Robot | JARA (J apan Robot Association) |

The table on the right shows the preparation situation of JIS for EMC. At this moment, the immunity standards by JIS do not have a legal force like the Electrical Application and Material Safety Law/VCCI.

| Classification | Information Regulation | J IS |
| :---: | :---: | :---: |
| Terms | ISO60050-161 <br> (IEV terms 161) | J IS C 0161 |
|  | IEC61000-4-2 | J IS C 61000-4-2 |
|  | IEC61000-4-3 | J IS C 61000-4-3 |
|  | IEC61000-4-4 | J IS C 61000-4-4 |
|  | IEC61000-4-5 | J IS C 61000-4-5 |
|  | IEC61000-4-6 | J IS C 61000-4-6 |
|  | IEC61000-4-7 | J IS C 61000-4-7 |
|  | IEC61000-4-8 | J IS C 61000-4-8 |
|  | IEC61000-4-11 | J IS C 61000-4-11 |
|  | IEC61000-4-14 | JIS C 61000-4-14 |
|  | IEC61000-4-17 | J IS C 61000-4-17 |
| Generic Standards | IEC61000-6-1 | J IS C 61000-6-1 |
|  | IEC61000-6-2 | J IS C 61000-6-2 |

## 1. Function of DC EMI Suppression Filters

DC EMI suppression filters absorb and eliminate high frequency noise which may produce electromagnetic interference in PC board circuits.
These filters are used in secondary circuits, and are small in size and light in weight, which further enhances their excellent noise suppression functions.
Chip and adhesive type filters can be mounted on PC boards automatically.
These filters are effective in the suppression of radiation noise in computers, peripheral equipment, and digital circuit application equipment (including various types of microcomputer application equipment), and function to suppress noise in audio/visual equipment, which uses digital memory chips and DSP.
These filters are also effective for improving the noise immunity of equipment used in noisy environments (such as electronic equipment for automobiles).

## 2. Noise Filter Suppression Principles

Generally, noise problems occur when the noise source and electronic equipment sensitive to the influence of noise are located in close proximity to one another. In such situations, as shown in Figure at right, noise is conducted through a conductor, which produces an inductive field around the noise source.
To overcome such noise problems, it is preferable to reduce the amount of noise generated by the noise source or improve the noise resistance of adjacent equipment.
In order to satisfy equipment performance specifications and eliminate noise effectively at the same time, however, it is customary to reduce the amount of noise generated by the noise source, if it can't be eliminated altogether.

## 3. Configuration of EMI Suppression Filters (DC)

DC EMI suppression filters are used to suppress noise produced by conductors. Noise radiation can be suppressed, if it is eliminated with a filter in advance. Generally, such noise suppression is achieved with DC EMI suppression filters, according to the capacitive and inductive frequency characteristics of the respective conductors in the circuit.
Filters of this kind can be roughly divided into those:
(1) employing a capacitor,
(2) employing an inductor,
(3) employing a capacitor and inductor combination.


## Principles of Noise Suppression by DC EMIFIL ${ }^{\circledR}$

Continued from the preceding page.

## 4. Capacitive Noise Suppression

When a capacitor is connected (bypass capacitor) to ground from a noisy signal line or power line, the circuit impedance decreases as the frequency increases. Since noise is a high frequency phenomenon, it flows to ground if a capacitor has been connected to ground, thereby making it possible to eliminate noise. (See Fig.) EMI suppression filters employing a capacitor in this way are used to eliminate this type of noise.

## 5. High frequency Capacitor Characteristics Used for EMI Suppression Filters

Even general-purpose capacitors can be used for noise suppression. However, since noise has an extremely high frequency range, general-purpose capacitors may not function as effective bypass capacitors, due to the large residual inductance built into the capacitor.
All the capacitors used in Murata's EMI suppression filters employ a three terminal structure or thru-type structure, which functions effectively even at high frequencies, thereby minimizing the influence of residual inductance. Consequently, an effective filter circuit can be formed even at frequencies exceeding 1 GHz .
(Refer to Fig.)

## 6. Inductive Noise Suppression

When an inductor is inserted in series in a noise producing circuit (See Fig.), its impedance increases with frequency. In this configuration it is possible to attenuate and eliminate noise components (high frequency components). The Murata EMI suppression filter functions in this way.

Capacitive Noise Suppression


Equivalent circuit of general-purpose capacitor and three terminal capacitor in the high frequency area and comparison of insertion loss
(a) Equivalent circuit of capacitors which concerns the ESL effect.

(b) Improvement of Insertion Loss Characteristics



Inductive Noise Suppression


Continued on the following page.

Principles of Noise Suppression by DC EMIFIL ${ }^{\circledR}$

Continued from the preceding page.

## 7. Characteristics of Inductors Used

 in EMI Suppression FiltersGeneral-purpose inductors also function to suppress noise when configured in series with a noise producing circuit. However, when general-purpose inductors are used, resonance may result in peripheral circuits, signal wave forms may become distorted, and satisfactory impedance may not be obtained at noise frequencies (due to insufficient high frequency impedance characteristics).
The inductors used for Murata's EMI suppression filters are designed to function nearly as a resistor at noise frequencies, which greatly reduces the possibility of resonance and leaves signal wave forms undistorted. And since sufficient impedance is obtained for frequencies ranging to hundreds of MHz , these specifically designed inductors operate effectively to suppress high-frequency noise. (See Fig.)

## 8. Capacitive-Inductive EMI Suppression Filters

If capacitive and inductive suppression characteristics are combined, it is possible to configure a much higher performance filter. In signal circuit applications where this combination is applied, noise suppression effects which have little influence on the signal wave form become possible.
This type of filter is also effective in the suppression of high-speed signal circuit noise. When used in DC power circuits, capacitive-inductive filters prevent resonance from occurring in peripheral circuits, thus making it possible to achieve significant noise suppression under normal service conditions.

## 9. Other EMI Suppression Filters

In addition to the capacitive-inductive filter, Murata also has a common mode choke coil, effective for common mode noise suppression. Murata also has a range of built-in filter connectors which greatly reduce filter mounting space requirements.

Equivalent Circuit

(Resistance element becomes dominant at high frequency.)

Example of impedance frequency characteristics of inductor type EMIFIL ${ }^{\circledR}$

BLM18AG102


## Principles of Noise Suppression by DC EMIFIL ${ }^{\circledR}$

## $\triangle$ Continued from the preceding page.

## 10. Expressing EMI Suppression Filter Effects

EMI Suppression Filter effects are expressed in terms of the insertion loss measured in the circuit, normally specified in MIL-STD 220A. As shown in the $50 \Omega$ impedance circuit in the Figure at right, insertion loss is represented by the logarithmic ratio of the circuit output voltage with and without a filter in the circuit, which is multiplied by 20 and expressed in dB.
Therefore, an insertion loss of 20 dB indicates an output voltage ratio ( $B / C$ ) of $1 / 10$, and an insertion loss of 40 dB indicates an output voltage ratio $(B / C)$ of $1 / 100$.

## Measuring Circuit of Insertion Loss

Measuring Circuit of Insertion Loss


Insertion Loss $=20 \log \frac{\mathrm{~B}}{\mathrm{C}}(\mathrm{dB})$

## (1) Note:

1. Export Control
<For customers outside Japan>
No muRata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.
<For customers in Japan>
For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.
2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
(1) Aircraft equipment
(3) Undersea equipment
(5) Medical equipment
(7) Traffic signal equipment
(9) Data-processing equipment
(2) Aerospace equipment
4) Power plant equipment
5) Transportation equipment (vehicles, trains, ships, etc.)
(8) Disaster prevention / crime prevention equipment
(10) Application of similar complexity and/or reliability requirements to the applications listed above
3. Product specifications in this catalog are as of July 2008. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers
4. Please read rating and $\triangle$ CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process

## milinta Murata Manufacturing Co., Ltd.

Head Office
1-10-1, Higashi Kotari, Nagaokakyo-shi, Kyoto 617-8555, Japan
Phone: 81-75-951-9111


[^0]:    *1 BLM21BD222SH1/BLM21BD272SH1 only.

[^1]:    Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

